PCA_Distance¶
- class turbustat.statistics.PCA_Distance(cube1, cube2, n_eigs=50, fiducial_model=None, mean_sub=True)[source]¶
Bases:
object
Compare two data cubes based on the eigenvalues of the PCA decomposition. The distance is the Euclidean distance between the eigenvalues.
- Parameters:
- cube1numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or SpectralCube or
PCA
Data cube. Or a
PCA
class can be given which may be pre-computed.- cube2numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or SpectralCube or
PCA
Data cube. Or a
PCA
class can be given which may be pre-computed.- n_eigsint
Number of eigenvalues to compute.
- fiducial_modelPCA
Computed PCA object. Use to avoid recomputing.
- mean_subbool, optional
Subtracts the mean before computing the covariance matrix. Not subtracting the mean is done in the original Heyer & Brunt works.
- cube1numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or SpectralCube or
Methods Summary
distance_metric
([verbose, save_name, ...])Computes the distance between the cubes.
Methods Documentation
- distance_metric(verbose=False, save_name=None, plot_kwargs1={}, plot_kwargs2={}, cmap='viridis')[source]¶
Computes the distance between the cubes.
- Parameters:
- verbosebool, optional
Enables plotting.
- save_namestr, optional
Save the figure when a file name is given.
- plot_kwargs1dict, optional
Set the color, symbol, and label for dataset1 (e.g., plot_kwargs1={‘color’: ‘b’, ‘symbol’: ‘D’, ‘label’: ‘1’}).
- plot_kwargs2dict, optional
Set the color, symbol, and label for dataset2.
- cmapstr, optional
The colormap to use when plotting the covariance matrices.