Wigner Symbols¶
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j, Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all evaluating to a rational number times the square root of a rational number [Rasch03].
Please see the description of the individual functions for further details and examples.
References¶
- Regge58(1,2)
‘Symmetry Properties of Clebsch-Gordan Coefficients’, T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
- Regge59
‘Symmetry Properties of Racah Coefficients’, T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
- Edmonds74(1,2,3,4,5,6,7,8,9,10)
A. R. Edmonds. Angular momentum in quantum mechanics. Investigations in physics, 4.; Investigations in physics, no. 4. Princeton, N.J., Princeton University Press, 1957.
- Rasch03(1,2,3,4,5,6)
J. Rasch and A. C. H. Yu, ‘Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients’, SIAM J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
- Liberatodebrito82
‘FORTRAN program for the integral of three spherical harmonics’, A. Liberato de Brito, Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
Credits and Copyright¶
This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38
Authors¶
Jens Rasch (2009-03-24): initial version for Sage
Jens Rasch (2009-05-31): updated to sage-4.0
Oscar Gerardo Lazo Arjona (2017-06-18): added Wigner D matrices
Copyright (C) 2008 Jens Rasch <jyr2000@gmail.com>
- sympy.physics.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3)[source]¶
Calculates the Clebsch-Gordan coefficient. \(\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle\).
The reference for this function is [Edmonds74].
- Parameters
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
- Returns
Rational number times the square root of a rational number.
Examples
>>> from sympy import S >>> from sympy.physics.wigner import clebsch_gordan >>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2) 1 >>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1) sqrt(3)/2 >>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0) -sqrt(2)/2
Notes
The Clebsch-Gordan coefficient will be evaluated via its relation to Wigner 3j symbols:
\[\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle =(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} \operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,-m_3)\]See also the documentation on Wigner 3j symbols which exhibit much higher symmetry relations than the Clebsch-Gordan coefficient.
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.dot_rot_grad_Ynm(j, p, l, m, theta, phi)[source]¶
Returns dot product of rotational gradients of spherical harmonics.
Explanation
This function returns the right hand side of the following expression:
\[\vec{R}Y{_j^{p}} \cdot \vec{R}Y{_l^{m}} = (-1)^{m+p} \sum\limits_{k=|l-j|}^{l+j}Y{_k^{m+p}} * \alpha_{l,m,j,p,k} * \frac{1}{2} (k^2-j^2-l^2+k-j-l)\]Arguments
j, p, l, m …. indices in spherical harmonics (expressions or integers) theta, phi …. angle arguments in spherical harmonics
Example
>>> from sympy import symbols >>> from sympy.physics.wigner import dot_rot_grad_Ynm >>> theta, phi = symbols("theta phi") >>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
- sympy.physics.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)[source]¶
Calculate the Gaunt coefficient.
- Parameters
l_1, l_2, l_3, m_1, m_2, m_3 :
Integer.
prec - precision, default: ``None``.
Providing a precision can drastically speed up the calculation.
- Returns
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Explanation
The Gaunt coefficient is defined as the integral over three spherical harmonics:
\[\begin{split}\begin{aligned} \operatorname{Gaunt}(l_1,l_2,l_3,m_1,m_2,m_3) &=\int Y_{l_1,m_1}(\Omega) Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) \,d\Omega \\ &=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \operatorname{Wigner3j}(l_1,l_2,l_3,0,0,0) \operatorname{Wigner3j}(l_1,l_2,l_3,m_1,m_2,m_3) \end{aligned}\end{split}\]Examples
>>> from sympy.physics.wigner import gaunt >>> gaunt(1,0,1,1,0,-1) -1/(2*sqrt(pi)) >>> gaunt(1000,1000,1200,9,3,-12).n(64) 0.00689500421922113448...
