Bispectrum_Distance¶
- class turbustat.statistics.Bispectrum_Distance(data1, data2, stat_kwargs={})[source]¶
Bases:
object
Calculate the distance between two images based on their bicoherence. The distance is the L2 norm between the bicoherence surfaces.
- Parameters:
- data1numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice or
Bispectrum
Contains the data and header of the image. Or a
Bispectrum
class may be given which can be pre-computed.- data2numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice or
Bispectrum
Contains the data and header of the second image. Or a
Bispectrum
class may be given which can be pre-computed.- stat_kwargsdict, optional
Passed to
run
.
- data1numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice or
Attributes Summary
Absolute difference between the mean bicoherence.
L2 distance between the bicoherence surfaces.
Methods Summary
distance_metric
([verbose, label1, label2, ...])verbose : bool, optional
Attributes Documentation
- mean_distance¶
Absolute difference between the mean bicoherence.
- surface_distance¶
L2 distance between the bicoherence surfaces.
Methods Documentation
- distance_metric(verbose=False, label1=None, label2=None, save_name=None, cmap='viridis')[source]¶
- verbosebool, optional
Enable plotting.
- label1str, optional
Object or region name for data1
- label2str, optional
Object or region name for data2
- save_namestr,optional
Save the figure when a file name is given.
- cmapstr, optional
Colormap to show the bicoherence surfaces.