Essential Classes¶
CoordinateSym¶
-
class
sympy.physics.vector.frame.
CoordinateSym
(name, frame, index)[source]¶ A coordinate symbol/base scalar associated wrt a Reference Frame.
Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame as ‘frame[index]’.
CoordinateSyms having the same frame and index parameters are equal (even though they may be instantiated separately).
- Parameters
name : string
The display name of the CoordinateSym
frame : ReferenceFrame
The reference frame this base scalar belongs to
index : 0, 1 or 2
The index of the dimension denoted by this coordinate variable
Examples
>>> from sympy.physics.vector import ReferenceFrame, CoordinateSym >>> A = ReferenceFrame('A') >>> A[1] A_y >>> type(A[0]) <class 'sympy.physics.vector.frame.CoordinateSym'> >>> a_y = CoordinateSym('a_y', A, 1) >>> a_y == A[1] True
ReferenceFrame¶
-
class
sympy.physics.vector.frame.
ReferenceFrame
(name, indices=None, latexs=None, variables=None)[source]¶ A reference frame in classical mechanics.
ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame’s x, y, and z directions.
It also can have a rotation relative to a parent frame; this rotation is defined by a direction cosine matrix relating this frame’s basis vectors to the parent frame’s basis vectors. It can also have an angular velocity vector, defined in another frame.
-
ang_acc_in
(otherframe)[source]¶ Returns the angular acceleration Vector of the ReferenceFrame.
Effectively returns the Vector: ^N alpha ^B which represent the angular acceleration of B in N, where B is self, and N is otherframe.
- Parameters
otherframe : ReferenceFrame
The ReferenceFrame which the angular acceleration is returned in.
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x
-
ang_vel_in
(otherframe)[source]¶ Returns the angular velocity Vector of the ReferenceFrame.
Effectively returns the Vector: ^N omega ^B which represent the angular velocity of B in N, where B is self, and N is otherframe.
- Parameters
otherframe : ReferenceFrame
The ReferenceFrame which the angular velocity is returned in.
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x
-
dcm
(otherframe)[source]¶ Returns the direction cosine matrix relative to the provided reference frame.
The returned matrix can be used to express the orthogonal unit vectors of this frame in terms of the orthogonal unit vectors of
otherframe
.- Parameters
otherframe : ReferenceFrame
The reference frame which the direction cosine matrix of this frame is formed relative to.
Examples
The following example rotates the reference frame A relative to N by a simple rotation and then calculates the direction cosine matrix of N relative to A.
>>> from sympy import symbols, sin, cos >>> from sympy.physics.vector import ReferenceFrame >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', (q1, N.x)) >>> N.dcm(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]])
The second row of the above direction cosine matrix represents the
N.y
unit vector in N expressed in A. Like so:>>> Ny = 0*A.x + cos(q1)*A.y - sin(q1)*A.z
Thus, expressing
N.y
in A should return the same result:>>> N.y.express(A) cos(q1)*A.y - sin(q1)*A.z
Notes
It is import to know what form of the direction cosine matrix is returned. If
B.dcm(A)
is called, it means the “direction cosine matrix of B relative to A”. This is the matrix \({}^A\mathbf{R}^B\) shown in the following relationship:\[\begin{split}\begin{bmatrix} \hat{\mathbf{b}}_1 \\ \hat{\mathbf{b}}_2 \\ \hat{\mathbf{b}}_3 \end{bmatrix} = {}^A\mathbf{R}^B \begin{bmatrix} \hat{\mathbf{a}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{a}}_3 \end{bmatrix}.\end{split}\]\(^{}A\mathbf{R}^B\) is the matrix that expresses the B unit vectors in terms of the A unit vectors.
-
orient
(parent, rot_type, amounts, rot_order='')[source]¶ Sets the orientation of this reference frame relative to another (parent) reference frame.
- Parameters
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative to.
rot_type : str
The method used to generate the direction cosine matrix. Supported methods are:
'Axis'
: simple rotations about a single common axis'DCM'
: for setting the direction cosine matrix directly'Body'
: three successive rotations about new intermediate axes, also called “Euler and Tait-Bryan angles”'Space'
: three successive rotations about the parent frames’ unit vectors'Quaternion'
: rotations defined by four parameters which result in a singularity free direction cosine matrix
amounts :
Expressions defining the rotation angles or direction cosine matrix. These must match the
rot_type
. See examples below for details. The input types are:'Axis'
: 2-tuple (expr/sym/func, Vector)'DCM'
: Matrix, shape(3,3)'Body'
: 3-tuple of expressions, symbols, or functions'Space'
: 3-tuple of expressions, symbols, or functions'Quaternion'
: 4-tuple of expressions, symbols, or functions
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
'123'
and integer123
are equivalent, for example. Required for'Body'
and'Space'
.
