DOKK Library

Series Cheatsheet

Authors Martin Blais,

License CC-BY-NC-SA-4.0

Plaintext
                                                    Series Cheatsheet                                                        MacLaurin Serie
                                                                                                                             If f a function infinitely differentiable,
                                                                                                                                                                                          +∞ (n)
                                                                                                                                                                                          X f (0)
Definitions                                                                                                                                                                                           n!
                                                                                                                                                                                                                xn
                                                                                                                                                                                          n=0

Basic Series                                                                                                                 Taylor’s Formula with Remainder
Infinite Sequence: hsn i                                                                                                     ∃x∗ between c and x such that
Limit/Convergence of a Sequence: limn→∞ sn = L                                                                                                                                      n
                                                                                                                                                                                    X f (k) (c)
                                   P                                                                                                                                      f (x) =                        (x − c)k + Rn (x)
Infinite Serie: (Partial sums) Sn = sn = s1 + s2 + · · · + sn + · · ·                                                                                                                          k!
                                                                                                                                                                                    k=0
Geometric Serie:                                                                                                                                                                           f (n+1) (x∗ )
                               n
                               X                                                           a(1 − rn )                                                                       Rn (x) =                     (x − c)n+1
                                     ark−1 = Sn = a + ar + ar2 + · · · + arn−1 =                                                                                                             (n + 1)!
                                                                                             1−r
                               k=1

                                                                                                                             Applications
Positive Series
                                                                                                                             Application: Showing Function/Taylor-Series Equivalence
Positive Serie: If all the terms sn are positive.
                                                                        P                       R∞                                                                                        lim Rn (x) = 0
Integral Test: If f (n) = sn , continuous, positive, decreasing:            sn converges ⇐⇒      1
                                                                                                     f (x)dx converges.                                                               n→+∞

                                                                                   P                       P                 Application: Approximating Functions or Integrals
                     P            P                                          1. If P bn converges, so doesP an
Comparison Test:         an and       bn where ak < bk          (∀k ≥ m)
                                                                             2. If an diverges, so does bn
                                                                                                                                                                                          Rn (x0 ) < K
                           P               P                                      P                      P
Limit Comparison Test:          an and         bn such that limn→∞ abnn exists,       an converges ⇐⇒        bn converges.
                                                                                                                             Binomial Serie
                                                                                                                                                                                    +∞
                                                                                                                                                                                    X  r(r − 1)(r − 2) · · · (r − n + 1)
Convergence                                                                                                                                                   (1 + x)r = 1 +                                                                           xn
                                                                                                                                                                                    n=1
                                                                                                                                                                                                                      n!
Alternating Serie:                      X
                                         (−1)n+1 an = a1 − a2 + a3 − a4 + a5 − · · ·                                         Common Series
                              P                                                                                                                                                 ∞
                                                                                                                                                                                X xn                             x2   x3
Absolute Convergence: If   |sn | is convergent.                                                                                                                       ex =                 =1+x+                    +    + ···
                           P                                                                                                                                                    n=0
                                                                                                                                                                                    n!                           2!   3!
Conditional Convergence: If sn is convergent but not absolutely convergent.
                                                                                                                                                                           ∞
                                                                                                                                                                           X
                                                                                                                                                                      1
                                           • < 1: absolutely convergent                                                                                                  =    xn = 1 + x + x2 + x3 + · · · +
                                                                                                                                                                    1 − x n=0
Ratio Test: If limn→∞ | sn+1
                         sn | =
                                           • 1: (no conclusion)
                                                                                                                                                                             ∞
                                                                                                                                                                             X
                                           • > 1 or +∞: diverges                                                                                                                                 xn      1    1    1
                                                                                                                                                            ln(1 + x) =           (−1)n−1           = x − x2 + x3 − x4 +
                                                                                                                                                                            n=0
                                                                                                                                                                                                 n       2    3    4
                          p                • < 1: absolutely convergent                                                                                                   ∞
                                                                                                                                                                          X
Root Test: If limn→∞      n
                              |sn | =      • 1: (no conclusion)                                                                                                             (−1)n x2n+1                            x3   x5   x7
                                                                                                                                                              sin x =                                =x−              +    −    + ···
                                           • > 1 or +∞: diverges                                                                                                          n=0
                                                                                                                                                                                 (2n + 1)!                         3!   5!   7!
                                                                                                                                                                           ∞
                                                                                                                                                                           X
Uniform Convergence: If ∀ > 0, ∃m such that for each x and every n ≥ m,                   fn (x) − f (x) <                                                                 (−1)n x2n                           x2   x4   x6
                                                                                                                                                                cos x =                            =1−              +    −    + ···
                                                                                                                                                                           n=0
                                                                                                                                                                                    (2n)!                        2!   4!   6!
Power Series                                                                                                                                                                X∞
                                                                                                                                                                                  x2n+1       x3   x5   x7
                                                                                                                                                               sinh x =                   =x+    +    +    + ···
Power Serie:                                                                                                                                                                    (2n + 1)!     3!   5!   7!
                                     +∞
                                     X                                                                                                                                      n=0
                                           an (x − c)n = a0 + a1 (x − c) + a2 (x − c)2 + · · ·                                                                                  ∞
                                                                                                                                                                                X x2n                        x2   x4   x6
                                     n=0                                                                                                                         cosh x =                       =1+             +    +    + ···
                                                                                                                                                                                n=0
                                                                                                                                                                                    (2n)!                    2!   4!   6!
Power Serie About Zero:
                                                 +∞
                                                 X
                                                       an xn = a0 + a1 x + a2 x2 + · · ·
                                                 n=0

Taylor Serie
If f a function infinitely differentiable,
                                                          +∞ (n)
                                                          X f (c)
                                                                       (x − c)n
                                                          n=0
                                                                  n!



                                                                                                                                                                                      Author: Martin Blais, 2009. This work is licensed under the Creative Commons “Attribution - Non-Commercial - Share-Alike” license.