Matrices¶
Known matrices related to physics
- 
sympy.physics.matrices.mdft(n)[source]¶
- Returns an expression of a discrete Fourier transform as a matrix multiplication. It is an n X n matrix. - Examples - >>> from sympy.physics.matrices import mdft >>> mdft(3) Matrix([ [sqrt(3)/3, sqrt(3)/3, sqrt(3)/3], [sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3], [sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]]) - References 
- 
sympy.physics.matrices.mgamma(mu, lower=False)[source]¶
- Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation. - If you want \(\gamma_\mu\), use - gamma(mu, True).- We use a convention: - \(\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3\) - \(\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5\) - Examples - >>> from sympy.physics.matrices import mgamma >>> mgamma(1) Matrix([ [ 0, 0, 0, 1], [ 0, 0, 1, 0], [ 0, -1, 0, 0], [-1, 0, 0, 0]]) - References 
- 
sympy.physics.matrices.msigma(i)[source]¶
- Returns a Pauli matrix \(\sigma_i\) with \(i=1,2,3\) - Examples - >>> from sympy.physics.matrices import msigma >>> msigma(1) Matrix([ [0, 1], [1, 0]]) - References 
- 
sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]¶
- Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m. - Examples - To translate a body having a mass of 2 units a distance of 1 unit along the \(x\)-axis we get: - >>> from sympy.physics.matrices import pat_matrix >>> pat_matrix(2, 1, 0, 0) Matrix([ [0, 0, 0], [0, 2, 0], [0, 0, 2]]) 