Examples
Setup variables for the examples:
>>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B1 = ReferenceFrame('B') >>> B2 = ReferenceFrame('B2')
Axis
rot_type='Axis'
creates a direction cosine matrix defined by a simple rotation about a single axis fixed in both reference frames. This is a rotation about an arbitrary, non-time-varying axis by some angle. The axis is supplied as a Vector. This is how simple rotations are defined.>>> B.orient(N, 'Axis', (q1, N.x))
The
orient()
method generates a direction cosine matrix and its transpose which defines the orientation of B relative to N and vice versa. Once orient is called,dcm()
outputs the appropriate direction cosine matrix.>>> B.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]])
The following two lines show how the sense of the rotation can be defined. Both lines produce the same result.
>>> B.orient(N, 'Axis', (q1, -N.x)) >>> B.orient(N, 'Axis', (-q1, N.x))
The axis does not have to be defined by a unit vector, it can be any vector in the parent frame.
>>> B.orient(N, 'Axis', (q1, N.x + 2 * N.y))
Dcm
The direction cosine matrix can be set directly. The orientation of a frame A can be set to be the same as the frame B above like so:
>>> B.orient(N, 'Axis', (q1, N.x)) >>> A = ReferenceFrame('A') >>> A.orient(N, 'DCM', N.dcm(B)) >>> A.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]])
Note carefully that
N.dcm(B)
was passed intoorient()
forA.dcm(N)
to matchB.dcm(N)
.Body
rot_type='Body'
rotates this reference frame relative to the provided reference frame by rotating through three successive simple rotations. Each subsequent axis of rotation is about the “body fixed” unit vectors of the new intermediate reference frame. This type of rotation is also referred to rotating through the Euler and Tait-Bryan Angles.For example, the classic Euler Angle rotation can be done by:
>>> B.orient(N, 'Body', (q1, q2, q3), 'XYX') >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])
This rotates B relative to N through
q1
aboutN.x
, then rotates B again through q2 about B.y, and finally through q3 about B.x. It is equivalent to:>>> B1.orient(N, 'Axis', (q1, N.x)) >>> B2.orient(B1, 'Axis', (q2, B1.y)) >>> B.orient(B2, 'Axis', (q3, B2.x)) >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])
Acceptable rotation orders are of length 3, expressed in as a string
'XYZ'
or'123'
or integer123
. Rotations about an axis twice in a row are prohibited.>>> B.orient(N, 'Body', (q1, q2, 0), 'ZXZ') >>> B.orient(N, 'Body', (q1, q2, 0), '121') >>> B.orient(N, 'Body', (q1, q2, q3), 123)
Space
rot_type='Space'
also rotates the reference frame in three successive simple rotations but the axes of rotation are the “Space-fixed” axes. For example:>>> B.orient(N, 'Space', (q1, q2, q3), '312') >>> B.dcm(N) Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]])
is equivalent to:
>>> B1.orient(N, 'Axis', (q1, N.z)) >>> B2.orient(B1, 'Axis', (q2, N.x)) >>> B.orient(B2, 'Axis', (q3, N.y)) >>> B.dcm(N).simplify() Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]])
It is worth noting that space-fixed and body-fixed rotations are related by the order of the rotations, i.e. the reverse order of body fixed will give space fixed and vice versa.
>>> B.orient(N, 'Space', (q1, q2, q3), '231') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])
>>> B.orient(N, 'Body', (q3, q2, q1), '132') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])
Quaternion
rot_type='Quaternion'
orients the reference frame using quaternions. Quaternion rotation is defined as a finite rotation about lambda, a unit vector, by an amount theta. This orientation is described by four parameters:q0 = cos(theta/2)
q1 = lambda_x sin(theta/2)
q2 = lambda_y sin(theta/2)
q3 = lambda_z sin(theta/2)
This type does not need a
rot_order
.>>> B.orient(N, 'Quaternion', (q0, q1, q2, q3)) >>> B.dcm(N) Matrix([ [q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, -2*q0*q2 + 2*q1*q3], [ -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2, 2*q0*q1 + 2*q2*q3], [ 2*q0*q2 + 2*q1*q3, -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]])
-
orientnew
(newname, rot_type, amounts, rot_order='', variables=None, indices=None, latexs=None)[source]¶ Returns a new reference frame oriented with respect to this reference frame.
