Grover’s Algorithm¶
Grover’s algorithm and helper functions.
Todo:
- W gate construction (or perhaps -W gate based on Mermin’s book) 
- Generalize the algorithm for an unknown function that returns 1 on multiple qubit states, not just one. 
- Implement _represent_ZGate in OracleGate 
- 
class sympy.physics.quantum.grover.OracleGate(*args, **kwargs)[source]¶
- A black box gate. - The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it finds its desired qubits and false otherwise. - Parameters
- qubits : int - Number of qubits. - oracle : callable - A callable function that returns a boolean on a computational basis. 
 - Examples - Apply an Oracle gate that flips the sign of - |2>on different qubits:- >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.grover import OracleGate >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(2, f) >>> qapply(v*IntQubit(2)) -|2> >>> qapply(v*IntQubit(3)) |3> - 
property search_function¶
- The unknown function that helps find the sought after qubits. 
 - 
property targets¶
- A tuple of target qubits. 
 
- 
class sympy.physics.quantum.grover.WGate(*args, **kwargs)[source]¶
- General n qubit W Gate in Grover’s algorithm. - The gate performs the operation - 2|phi><phi| - 1on some qubits.- |phi> = (tensor product of n Hadamards)*(|0> with n qubits)- Parameters
- nqubits : int - The number of qubits to operate on 
 
- 
sympy.physics.quantum.grover.apply_grover(oracle, nqubits, iterations=None)[source]¶
- Applies grover’s algorithm. - Parameters
- oracle : callable - The unknown callable function that returns true when applied to the desired qubits and false otherwise. 
- Returns
- state : Expr - The resulting state after Grover’s algorithm has been iterated. 
 - Examples - Apply grover’s algorithm to an even superposition of 2 qubits: - >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import apply_grover >>> f = lambda qubits: qubits == IntQubit(2) >>> qapply(apply_grover(f, 2)) |2> 
- 
sympy.physics.quantum.grover.grover_iteration(qstate, oracle)[source]¶
- Applies one application of the Oracle and W Gate, WV. - Parameters
- qstate : Qubit - A superposition of qubits. - oracle : OracleGate - The black box operator that flips the sign of the desired basis qubits. 
- Returns
- Qubit : The qubits after applying the Oracle and W gate. 
 - Examples - Perform one iteration of grover’s algorithm to see a phase change: - >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import OracleGate >>> from sympy.physics.quantum.grover import superposition_basis >>> from sympy.physics.quantum.grover import grover_iteration >>> numqubits = 2 >>> basis_states = superposition_basis(numqubits) >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(numqubits, f) >>> qapply(grover_iteration(basis_states, v)) |2> 
- 
sympy.physics.quantum.grover.superposition_basis(nqubits)[source]¶
- Creates an equal superposition of the computational basis. - Parameters
- nqubits : int - The number of qubits. 
- Returns
- state : Qubit - An equal superposition of the computational basis with nqubits. 
 - Examples - Create an equal superposition of 2 qubits: - >>> from sympy.physics.quantum.grover import superposition_basis >>> superposition_basis(2) |0>/2 + |1>/2 + |2>/2 + |3>/2 