It is an error to use non-integer values for \(l\) and \(m\):
sage: gaunt(1.2,0,1.2,0,0,0) Traceback (most recent call last): ... ValueError: l values must be integer sage: gaunt(1,0,1,1.1,0,-1.1) Traceback (most recent call last): ... ValueError: m values must be integer
Notes
The Gaunt coefficient obeys the following symmetry rules:
invariant under any permutation of the columns
\[\begin{split}\begin{aligned} Y(l_1,l_2,l_3,m_1,m_2,m_3) &=Y(l_3,l_1,l_2,m_3,m_1,m_2) \\ &=Y(l_2,l_3,l_1,m_2,m_3,m_1) \\ &=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\ &=Y(l_1,l_3,l_2,m_1,m_3,m_2) \\ &=Y(l_2,l_1,l_3,m_2,m_1,m_3) \end{aligned}\end{split}\]invariant under space inflection, i.e.
\[Y(l_1,l_2,l_3,m_1,m_2,m_3) =Y(l_1,l_2,l_3,-m_1,-m_2,-m_3)\]symmetric with respect to the 72 Regge symmetries as inherited for the \(3j\) symbols [Regge58]
zero for \(l_1\), \(l_2\), \(l_3\) not fulfilling triangle relation
zero for violating any one of the conditions: \(l_1 \ge |m_1|\), \(l_2 \ge |m_2|\), \(l_3 \ge |m_3|\)
non-zero only for an even sum of the \(l_i\), i.e. \(L = l_1 + l_2 + l_3 = 2n\) for \(n\) in \(\mathbb{N}\)
Algorithms
This function uses the algorithm of [Liberatodebrito82] to calculate the value of the Gaunt coefficient exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version for Sage.
- sympy.physics.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)[source]¶
Calculate the Racah symbol \(W(a,b,c,d;e,f)\).
- Parameters
a, …, f :
Integer or half integer.
prec :
Precision, default:
None
. Providing a precision can drastically speed up the calculation.- Returns
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import racah >>> racah(3,3,3,3,3,3) -1/14
Notes
The Racah symbol is related to the Wigner 6j symbol:
\[\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) =(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)\]Please see the 6j symbol for its much richer symmetries and for additional properties.
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3)[source]¶
Calculate the Wigner 3j symbol \(\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)\).
- Parameters
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
- Returns
Rational number times the square root of a rational number.
Examples
>>> from sympy.physics.wigner import wigner_3j >>> wigner_3j(2, 6, 4, 0, 0, 0) sqrt(715)/143 >>> wigner_3j(2, 6, 4, 0, 0, 1) 0
It is an error to have arguments that are not integer or half integer values:
sage: wigner_3j(2.1, 6, 4, 0, 0, 0) Traceback (most recent call last): ... ValueError: j values must be integer or half integer sage: wigner_3j(2, 6, 4, 1, 0, -1.1) Traceback (most recent call last): ... ValueError: m values must be integer or half integer
Notes
The Wigner 3j symbol obeys the following symmetry rules:
invariant under any permutation of the columns (with the exception of a sign change where \(J:=j_1+j_2+j_3\)):
\[\begin{split}\begin{aligned} \operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3) &=\operatorname{Wigner3j}(j_3,j_1,j_2,m_3,m_1,m_2) \\ &=\operatorname{Wigner3j}(j_2,j_3,j_1,m_2,m_3,m_1) \\ &=(-1)^J \operatorname{Wigner3j}(j_3,j_2,j_1,m_3,m_2,m_1) \\ &=(-1)^J \operatorname{Wigner3j}(j_1,j_3,j_2,m_1,m_3,m_2) \\ &=(-1)^J \operatorname{Wigner3j}(j_2,j_1,j_3,m_2,m_1,m_3) \end{aligned}\end{split}\]invariant under space inflection, i.e.
\[\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3) =(-1)^J \operatorname{Wigner3j}(j_1,j_2,j_3,-m_1,-m_2,-m_3)\]symmetric with respect to the 72 additional symmetries based on the work by [Regge58]
zero for \(j_1\), \(j_2\), \(j_3\) not fulfilling triangle relation
zero for \(m_1 + m_2 + m_3 \neq 0\)
zero for violating any one of the conditions \(j_1 \ge |m_1|\), \(j_2 \ge |m_2|\), \(j_3 \ge |m_3|\)
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
Authors
Jens Rasch (2009-03-24): initial version
- sympy.physics.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)[source]¶
Calculate the Wigner 6j symbol \(\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)\).
