statsmodels.tsa.holtwinters.HoltWintersResults¶
- class statsmodels.tsa.holtwinters.HoltWintersResults(model, params, sse, aic, aicc, bic, optimized, level, trend, season, params_formatted, resid, k, fittedvalues, fittedfcast, fcastvalues, mle_retvals=None)[source]¶
Results from fitting Exponential Smoothing models.
- Parameters:¶
- model
ExponentialSmoothinginstance The fitted model instance.
- params
dict All the parameters for the Exponential Smoothing model.
- sse
float The sum of squared errors.
- aic
float The Akaike information criterion.
- aicc
float AIC with a correction for finite sample sizes.
- bic
float The Bayesian information criterion.
- optimizedbool
Flag indicating whether the model parameters were optimized to fit the data.
- level
ndarray An array of the levels values that make up the fitted values.
- trend
ndarray An array of the trend values that make up the fitted values.
- season
ndarray An array of the seasonal values that make up the fitted values.
- params_formatted
pd.DataFrame DataFrame containing all parameters, their short names and a flag indicating whether the parameter’s value was optimized to fit the data.
- resid
ndarray An array of the residuals of the fittedvalues and actual values.
- k
int The k parameter used to remove the bias in AIC, BIC etc.
- fittedvalues
ndarray An array of the fitted values. Fitted by the Exponential Smoothing model.
- fittedfcast
ndarray An array of both the fitted values and forecast values.
- fcastvalues
ndarray An array of the forecast values forecast by the Exponential Smoothing model.
- mle_retvals{
None,scipy.optimize.optimize.OptimizeResult} Optimization results if the parameters were optimized to fit the data.
- model
- Attributes:¶
aicThe Akaike information criterion.
aiccAIC with a correction for finite sample sizes.
bicThe Bayesian information criterion.
fcastvaluesAn array of the forecast values
fittedfcastAn array of both the fitted values and forecast values.
fittedvaluesAn array of the fitted values
kThe k parameter used to remove the bias in AIC, BIC etc.
levelAn array of the levels values that make up the fitted values.
mle_retvalsOptimization results if the parameters were optimized to fit the data.
modelThe model used to produce the results instance.
optimizedFlag indicating if model parameters were optimized to fit the data.
params_formattedDataFrame containing all parameters
residAn array of the residuals of the fittedvalues and actual values.
seasonAn array of the seasonal values that make up the fitted values.
sseThe sum of squared errors between the data and the fittted value.
trendAn array of the trend values that make up the fitted values.
Methods
forecast([steps])Out-of-sample forecasts
initialize(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
predict([start, end])In-sample prediction and out-of-sample forecasting
simulate(nsimulations[, anchor, ...])Random simulations using the state space formulation.
summary()Summarize the fitted Model
Properties
The Akaike information criterion.
AIC with a correction for finite sample sizes.
The Bayesian information criterion.
An array of the forecast values
An array of both the fitted values and forecast values.
An array of the fitted values
The k parameter used to remove the bias in AIC, BIC etc.
An array of the levels values that make up the fitted values.
Optimization results if the parameters were optimized to fit the data.
The model used to produce the results instance.
Flag indicating if model parameters were optimized to fit the data.
DataFrame containing all parameters
An array of the residuals of the fittedvalues and actual values.
An array of the seasonal values that make up the fitted values.
The sum of squared errors between the data and the fittted value.
An array of the trend values that make up the fitted values.