Quantum Harmonic Oscillator in 3-D¶
-
sympy.physics.sho.E_nl(n, l, hw)[source]¶ Returns the Energy of an isotropic harmonic oscillator
nthe “nodal” quantum number
lthe orbital angular momentum
hwthe harmonic oscillator parameter.
The unit of the returned value matches the unit of hw, since the energy is calculated as:
E_nl = (2*n + l + 3/2)*hw
Examples
>>> from sympy.physics.sho import E_nl >>> from sympy import symbols >>> x, y, z = symbols('x, y, z') >>> E_nl(x, y, z) z*(2*x + y + 3/2)
-
sympy.physics.sho.R_nl(n, l, nu, r)[source]¶ Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic oscillator.
nthe “nodal” quantum number. Corresponds to the number of nodes in the wavefunction. n >= 0
lthe quantum number for orbital angular momentum
numass-scaled frequency: nu = m*omega/(2*hbar) where \(m\) is the mass and \(omega\) the frequency of the oscillator. (in atomic units nu == omega/2)
rRadial coordinate
Examples
>>> from sympy.physics.sho import R_nl >>> from sympy import var >>> var("r nu l") (r, nu, l) >>> R_nl(0, 0, 1, r) 2*2**(3/4)*exp(-r**2)/pi**(1/4) >>> R_nl(1, 0, 1, r) 4*2**(1/4)*sqrt(3)*(-2*r**2 + 3/2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
>>> R_nl(0, 0, nu, r) 2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4) >>> R_nl(0, l, 1, r) r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
The normalization of the radial wavefunction is:
>>> from sympy import Integral, oo >>> Integral(R_nl(0, 0, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 0, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000 >>> Integral(R_nl(1, 1, 1, r)**2 * r**2, (r, 0, oo)).n() 1.00000000000000