- Parameters
j_1, …, j_6 :
Integer or half integer.
prec :
Precision, default:
None
. Providing a precision can drastically speed up the calculation.- Returns
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import wigner_6j >>> wigner_6j(3,3,3,3,3,3) -1/14 >>> wigner_6j(5,5,5,5,5,5) 1/52
It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation
Notes
The Wigner 6j symbol is related to the Racah symbol but exhibits more symmetries as detailed below.
\[\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) =(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)\]The Wigner 6j symbol obeys the following symmetry rules:
Wigner 6j symbols are left invariant under any permutation of the columns:
\[\begin{split}\begin{aligned} \operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) &=\operatorname{Wigner6j}(j_3,j_1,j_2,j_6,j_4,j_5) \\ &=\operatorname{Wigner6j}(j_2,j_3,j_1,j_5,j_6,j_4) \\ &=\operatorname{Wigner6j}(j_3,j_2,j_1,j_6,j_5,j_4) \\ &=\operatorname{Wigner6j}(j_1,j_3,j_2,j_4,j_6,j_5) \\ &=\operatorname{Wigner6j}(j_2,j_1,j_3,j_5,j_4,j_6) \end{aligned}\end{split}\]They are invariant under the exchange of the upper and lower arguments in each of any two columns, i.e.
\[\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6) =\operatorname{Wigner6j}(j_1,j_5,j_6,j_4,j_2,j_3) =\operatorname{Wigner6j}(j_4,j_2,j_6,j_1,j_5,j_3) =\operatorname{Wigner6j}(j_4,j_5,j_3,j_1,j_2,j_6)\]additional 6 symmetries [Regge59] giving rise to 144 symmetries in total
only non-zero if any triple of \(j\)’s fulfill a triangle relation
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 6j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
- sympy.physics.wigner.wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None)[source]¶
Calculate the Wigner 9j symbol \(\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)\).
- Parameters
j_1, …, j_9 :
Integer or half integer.
prec : precision, default
None
. Providing a precision can drastically speed up the calculation.- Returns
Rational number times the square root of a rational number
(if
prec=None
), or real number if a precision is given.
Examples
>>> from sympy.physics.wigner import wigner_9j >>> wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18 0.05555555...
>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1 ,prec=64) # ==1/6 0.1666666...
It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64) Traceback (most recent call last): ... ValueError: j values must be integer or half integer and fulfill the triangle relation
Algorithm
This function uses the algorithm of [Edmonds74] to calculate the value of the 3j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [Rasch03].
- sympy.physics.wigner.wigner_d(J, alpha, beta, gamma)[source]¶
Return the Wigner D matrix for angular momentum J.
- Returns
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of \(J_z\)).
\[\mathcal{D}_{\alpha \beta \gamma} = \exp\big( \frac{i\alpha}{\hbar} J_z\big) \exp\big( \frac{i\beta}{\hbar} J_y\big) \exp\big( \frac{i\gamma}{\hbar} J_z\big)\]The components are calculated using the general form [Edmonds74],
equation 4.1.12.
Explanation
- J :
An integer, half-integer, or sympy symbol for the total angular momentum of the angular momentum space being rotated.
- alpha, beta, gamma - Real numbers representing the Euler.
Angles of rotation about the so-called vertical, line of nodes, and figure axes. See [Edmonds74].
