statsmodels.sandbox.regression.gmm.LinearIVGMM.fititer
- 
LinearIVGMM.fititer(start, maxiter=2, start_invweights=None, weights_method='cov', wargs=(), optim_method='bfgs', optim_args=None)
 
iterative estimation with updating of optimal weighting matrix
stopping criteria are maxiter or change in parameter estimate less
than self.epsilon_iter, with default 1e-6.
- Parameters:
 
- start
ndarray starting value for parameters
 
- maxiter
int maximum number of iterations
 
- start_weights
array (nmoms, nmoms) initial weighting matrix; if None, then the identity matrix
is used
 
- weights_method{‘cov’, …}
 method to use to estimate the optimal weighting matrix,
see calc_weightmatrix for details
 
 
- Returns:
 
- params
ndarray estimated parameters
 
- weights
ndarray optimal weighting matrix calculated with final parameter
estimates
 
 
  
  
    
      Last update:
      Jun 10, 2024