See
ReferenceFrame.orient()
for detailed examples of how to orient reference frames.- Parameters
newname : str
Name for the new reference frame.
rot_type : str
The method used to generate the direction cosine matrix. Supported methods are:
'Axis'
: simple rotations about a single common axis'DCM'
: for setting the direction cosine matrix directly'Body'
: three successive rotations about new intermediate axes, also called “Euler and Tait-Bryan angles”'Space'
: three successive rotations about the parent frames’ unit vectors'Quaternion'
: rotations defined by four parameters which result in a singularity free direction cosine matrix
amounts :
Expressions defining the rotation angles or direction cosine matrix. These must match the
rot_type
. See examples below for details. The input types are:'Axis'
: 2-tuple (expr/sym/func, Vector)'DCM'
: Matrix, shape(3,3)'Body'
: 3-tuple of expressions, symbols, or functions'Space'
: 3-tuple of expressions, symbols, or functions'Quaternion'
: 4-tuple of expressions, symbols, or functions
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
'123'
and integer123
are equivalent, for example. Required for'Body'
and'Space'
.indices : tuple of str
Enables the reference frame’s basis unit vectors to be accessed by Python’s square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice.
latexs : tuple of str
Alters the LaTeX printing of the reference frame’s basis unit vectors to the provided three valid LaTeX strings.
Examples
>>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N')
Create a new reference frame A rotated relative to N through a simple rotation.
>>> A = N.orientnew('A', 'Axis', (q0, N.x))
Create a new reference frame B rotated relative to N through body-fixed rotations.
>>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123')
Create a new reference frame C rotated relative to N through a simple rotation with unique indices and LaTeX printing.
>>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'), ... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2', ... r'\hat{\mathbf{c}}_3')) >>> C['1'] C['1'] >>> print(vlatex(C['1'])) \hat{\mathbf{c}}_1
-
partial_velocity
(frame, *gen_speeds)[source]¶ Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds.
- Parameters
frame : ReferenceFrame
The frame with which the angular velocity is defined in.
gen_speeds : functions of time
The generalized speeds.
- Returns
partial_velocities : tuple of Vector
The partial angular velocity vectors corresponding to the provided generalized speeds.
Examples
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> u1, u2 = dynamicsymbols('u1, u2') >>> A.set_ang_vel(N, u1 * A.x + u2 * N.y) >>> A.partial_velocity(N, u1) A.x >>> A.partial_velocity(N, u1, u2) (A.x, N.y)
-
set_ang_acc
(otherframe, value)[source]¶ Define the angular acceleration Vector in a ReferenceFrame.
Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent.
- Parameters
otherframe : ReferenceFrame
A ReferenceFrame to define the angular acceleration in
value : Vector
The Vector representing angular acceleration
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x
-
set_ang_vel
(otherframe, value)[source]¶ Define the angular velocity vector in a ReferenceFrame.
Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent.
- Parameters
otherframe : ReferenceFrame
A ReferenceFrame to define the angular velocity in
value : Vector
The Vector representing angular velocity
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x
-
variable_map
(otherframe)[source]¶ Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe.
If Vector.simp is True, returns a simplified version of the mapped values. Else, returns them without simplification.
Simplification of the expressions may take time.
- Parameters
otherframe : ReferenceFrame
The other frame to map the variables to
Examples
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> A = ReferenceFrame('A') >>> q = dynamicsymbols('q') >>> B = A.orientnew('B', 'Axis', [q, A.z]) >>> A.variable_map(B) {A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z}
-
property
x
¶ The basis Vector for the ReferenceFrame, in the x direction.
-
property
y
¶ The basis Vector for the ReferenceFrame, in the y direction.
-
property
z
¶ The basis Vector for the ReferenceFrame, in the z direction.
-
Vector¶
-
class
sympy.physics.vector.vector.
Vector
(inlist)[source]¶ The class used to define vectors.
It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector.
Attributes
simp
(Boolean) Let certain methods use trigsimp on their outputs
-
cross
(other)[source]¶ The cross product operator for two Vectors.
Returns a Vector, expressed in the same ReferenceFrames as self.
- Parameters
other : Vector
The Vector which we are crossing with
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> N.x ^ N.y N.z >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> A.x ^ N.y N.z >>> N.y ^ A.x - sin(q1)*A.y - cos(q1)*A.z
-
diff
(var, frame, var_in_dcm=True)[source]¶ Returns the partial derivative of the vector with respect to a variable in the provided reference frame.
- Parameters
var : Symbol
What the partial derivative is taken with respect to.
frame : ReferenceFrame
The reference frame that the partial derivative is taken in.
var_in_dcm : boolean
If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame.
Examples
>>> from sympy import Symbol >>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame >>> from sympy.physics.vector import Vector >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> Vector.simp = True >>> t = Symbol('t') >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.diff(t, N) - q1'*A.z >>> B = ReferenceFrame('B') >>> u1, u2 = dynamicsymbols('u1, u2') >>> v = u1 * A.x + u2 * B.y >>> v.diff(u2, N, var_in_dcm=False) B.y
-
dot
(other)[source]¶ Dot product of two vectors.
Returns a scalar, the dot product of the two Vectors
- Parameters
other : Vector
The Vector which we are dotting with
Examples
>>> from sympy.physics.vector import ReferenceFrame, dot >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> dot(N.x, N.x) 1 >>> dot(N.x, N.y) 0 >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> dot(N.y, A.y) cos(q1)
-
dt
(otherframe)[source]¶ Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe.