Examples
The simplest possible example:
>>> from sympy.physics.wigner import wigner_d >>> from sympy import Integer, symbols, pprint >>> half = 1/Integer(2) >>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) >>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True) ⎡ ⅈ⋅α ⅈ⋅γ ⅈ⋅α -ⅈ⋅γ ⎤ ⎢ ─── ─── ─── ───── ⎥ ⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞ ⎥ ⎢ ℯ ⋅ℯ ⋅cos⎜─⎟ ℯ ⋅ℯ ⋅sin⎜─⎟ ⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎥ ⎢ ⎥ ⎢ -ⅈ⋅α ⅈ⋅γ -ⅈ⋅α -ⅈ⋅γ ⎥ ⎢ ───── ─── ───── ───── ⎥ ⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞⎥ ⎢-ℯ ⋅ℯ ⋅sin⎜─⎟ ℯ ⋅ℯ ⋅cos⎜─⎟⎥ ⎣ ⎝2⎠ ⎝2⎠⎦
- sympy.physics.wigner.wigner_d_small(J, beta)[source]¶
Return the small Wigner d matrix for angular momentum J.
- Returns
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of \(J_z\)).
\[\mathcal{d}_{\beta} = \exp\big( \frac{i\beta}{\hbar} J_y\big)\]The components are calculated using the general form [Edmonds74],
equation 4.1.15.
Explanation
- JAn integer, half-integer, or sympy symbol for the total angular
momentum of the angular momentum space being rotated.
- betaA real number representing the Euler angle of rotation about
the so-called line of nodes. See [Edmonds74].
Examples
>>> from sympy import Integer, symbols, pi, pprint >>> from sympy.physics.wigner import wigner_d_small >>> half = 1/Integer(2) >>> beta = symbols("beta", real=True) >>> pprint(wigner_d_small(half, beta), use_unicode=True) ⎡ ⎛β⎞ ⎛β⎞⎤ ⎢cos⎜─⎟ sin⎜─⎟⎥ ⎢ ⎝2⎠ ⎝2⎠⎥ ⎢ ⎥ ⎢ ⎛β⎞ ⎛β⎞⎥ ⎢-sin⎜─⎟ cos⎜─⎟⎥ ⎣ ⎝2⎠ ⎝2⎠⎦
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True) ⎡ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎤ ⎢ cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟ sin ⎜─⎟ ⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎥ ⎢ ⎥ ⎢ ⎛β⎞ ⎛β⎞ 2⎛β⎞ 2⎛β⎞ ⎛β⎞ ⎛β⎞⎥ ⎢-√2⋅sin⎜─⎟⋅cos⎜─⎟ - sin ⎜─⎟ + cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟⎥ ⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠⎥ ⎢ ⎥ ⎢ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎥ ⎢ sin ⎜─⎟ -√2⋅sin⎜─⎟⋅cos⎜─⎟ cos ⎜─⎟ ⎥ ⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦
From table 4 in [Edmonds74]
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True) ⎡ √2 √2⎤ ⎢ ── ──⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢-√2 √2⎥ ⎢──── ──⎥ ⎣ 2 2 ⎦
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √2 ⎤ ⎢1/2 ── 1/2⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2 √2 ⎥ ⎢──── 0 ── ⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢ -√2 ⎥ ⎢1/2 ──── 1/2⎥ ⎣ 2 ⎦
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √2 √6 √6 √2⎤ ⎢ ── ── ── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢-√6 -√2 √2 √6⎥ ⎢──── ──── ── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢ √6 -√2 -√2 √6⎥ ⎢ ── ──── ──── ──⎥ ⎢ 4 4 4 4 ⎥ ⎢ ⎥ ⎢-√2 √6 -√6 √2⎥ ⎢──── ── ──── ──⎥ ⎣ 4 4 4 4 ⎦
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}), ... use_unicode=True) ⎡ √6 ⎤ ⎢1/4 1/2 ── 1/2 1/4⎥ ⎢ 4 ⎥ ⎢ ⎥ ⎢-1/2 -1/2 0 1/2 1/2⎥ ⎢ ⎥ ⎢ √6 √6 ⎥ ⎢ ── 0 -1/2 0 ── ⎥ ⎢ 4 4 ⎥ ⎢ ⎥ ⎢-1/2 1/2 0 -1/2 1/2⎥ ⎢ ⎥ ⎢ √6 ⎥ ⎢1/4 -1/2 ── -1/2 1/4⎥ ⎣ 4 ⎦