StatMoments¶
- class turbustat.statistics.StatMoments(img, header=None, weights=None, radius=<Quantity 5. pix>, nbins=None, distance=None)[source]¶
Bases:
BaseStatisticMixIn
Statistical Moments of an image. See Burkhart et al. (2010) for the methods used. By specifying the radius of circular mask, the mean, variance, skewness, and kurtosis are calculated within the circular mask for every pixel in the image. The distributions of these moments can be compared between data sets.
- Parameters:
- imgnumpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice
2D image.
- headerFITS header, optional
The image header. Needed for the pixel scale.
- weightsnumpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice
2D array of weights. Uniform weights are used if none are given.
- radius
Quantity
, optional Radius of circle to use when computing moments. When angular or physical units are given, they will be rounded down to the nearest pixel size.
- nbinsarray or int, optional
Number of bins to use in the histogram.
- distance
Quantity
, optional Physical distance to the region in the data.
Attributes Summary
The array of local kurtosiss.
The extrema of the kurtosis array.
The histogram bins and values for the kurtosis array.
The array of local means.
The extrema of the mean array.
The histogram bins and values for the mean array.
The array of local skewnesss.
The extrema of the skewness array.
The histogram bins and values for the skewness array.
The array of local variances.
The extrema of the variance array.
The histogram bins and values for the variance array.
Methods Summary
Moments over the entire image.
compute_spatial_distrib
([radius, periodic, ...])Compute the moments over circular region with the specified radius.
input_data_header
(data, header[, need_copy])Check if the header is given separately from the data type.
load_beam
([beam])Try loading the beam from the header or a given object.
load_results
(pickle_file)Load in a saved pickle file.
make_spatial_histograms
([mean_bins, ...])Create histograms of the moments.
plot_histograms
([new_figure, save_name, ...])Plot the histograms of each moment.
plot_maps
([save_name, cmap, contour_cmap])Plot the maps of locally-estimated moments.
run
([show_progress, verbose, save_name, ...])Compute the entire method.
save_results
(output_name[, keep_data])Save the results of the SCF to avoid re-computing.
Attributes Documentation
- data¶
- distance¶
- header¶
- kurtosis_array¶
The array of local kurtosiss.
- kurtosis_extrema¶
The extrema of the kurtosis array.
- kurtosis_hist¶
The histogram bins and values for the kurtosis array. The first element is the array of bins, and the second contains the values.
- mean_array¶
The array of local means.
- mean_extrema¶
The extrema of the mean array.
- mean_hist¶
The histogram bins and values for the mean array. The first element is the array of bins, and the second contains the values.
- need_header_flag = True¶
- no_data_flag = False¶
- radius¶
- skewness_array¶
The array of local skewnesss.
- skewness_extrema¶
The extrema of the skewness array.
- skewness_hist¶
The histogram bins and values for the skewness array. The first element is the array of bins, and the second contains the values.
- variance_array¶
The array of local variances.
- variance_extrema¶
The extrema of the variance array.
- variance_hist¶
The histogram bins and values for the variance array. The first element is the array of bins, and the second contains the values.
Methods Documentation
- compute_spatial_distrib(radius=None, periodic=True, min_frac=0.8, show_progress=True)[source]¶
Compute the moments over circular region with the specified radius.
- Parameters:
- radius
Quantity
, optional Override the radius size of the region.
- periodicbool, optional
Specify whether the boundaries can be wrapped. Default is True.
- min_fracfloat, optional
A number between 0 and 1 that sets the minimum fraction of data in each region that are finite. A value of 1.0 requires that no NaNs be in the region.
- show_progressbool, optional
Show a progress bar during the creation of the covariance matrix.
- radius
- input_data_header(data, header, need_copy=False)¶
Check if the header is given separately from the data type.
- load_beam(beam=None)¶
Try loading the beam from the header or a given object.
- Parameters:
- beam
Beam
, optional The beam.
- beam
- static load_results(pickle_file)¶
Load in a saved pickle file.
- Parameters:
- pickle_filestr
Name of filename to load in.
- Returns:
- selfSave statistic class
Statistic instance with saved results.
Examples
Load saved results. >>> stat = Statistic.load_results(“stat_saved.pkl”) # doctest: +SKIP
- make_spatial_histograms(mean_bins=None, variance_bins=None, skewness_bins=None, kurtosis_bins=None)[source]¶
Create histograms of the moments. If an optional set of bins is not given, \(\sqrt{N}\) equally-size bins will be created, where \(N\) is the number of elements in the array. The histogram values are normalized so that the sum of the values in the bins, multiplied by the bin width is 1.
- Parameters:
- mean_binsarray, optional
Bins to use for the histogram of the mean array.
- variance_binsarray, optional
Bins to use for the histogram of the variance array.
- skewness_binsarray, optional
Bins to use for the histogram of the skewness array.
- kurtosis_binsarray, optional
Bins to use for the histogram of the kurtosis array.
- plot_histograms(new_figure=True, save_name=None, hist_color='r', face_color='k')[source]¶
Plot the histograms of each moment.
- Parameters:
- new_figurebool, optional
Creates a new matplotlib figure.
- save_namestr, optional
The filename to save the plot as. This enables saving of the plot.
- plot_maps(save_name=None, cmap='binary', contour_cmap='viridis')[source]¶
Plot the maps of locally-estimated moments.
- Parameters:
- save_namestr, optional
Save name for the figure. Enables saving the plot.
- cmap{str, matplotlib colormap}, optional
Colormap for the images.
- contour_cmap{str, matplotlib colormap}, optional
Colormap for the contours.
- run(show_progress=True, verbose=False, save_name=None, radius=None, periodic=True, min_frac=0.8, **hist_kwargs)[source]¶
Compute the entire method.
- Parameters:
- show_progressbool, optional
Show a progress bar during the creation of the covariance matrix.
- verbosebool, optional
Enables plotting.
- save_namestr,optional
Save the figure when a file name is given.
- radius
Quantity
, optional Override the radius size of the region.
- periodicbool, optional
Specify whether the boundaries can be wrapped. Default is True.
- min_fracfloat, optional
A number between 0 and 1 that sets the minimum fraction of data in each region that are finite. A value of 1.0 requires that no NaNs be in the region.
- hist_kwargsPassed to
make_spatial_histograms
.
- save_results(output_name, keep_data=False)¶
Save the results of the SCF to avoid re-computing. The pickled file will not include the data cube by default.
- Parameters:
- output_namestr
Name of the outputted pickle file.
- keep_databool, optional
Save the data cube in the pickle file when enabled.