Genus¶
- class turbustat.statistics.Genus(img, min_value=None, max_value=None, lowdens_percent=0, highdens_percent=100, numpts=100, smoothing_radii=None, distance=None)[source]¶
Bases:
BaseStatisticMixIn
Genus Statistics based off of Chepurnov et al. (2008).
- Parameters:
- imgnumpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice
2D image.
- min_value
Quantity
or float, optional Minimum value in the data to consider. If None, the minimum is used. When
img
has an attached brightness unit,min_value
must have the same units.- max_value
Quantity
or float, optional Maximum value in the data to consider. If None, the maximum is used. When
img
has an attached brightness unit,min_value
must have the same units.- lowdens_percentfloat, optional
Lower percentile of the data to use. Defaults to the minimum value. Overrides
min_value
when the value of this percentile is greater thanmin_value
.- highdens_percentfloat, optional
Upper percentile of the data to use. Defaults to the maximum value. Overrides
max_value
when the value of this percentile is lower thanmax_value
.- numptsint, optional
Number of thresholds to calculate statistic at.
- smoothing_radiinp.ndarray or
astropy.units.Quantity
, optional Kernel radii to smooth data to. If units are not attached, the radii are assumed to be in pixels. If no radii are given, 5 smoothing radii will be used ranging from 1 pixel to one-tenth the smallest dimension size.
- distance
Quantity
, optional Physical distance to the region in the data.
Examples
>>> from turbustat.statistics import Genus >>> from astropy.io import fits >>> import astropy.units as u >>> import numpy as np >>> moment0 = fits.open("Design4_21_0_0_flatrho_0021_13co.moment0.fits")[0] >>> genus = Genus(moment0, lowdens_percent=15, highdens_percent=85) >>> genus.run()
Attributes Summary
Array of genus statistic values for all smoothed images (0th axis) and all threshold values (1st axis).
List of smoothed versions of the image, using the radii in
smoothing_radii
.Pixel radii used to smooth the data.
Values of the data to compute the Genus statistics at.
Methods Summary
input_data_header
(data, header[, need_copy])Check if the header is given separately from the data type.
load_beam
([beam])Try loading the beam from the header or a given object.
load_results
(pickle_file)Load in a saved pickle file.
make_genus_curve
([use_beam, min_size, ...])Smooth the data with a Gaussian kernel to create the genus curve from at the specified thresholds.
plot_fit
([save_name, color, symbol])Plot the Genus curves.
run
([verbose, save_name, color, symbol])Run the whole statistic.
save_results
(output_name[, keep_data])Save the results of the SCF to avoid re-computing.
Attributes Documentation
- data¶
- distance¶
- genus_stats¶
Array of genus statistic values for all smoothed images (0th axis) and all threshold values (1st axis).
- header¶
- need_header_flag = True¶
- no_data_flag = False¶
- smoothed_images¶
List of smoothed versions of the image, using the radii in
smoothing_radii
.
- smoothing_radii¶
Pixel radii used to smooth the data.
- thresholds¶
Values of the data to compute the Genus statistics at.
Methods Documentation
- input_data_header(data, header, need_copy=False)¶
Check if the header is given separately from the data type.
- load_beam(beam=None)¶
Try loading the beam from the header or a given object.
- Parameters:
- beam
Beam
, optional The beam.
- beam
- static load_results(pickle_file)¶
Load in a saved pickle file.
- Parameters:
- pickle_filestr
Name of filename to load in.
- Returns:
- selfSave statistic class
Statistic instance with saved results.
Examples
Load saved results. >>> stat = Statistic.load_results(“stat_saved.pkl”) # doctest: +SKIP
- make_genus_curve(use_beam=False, min_size=4, connectivity=1, keep_smoothed_images=False, match_kernel=False, **convolution_kwargs)[source]¶
Smooth the data with a Gaussian kernel to create the genus curve from at the specified thresholds.
- Parameters:
- use_beambool, optional
When enabled, will use the given
beam_fwhm
or try to load it from the header. When disabled, the minimum size is set bymin_size
.- min_sizeint or
Quantity
, optional Directly specify the minimum area a region must have to be counted. Integer values with no units are assumed to be in pixels.
- connectivity{1, 2}, optional
Connectivity used when removing regions below min_size.
- keep_smoothed_imagesbool, optional
Keep the convolved images in the
smoothed_images
list. Default isFalse
.- match_kernelbool, optional
Match kernel shape to the data shape when convolving. Default is
False
. Enable to reproduce behaviour ofGenus
prior to version 1.0 of TurbuStat.- convolution_kwargs: Passed to `~astropy.convolve.convolve_fft`.
- plot_fit(save_name=None, color='r', symbol='o')[source]¶
Plot the Genus curves.
- Parameters:
- save_namestr,optional
Save the figure when a file name is given.
- color{str, RGB tuple}, optional
Color to show the Genus curves in.
- run(verbose=False, save_name=None, color='r', symbol='o', **kwargs)[source]¶
Run the whole statistic.
- Parameters:
- verbosebool, optional
Enables plotting.
- save_namestr,optional
Save the figure when a file name is given. Must have
verbose
enabled for plotting.- kwargsSee
make_genus_curve
.
- save_results(output_name, keep_data=False)¶
Save the results of the SCF to avoid re-computing. The pickled file will not include the data cube by default.
- Parameters:
- output_namestr
Name of the outputted pickle file.
- keep_databool, optional
Save the data cube in the pickle file when enabled.