Quantum Harmonic Oscillator in 1-D¶
- sympy.physics.qho_1d.E_n(n, omega)[source]¶
- Returns the Energy of the One-dimensional harmonic oscillator. - Parameters:
- ``n`` : - The “nodal” quantum number. - ``omega`` : - The harmonic oscillator angular frequency. 
 - Notes - The unit of the returned value matches the unit of hw, since the energy is calculated as: - E_n = hbar * omega*(n + 1/2) - Examples - >>> from sympy.physics.qho_1d import E_n >>> from sympy.abc import x, omega >>> E_n(x, omega) hbar*omega*(x + 1/2) 
- sympy.physics.qho_1d.coherent_state(n, alpha)[source]¶
- Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states - Parameters:
- ``n`` : - The “nodal” quantum number. - ``alpha`` : - The eigen value of annihilation operator. 
 
- sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]¶
- Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. - Parameters:
- ``n`` : - the “nodal” quantum number. Corresponds to the number of nodes in the wavefunction. - n >= 0- ``x`` : - x coordinate. - ``m`` : - Mass of the particle. - ``omega`` : - Angular frequency of the oscillator. 
 - Examples - >>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4)) 
