Curves¶
- 
class sympy.geometry.curve.Curve(function, limits)[source]¶
- A curve in space. - A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value. - Parameters
- function : list of functions - limits : 3-tuple - Function parameter and lower and upper bounds. 
- Raises
- ValueError - When \(functions\) are specified incorrectly. When \(limits\) are specified incorrectly. 
 - Examples - >>> from sympy import sin, cos, Symbol, interpolate >>> from sympy.abc import t, a >>> from sympy.geometry import Curve >>> C = Curve((sin(t), cos(t)), (t, 0, 2)) >>> C.functions (sin(t), cos(t)) >>> C.limits (t, 0, 2) >>> C.parameter t >>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C Curve((t, t**2), (t, 0, 1)) >>> C.subs(t, 4) Point2D(4, 16) >>> C.arbitrary_point(a) Point2D(a, a**2) - Attributes - functions - parameter - limits - 
arbitrary_point(parameter='t')[source]¶
- A parameterized point on the curve. - Parameters
- parameter : str or Symbol, optional - Default value is ‘t’; the Curve’s parameter is selected with None or self.parameter otherwise the provided symbol is used. 
- Returns
- arbitrary_point : Point 
- Raises
- ValueError - When \(parameter\) already appears in the functions. 
 - Examples - >>> from sympy import Symbol >>> from sympy.abc import s >>> from sympy.geometry import Curve >>> C = Curve([2*s, s**2], (s, 0, 2)) >>> C.arbitrary_point() Point2D(2*t, t**2) >>> C.arbitrary_point(C.parameter) Point2D(2*s, s**2) >>> C.arbitrary_point(None) Point2D(2*s, s**2) >>> C.arbitrary_point(Symbol('a')) Point2D(2*a, a**2) - See also 
 - 
property free_symbols¶
- Return a set of symbols other than the bound symbols used to parametrically define the Curve. - Examples - >>> from sympy.abc import t, a >>> from sympy.geometry import Curve >>> Curve((t, t**2), (t, 0, 2)).free_symbols set() >>> Curve((t, t**2), (t, a, 2)).free_symbols {a} 
 - 
property functions¶
- The functions specifying the curve. - Returns
- functions : list of parameterized coordinate functions. 
 - Examples - >>> from sympy.abc import t >>> from sympy.geometry import Curve >>> C = Curve((t, t**2), (t, 0, 2)) >>> C.functions (t, t**2) - See also 
 - 
property length¶
- The curve length. - Examples - >>> from sympy.geometry.curve import Curve >>> from sympy import cos, sin >>> from sympy.abc import t >>> Curve((t, t), (t, 0, 1)).length sqrt(2) 
 - 
property limits¶
- The limits for the curve. - Returns
- limits : tuple - Contains parameter and lower and upper limits. 
 - Examples - >>> from sympy.abc import t >>> from sympy.geometry import Curve >>> C = Curve([t, t**3], (t, -2, 2)) >>> C.limits (t, -2, 2) - See also 
 - 
property parameter¶
- The curve function variable. - Returns
- parameter : SymPy symbol 
 - Examples - >>> from sympy.abc import t >>> from sympy.geometry import Curve >>> C = Curve([t, t**2], (t, 0, 2)) >>> C.parameter t - See also 
 - 
plot_interval(parameter='t')[source]¶
- The plot interval for the default geometric plot of the curve. - Parameters
- parameter : str or Symbol, optional - Default value is ‘t’; otherwise the provided symbol is used. 
- Returns
- plot_interval : list (plot interval) - [parameter, lower_bound, upper_bound] 
 - Examples - >>> from sympy import Curve, sin >>> from sympy.abc import x, t, s >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval() [t, 1, 2] >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s) [s, 1, 2] - See also - limits
- Returns limits of the parameter interval 
 
 - 
rotate(angle=0, pt=None)[source]¶
- Rotate - angleradians counterclockwise about Point- pt.- The default pt is the origin, Point(0, 0). - Examples - >>> from sympy.geometry.curve import Curve >>> from sympy.abc import x >>> from sympy import pi >>> Curve((x, x), (x, 0, 1)).rotate(pi/2) Curve((-x, x), (x, 0, 1)) 
 
