Sample slices from volumes#

In this example, volumes are padded, scaled, rotated and sometimes flipped. Then, 2D slices are extracted.

import matplotlib.pyplot as plt
import torch
import torchio as tio

torch.manual_seed(0)
max_queue_length = 16
patches_per_volume = 2

subject = tio.datasets.Colin27()
subject.remove_image('head')

subjects = 50 * [subject]
max_side = max(subject.shape)
transform = tio.Compose(
    (
        tio.CropOrPad(max_side),
        tio.RandomFlip(),
        tio.RandomAffine(degrees=360),
    )
)
dataset = tio.SubjectsDataset(subjects, transform=transform)
patch_size = (max_side, max_side, 1)  # 2D slices


def plot_batch(sampler):
    queue = tio.Queue(dataset, max_queue_length, patches_per_volume, sampler)
    loader = torch.utils.data.DataLoader(queue, batch_size=16)
    batch = tio.utils.get_first_item(loader)

    fig, axes = plt.subplots(4, 4, figsize=(12, 10))
    for ax, im in zip(axes.flatten(), batch['t1']['data']):
        ax.imshow(im.squeeze(), cmap='gray')
    plt.suptitle(sampler.__class__.__name__)
    plt.tight_layout()

Uniform sampler#

When a torchio.UniformSampler is used, some of the patches don’t contain much useful information:

sampler = tio.UniformSampler(patch_size)
plot_batch(sampler)
UniformSampler

Weighted sampler#

We can use the brain image contained in the subject as a probability map for a torchio.WeightedSampler. That way, we ensure that the center of all patches correspond to brain tissue.

sampler = tio.WeightedSampler(patch_size, probability_map='brain')
plot_batch(sampler)

plt.show()
WeightedSampler

Total running time of the script: (0 minutes 14.623 seconds)

Gallery generated by Sphinx-Gallery