Dendrogram_Stats¶
- class turbustat.statistics.Dendrogram_Stats(data, header=None, min_deltas='auto', dendro_params=None, num_deltas=10)[source]¶
Bases:
BaseStatisticMixIn
Dendrogram statistics as described in Burkhart et al. (2013) Two statistics are contained: * number of leaves & branches vs. \(\delta\) parameter * statistical moments of the intensity histogram
- Parameters:
- datanumpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice or SpectralCube
Data to create the dendrogram from.
- min_deltas{
ndarray
, ‘auto’, None}, optional Minimum deltas of leaves in the dendrogram. Multiple values must be given in increasing order to correctly prune the dendrogram. The default estimates delta levels from percentiles in the data.
- dendro_paramsdict
Further parameters for the dendrogram algorithm (see www.dendrograms.org for more info).
- num_deltasint, optional
Number of min_delta values to use when
min_delta='auto'
.
Attributes Summary
Log values of delta and number of structures used for the power-law tail fit.
Histogram values and bins computed from the peak intensity in all structures.
Array of min_delta values to compute the dendrogram.
Power-law tail fit model.
Number of branches and leaves at each value of min_delta
Slope of power-law tail.
1-sigma error on slope of power-law tail.
Array of peak intensity values of leaves and branches at all values of min_delta.
Methods Summary
autoset_min_deltas
([num])Create an array delta values that the dendrogram will be pruned to.
compute_dendro
([show_progress, save_dendro, ...])Compute the dendrogram and prune to the minimum deltas.
fit_numfeat
([size, verbose])Fit a line to the power-law tail.
input_data_header
(data, header[, need_copy])Check if the header is given separately from the data type.
load_beam
([beam])Try loading the beam from the header or a given object.
load_dendrogram
(hdf5_file[, min_deltas])Load in a previously saved dendrogram.
load_results
(pickle_file)Load in a saved pickle file.
make_hists
([min_number])Creates histograms based on values from the tree.
plot_fit
([save_name, show_hists, color, ...])- Parameters:
run
([periodic_bounds, verbose, save_name, ...])Compute dendrograms.
save_results
(output_name[, keep_data])Save the results of the SCF to avoid re-computing.
Attributes Documentation
- data¶
- distance¶
- fitvals¶
Log values of delta and number of structures used for the power-law tail fit.
- header¶
- hists¶
Histogram values and bins computed from the peak intensity in all structures. One set of values and bins are returned for each value of
min_deltas
- min_deltas¶
Array of min_delta values to compute the dendrogram.
- model¶
Power-law tail fit model.
- need_header_flag = True¶
- no_data_flag = False¶
- numfeatures¶
Number of branches and leaves at each value of min_delta
- tail_slope¶
Slope of power-law tail.
- tail_slope_err¶
1-sigma error on slope of power-law tail.
- values¶
Array of peak intensity values of leaves and branches at all values of min_delta.
Methods Documentation
- autoset_min_deltas(num=10)[source]¶
Create an array delta values that the dendrogram will be pruned to. Creates equally-spaced delta values between the minimum value set in
dendro_params
and the maximum in the data. The last delta (which would only occur at the peak in the data) is removed.- Parameters:
- numint, optional
Number of delta values to create.
- compute_dendro(show_progress=False, save_dendro=False, dendro_name=None, dendro_obj=None, periodic_bounds=False)[source]¶
Compute the dendrogram and prune to the minimum deltas. ** min_deltas must be in ascending order! **
- Parameters:
- show_progressoptional, bool
Enables the progress bar in astrodendro.
- save_dendrooptional, bool
Saves the dendrogram in HDF5 format. Requires pyHDF5
- dendro_namestr, optional
Save name when save_dendro is enabled. “.hdf5” appended automatically.
- dendro_objDendrogram, optional
Input a pre-computed dendrogram object. It is assumed that the dendrogram has already been computed!
- periodic_boundsbool, optional
Enable when the data is periodic in the spatial dimensions.
- fit_numfeat(size=5, verbose=False)[source]¶
Fit a line to the power-law tail. The break is approximated using a moving window, computing the standard deviation. A spike occurs at the break point.
- Parameters:
- sizeint. optional
Size of std. window. Passed to std_window.
- verbosebool, optional
Shows the model summary.
- input_data_header(data, header, need_copy=False)¶
Check if the header is given separately from the data type.
- load_beam(beam=None)¶
Try loading the beam from the header or a given object.
- Parameters:
- beam
Beam
, optional The beam.
- beam
- static load_dendrogram(hdf5_file, min_deltas=None)[source]¶
Load in a previously saved dendrogram. Requires pyHDF5
- Parameters:
- hdf5_filestr
Name of saved file.
- min_deltasnumpy.ndarray or list
Minimum deltas of leaves in the dendrogram.
- static load_results(pickle_file)¶
Load in a saved pickle file.
- Parameters:
- pickle_filestr
Name of filename to load in.
- Returns:
- selfSave statistic class
Statistic instance with saved results.
Examples
Load saved results. >>> stat = Statistic.load_results(“stat_saved.pkl”) # doctest: +SKIP
- make_hists(min_number=10, **kwargs)[source]¶
Creates histograms based on values from the tree. Note: These histograms are remade when calculating the distance to ensure the proper form for the Hellinger distance.
- Parameters:
- min_numberint, optional
Minimum number of structures needed to create a histogram.
- plot_fit(save_name=None, show_hists=True, color='r', fit_color='k', symbol='o')[source]¶
- Parameters:
- save_namestr,optional
Save the figure when a file name is given.
- xunitu.Unit, optional
The unit to show the x-axis in.
- show_histsbool, optional
Plot the histograms of intensity. Requires
make_hists
to be run first.- color{str, RGB tuple}, optional
Color to show the delta-variance curve in.
- fit_color{str, RGB tuple}, optional
Color of the fitted line. Defaults to
color
when no input is given.
- run(periodic_bounds=False, verbose=False, save_name=None, show_progress=True, dendro_obj=None, save_results=False, output_name=None, fit_kwargs={}, make_hists=True, hist_kwargs={})[source]¶
Compute dendrograms. Necessary to maintain the package format.
- Parameters:
- periodic_boundsbool or list, optional
Enable when the data is periodic in the spatial dimensions. Passing a two-element list can be used to individually set how the boundaries are treated for the datasets.
- verboseoptional, bool
Enable plotting of results.
- save_namestr,optional
Save the figure when a file name is given.
- show_progressoptional, bool
Enables progress bars while making the dendrogram.
- dendro_objDendrogram, optional
Pass a pre-computed dendrogram object. MUST have min_delta set at or below the smallest value in`~Dendro_Statistics.min_deltas`.
- save_resultsbool, optional
Save the statistic results as a pickle file. See
save_results
.- output_namestr, optional
Filename used when
save_results
is enabled. Must be given when saving.- fit_kwargsdict, optional
Passed to
fit_numfeat
.- make_histsbool, optional
Enable computing histograms.
- hist_kwargsdict, optional
Passed to
make_hists
.
- save_results(output_name, keep_data=False)¶
Save the results of the SCF to avoid re-computing. The pickled file will not include the data cube by default.
- Parameters:
- output_namestr
Name of the outputted pickle file.
- keep_databool, optional
Save the data cube in the pickle file when enabled.