Note
Go to the end to download the full example code
Resample only one axis#
In this example, we create a custom preprocessing transfom that changes the image spacing across one axis only.
Inspired by this discussion.
Downloading https://github.com/fepegar/torchio-data/raw/main/data/fernando/t1.nii.gz to /home/user/.cache/torchio/fpg/t1.nii.gz
0it [00:00, ?it/s]
0%| | 0/10860389 [00:00<?, ?it/s]
4%|▍ | 450560/10860389 [00:01<00:02, 4484849.72it/s]
10%|█ | 1097728/10860389 [00:01<00:01, 5647567.53it/s]
16%|█▋ | 1785856/10860389 [00:01<00:01, 6201000.60it/s]
23%|██▎ | 2498560/10860389 [00:01<00:01, 6549957.02it/s]
29%|██▉ | 3145728/10860389 [00:01<00:01, 6372007.85it/s]
36%|███▌ | 3899392/10860389 [00:01<00:01, 6665502.98it/s]
43%|████▎ | 4636672/10860389 [00:01<00:00, 6891314.02it/s]
49%|████▉ | 5308416/10860389 [00:01<00:00, 6744821.62it/s]
55%|█████▍ | 5971968/10860389 [00:01<00:00, 6678820.86it/s]
62%|██████▏ | 6725632/10860389 [00:01<00:00, 6863579.61it/s]
68%|██████▊ | 7413760/10860389 [00:02<00:00, 6849150.40it/s]
75%|███████▍ | 8118272/10860389 [00:02<00:00, 6895047.24it/s]
82%|████████▏ | 8863744/10860389 [00:02<00:00, 7051335.45it/s]
88%|████████▊ | 9568256/10860389 [00:02<00:00, 6926182.93it/s]
95%|█████████▍| 10297344/10860389 [00:02<00:00, 7022097.30it/s]
10862592it [00:02, 4233264.51it/s]
Downloading https://github.com/fepegar/torchio-data/raw/main/data/fernando/t1_seg_gif.nii.gz to /home/user/.cache/torchio/fpg/t1_seg_gif.nii.gz
0it [00:00, ?it/s]
0%| | 0/544126 [00:01<?, ?it/s]
66%|██████▌ | 360448/544126 [00:01<00:00, 3586543.45it/s]
548864it [00:01, 479093.35it/s]
Downloading https://github.com/fepegar/torchio-data/raw/main/data/fernando/t1_to_mni.tfm to /home/user/.cache/torchio/fpg/t1_to_mni.tfm
0it [00:00, ?it/s]
0%| | 0/329 [00:00<?, ?it/s]
8192it [00:00, 8997.95it/s]
Downloading https://github.com/fepegar/torchio-data/raw/main/data/fernando/t1_to_mni_affine.h5 to /home/user/.cache/torchio/fpg/t1_to_mni_affine.h5
0it [00:00, ?it/s]
0%| | 0/8392 [00:01<?, ?it/s]
16384it [00:01, 14928.70it/s]
import torch
import torchio as tio
class ResampleZ:
def __init__(self, spacing_z):
self.spacing_z = spacing_z
def __call__(self, subject):
# We'll assume all images in the subject have the same spacing
sx, sy, _ = subject.spacing
resample = tio.Resample((sx, sy, self.spacing_z))
resampled = resample(subject)
return resampled
torch.manual_seed(42)
image = tio.datasets.FPG().t1
transforms = tio.ToCanonical(), ResampleZ(spacing_z=7)
transform = tio.Compose(transforms)
transformed = transform(image)
subject = tio.Subject(original=image, transformed=transformed)
subject.plot()
Total running time of the script: (0 minutes 6.961 seconds)