DOKK Library

Complex Variables

Authors Martin Blais

License CC-BY-NC-SA-4.0

Plaintext
                                        Complex Variables


De Moivre                                                                    Powers

     z    =  x + iy = eiθ = cos θ + i sin θ                                              (cos θ + i sin θ)n = cos nθ + i sin nθ
          1                                                                            (cos θ + i sin θ)−n = cos nθ − i sin θ
      z̄ = = x − iy = e−iθ = cos θ − i sin θ
          z
      θ          θ + 2πk          θ + 2πk                                                                2 cos nθ = z n + z −n
   ei n   =  cos          + i sin                                                                       2i sin nθ = z n − z −n
                    n                n

Trigonometric                                                                Hyperbolic
                          eiθ − e−iθ
                                                    
                                           1       1                                                            eθ − e−θ
    =z = sin θ =                         =     z−                                                       sinh θ =
                              2i           2i      z                                                                2
                          e + e−iθ
                           iθ                                                                                   eθ + e−θ
                                                   
                                           1      1
    <z = cos θ =                         =     z+                                                      cosh θ =
                               2           2      z                                                                 2
                          sin θ                                                                                  sinh θ
          tan θ =                                                                                      tanh θ =
                          cos θ                                                                                  cosh θ

Complex Equivalences
                                                                               cos iz                                             = cosh z
                   sin iz = i sinh z                                         cosh iz                                       = cos z
                                                                                                                              √
                  sinh iz    = i sin z                                        cosh x = k                  →         x = ln(k ± k 2 − 1), where(k > 1)

Hyperbolic Identities

  cosh(a + b) = cosh a cosh b + sinh a sinh b
         cosh z    = cosh x cos y + i sinh x sin y


Complex Roots                                                                Roots of Unity
              1       1                         1          1     θ
                                                                in
    ω = z     n= r (cos θ + i sin θ) = r e
                      n                         n          n
                                                                                              1 = cos 2πk + i sin 2πk = ei2πk
                                           
                   θ + 2πk          θ + 2πk
                                                                                                                            
             1
                                                                                         2            n−1               2πi
         = r n cos          + i sin                                               1, α, α , . . . , α     with α = exp
                      n                n                                                                                 n




                               Author: Martin Blais, 2009. This work is licensed under the Creative Commons “Attribution - Non-Commercial - Share-Alike” license.