Calls the global time_derivative method
- Parameters
otherframe : ReferenceFrame
The frame to calculate the time derivative in
-
express
(otherframe, variables=False)[source]¶ Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method.
- Parameters
otherframe : ReferenceFrame
The frame for this Vector to be described in
variables : boolean
If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe
Examples
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.express(N) cos(q1)*N.x - sin(q1)*N.z
-
free_symbols
(reference_frame)[source]¶ Returns the free symbols in the measure numbers of the vector expressed in the given reference frame.
Parameter
- reference_frameReferenceFrame
The frame with respect to which the free symbols of the given vector is to be determined.
-
outer
(other)[source]¶ Outer product between two Vectors.
A rank increasing operation, which returns a Dyadic from two Vectors
- Parameters
other : Vector
The Vector to take the outer product with
Examples
>>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x)
-
separate
()[source]¶ The constituents of this vector in different reference frames, as per its definition.
Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector.
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> R1 = ReferenceFrame('R1') >>> R2 = ReferenceFrame('R2') >>> v = R1.x + R2.x >>> v.separate() == {R1: R1.x, R2: R2.x} True
-
subs
(*args, **kwargs)[source]¶ Substitution on the Vector.
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = N.x * s >>> a.subs({s: 2}) 2*N.x
-
to_matrix
(reference_frame)[source]¶ Returns the matrix form of the vector with respect to the given frame.
- Parameters
reference_frame : ReferenceFrame
The reference frame that the rows of the matrix correspond to.
- Returns
matrix : ImmutableMatrix, shape(3,1)
The matrix that gives the 1D vector.
Examples
>>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> a, b, c = symbols('a, b, c') >>> N = ReferenceFrame('N') >>> vector = a * N.x + b * N.y + c * N.z >>> vector.to_matrix(N) Matrix([ [a], [b], [c]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> vector.to_matrix(A) Matrix([ [ a], [ b*cos(beta) + c*sin(beta)], [-b*sin(beta) + c*cos(beta)]])
-
Dyadic¶
-
class
sympy.physics.vector.dyadic.
Dyadic
(inlist)[source]¶ A Dyadic object.
See: https://en.wikipedia.org/wiki/Dyadic_tensor Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
A more powerful way to represent a rigid body’s inertia. While it is more complex, by choosing Dyadic components to be in body fixed basis vectors, the resulting matrix is equivalent to the inertia tensor.
-
cross
(other)[source]¶ For a cross product in the form: Dyadic x Vector.
- Parameters
other : Vector
The Vector that we are crossing this Dyadic with
Examples
>>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(d, N.y) (N.x|N.z)
-
dot
(other)[source]¶ The inner product operator for a Dyadic and a Dyadic or Vector.
- Parameters
other : Dyadic or Vector
The other Dyadic or Vector to take the inner product with
Examples
>>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D1 = outer(N.x, N.y) >>> D2 = outer(N.y, N.y) >>> D1.dot(D2) (N.x|N.y) >>> D1.dot(N.y) N.x
-
dt
(frame)[source]¶ Take the time derivative of this Dyadic in a frame.
This function calls the global time_derivative method
- Parameters
frame : ReferenceFrame
The frame to take the time derivative in
Examples
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.dt(B) - q'*(N.y|N.x) - q'*(N.x|N.y)
-
express
(frame1, frame2=None)[source]¶ Expresses this Dyadic in alternate frame(s)
The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two different frames. If no second frame is given, the Dyadic is expressed in only one frame.
Calls the global express function
- Parameters
frame1 : ReferenceFrame
The frame to express the left side of the Dyadic in
frame2 : ReferenceFrame
If provided, the frame to express the right side of the Dyadic in
Examples
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.express(B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
-
subs
(*args, **kwargs)[source]¶ Substitution on the Dyadic.
Examples
>>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = s*(N.x|N.x) >>> a.subs({s: 2}) 2*(N.x|N.x)
-
to_matrix
(reference_frame, second_reference_frame=None)[source]¶ Returns the matrix form of the dyadic with respect to one or two reference frames.
- Parameters
reference_frame : ReferenceFrame
The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix.
second_reference_frame : ReferenceFrame, optional, default=None
The reference frame that the columns of the matrix correspond to.
- Returns
matrix : ImmutableMatrix, shape(3,3)
The matrix that gives the 2D tensor form.
Examples
>>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, Vector >>> Vector.simp = True >>> from sympy.physics.mechanics import inertia >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') >>> N = ReferenceFrame('N') >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) >>> inertia_dyadic.to_matrix(N) Matrix([ [Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> inertia_dyadic.to_matrix(A) Matrix([ [ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]])
-