statsmodels.genmod.generalized_estimating_equations.GEE.fit_regularized¶
- GEE.fit_regularized(pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-05, ztol=0.001, eps=1e-06, scale=None)[source]¶
 Regularized estimation for GEE.
- Parameters:¶
 - pen_wt
float The penalty weight (a non-negative scalar).
- scad_param
float Non-negative scalar determining the shape of the Scad penalty.
- maxiter
int The maximum number of iterations.
- ddof_scale
int Value to subtract from nobs when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in exog.
- update_assoc
int The dependence parameters are updated every update_assoc iterations of the mean structure parameter updates.
- ctol
float Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al.
- ztol
float Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al.
- epsnon-negative scalar
 Numerical constant, see section 3.2 of Wang et al.
- scale
floatorstr If a float, this value is used as the scale parameter. If “X2”, the scale parameter is always estimated using Pearson’s chi-square method (e.g. as in a quasi-Poisson analysis). If None, the default approach for the family is used to estimate the scale parameter.
- pen_wt
 - Returns:¶
 GEEResultsinstance.Notethatnotallmethodsoftheresultsclassmakesensewhenthemodelhasbeenfitwithregularization.
Notes
This implementation assumes that the link is canonical.
References
Wang L, Zhou J, Qu A. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf