Quantum Harmonic Oscillator in 1-D¶
- 
sympy.physics.qho_1d.E_n(n, omega)[source]¶
- Returns the Energy of the One-dimensional harmonic oscillator - n
- the “nodal” quantum number 
- omega
- the harmonic oscillator angular frequency 
 - The unit of the returned value matches the unit of hw, since the energy is calculated as: - E_n = hbar * omega*(n + 1/2) - Examples - >>> from sympy.physics.qho_1d import E_n >>> from sympy import var >>> var("x omega") (x, omega) >>> E_n(x, omega) hbar*omega*(x + 1/2) 
- 
sympy.physics.qho_1d.coherent_state(n, alpha)[source]¶
- Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states - n
- the “nodal” quantum number 
- alpha
- the eigen value of annihilation operator 
 
- 
sympy.physics.qho_1d.psi_n(n, x, m, omega)[source]¶
- Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. - n
- the “nodal” quantum number. Corresponds to the number of nodes in the wavefunction. n >= 0 
- x
- x coordinate 
- m
- mass of the particle 
- omega
- angular frequency of the oscillator 
 - Examples - >>> from sympy.physics.qho_1d import psi_n >>> from sympy import var >>> var("x m omega") (x, m, omega) >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4)) 
