statsmodels.regression.quantile_regression.QuantReg.fit¶
- QuantReg.fit(q=0.5, vcov='robust', kernel='epa', bandwidth='hsheather', max_iter=1000, p_tol=1e-06, **kwargs)[source]¶
Solve by Iterative Weighted Least Squares
- Parameters:¶
- q
float Quantile must be strictly between 0 and 1
- vcov
str,methodusedtocalculatethevariance-covariancematrix of the parameters. Default is
robust:robust : heteroskedasticity robust standard errors (as suggested in Greene 6th edition)
iid : iid errors (as in Stata 12)
- kernel
str,kerneltouseinthekerneldensityestimationforthe asymptotic covariance matrix:
epa: Epanechnikov
cos: Cosine
gau: Gaussian
par: Parzene
- bandwidth
str,Bandwidthselectionmethodinkerneldensity estimation for asymptotic covariance estimate (full references in QuantReg docstring):
hsheather: Hall-Sheather (1988)
bofinger: Bofinger (1975)
chamberlain: Chamberlain (1994)
- q
Last update:
Jun 10, 2024