Wavelet_Distance¶
- class turbustat.statistics.Wavelet_Distance(dataset1, dataset2, scales=None, num=50, xlow=None, xhigh=None, fit_kwargs={}, fit_kwargs2=None)[source]¶
Bases:
object
Compute the distance between the two cubes using the Wavelet transform. We fit a linear model to the two wavelet transforms. The distance is the t-statistic of the interaction term describing the difference in the slopes.
- Parameters:
- dataset1numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice
2D image.
- dataset2numpy.ndarray or astropy.io.fits.PrimaryHDU or astropy.io.fits.ImageHDU or spectral_cube.Projection or spectral_cube.Slice
2D image.
- scalesnumpy.ndarray or list
The scales where the transform is calculated.
- numint
Number of scales to calculate the transform at.
- xlow
astropy.units.Quantity
, optional The lower lag fitting limit. An array with 2 elements can be passed to give separate lower limits for the datasets.
- xhigh
astropy.units.Quantity
, optional The upper lag fitting limit. See
xlow
above.- fit_kwargsdict, optional
Passed to
run
.- fit_kwargs2dict, optional
Passed to
run
fordataset2
. WhenNone
is given,fit_kwargs
is used fordataset2
.
Methods Summary
distance_metric
([verbose, xunit, save_name, ...])Implements the distance metric for 2 wavelet transforms.
Methods Documentation
- distance_metric(verbose=False, xunit=Unit('pix'), save_name=None, plot_kwargs1={}, plot_kwargs2={})[source]¶
Implements the distance metric for 2 wavelet transforms. We fit the linear portion of the transform to represent the powerlaw
- Parameters:
- verbosebool, optional
Enables plotting.
- xunit
Unit
, optional Unit of the x-axis in the plot in pixel, angular, or physical units.
- save_namestr, optional
Name of the save file. Enables saving the figure.
- plot_kwargs1dict, optional
Pass kwargs to
plot_transform
fordataset1
.- plot_kwargs2dict, optional
Pass kwargs to
plot_transform
fordataset2
.