Plaintext
ÓÅÑÁÖÅÉÌ ÊÁÑÁÌÐÏÃÉÁÓ
ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ
ΣΗΜΑΤΑ
ÓÇÌÁÔÁ
ÊÁÉ
ΚΑΙ
ÓÕÓÔÇÌÁÔÁ
ΣΥΣΤΗΜΑΤΑ
õåéó(t) õåî(t)
Ät
A B
R
õåéó(t) i(t) õåî(t)
C
T0 t T0 t
-A
ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ
Επίκουρος Καθηγητής
Σήματα και Συστήματα
Σήματα και Συστήματα
Συγγραφή
Σεραφείμ Καραμπογιάς
Κριτικός αναγνώστης
Στέφανος Κόλλιας
ISBN: 978-960-603-327-8
Copyright © ΣΕΑΒ, 2015
Το παρόν έργο αδειοδοτείται υπό τους όρους της άδειας Creative Commons Αναφορά Δημιουργού - Μη Εμπορική
Χρήση - Όχι Παράγωγα Έργα 3.0. Για να δείτε ένα αντίγραφο της άδειας αυτής επισκεφτείτε τον ιστότοπο
https://creativecommons.org/licenses/by-nc-nd/3.0/gr/
ΣΥΝΔΕΣΜΟΣ ΕΛΛΗΝΙΚΩΝ ΑΚΑΔΗΜΑΪΚΩΝ ΒΙΒΛΙΟΘΗΚΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο
Ηρώων Πολυτεχνείου 9, 15780 Ζωγράφου
www.kallipos.gr
ÐÑÏËÏÃÏÓ
To biblo autì apeujÔnetai se es pou parakoloujete Tm mata Plhroforik
kai Thlepikoinwni¸n kai apotele katastlagma th empeira apì th didaskala tou
maj mato S mata kai Sust mata gia arket qrìnia.
Sth shmerin epoq th Koinwna th Plhrofora , pou qarakthrzetai apì th
sÔgklish kai enopohsh diaforetik¸n mèqri t¸ra episthmonik¸n perioq¸n, to pedo
twn shmtwn kai twn susthmtwn apotele plèon èna eniao sÔnolo basik¸n kai
jemeliwd¸n gn¸sewn gia èna eurÔ fsma perioq¸n pou sqetzontai me ton èna l-
lo trìpo me thn paragwg , thn epexergasa, thn apoj keush kai th metdosh th
plhrofora .
Basikì skopì tou biblou enai na eisaggei ton anagn¸sth sti basikè teqnikè
anlush kai melèth twn shmtwn kai susthmtwn me eniao trìpo kai na tou pro-
sfèrei ta katllhla majhmatik ergalea, me ta opoa mpore na qeiriste ta s mata
kai ta sust mata. àqei katablhje prospjeia na dojoÔn oi jewrhtikè ènnoie me
aplì trìpo kai na sundejoÔn me antstoiqe ènnoie th fusik . H epilog twn
paradeigmtwn ègine me gn¸mona th qrhsimìtht tou ¸ste na bohjoÔn ton anagn¸sth
na emped¸sei th jewra kai na katano sei ti teqnikè prosèggish kai antimet¸pish
twn problhmtwn.
Oi basikè jematikè enìthte tou Maj mato S mata kai Sust mata anaptÔs-
sontai se Ept keflaia.
Episkìphsh tou Biblou
Sto Keflaio 1 dnetai mia genik eikìna tou ti enai s ma kai parousizontai oi
idiìthte twn shmtwn. Epsh orzontai merik stoiqei¸dh s mata, ta opoa pazoun
idiatero rìlo sth jewra twn shmtwn.
Sto Keflaio 2 dnetai o orismì tou sust mato , parousizontai oi kathgore
susthmtwn, oi trìpoi sÔndes tou kai merikè basikè idiìthtè tou . To keflaio
autì odhge ton anagn¸sth sthn katanìhsh jemeliwd¸n sqèsewn, ìpw h sqèsh pou
sundèei to s ma eisìdou kai to s ma exìdou enì sust mato , kai basik¸n ennoi¸n,
ii Prìlogo
ìpw oi ènnoie th grammikìthta , th eustjeia kai th aitiìthta .
Sto Keflaio 3 perigrfetai h mèjodo anlush enì analogikoÔ s mato kat
Fourier, dhlad w upèrjesh stoiqeiwd¸n hmitonoeid¸n shmtwn kai eisgontai oi
ènnoie th seir Fourier kai tou metasqhmatismoÔ Fourier. Epsh anafèrontai oi
idiìthte tou metasqhmatismoÔ Fourier
Sto Keflaio 4 parousizontai basikè efarmogè tou metasqhmatismoÔ Fourier
suneqoÔ qrìnou. Epsh eisgetai h ènnoia tou fltrou.
Sto Keflaio 5 perigrfetai h mèjodo anlush enì s mato diakritoÔ qrìnou
kat Fourier, dhlad , w upèrjesh stoiqeiwd¸n hmitonoeid¸n shmtwn diakritoÔ qrìnou
kai eisgontai oi ènnoie th seir Fourier, tou metasqhmatismoÔ Fourier diakri-
toÔ qrìnou, tou diakritoÔ metasqhmatismoÔ Fourier kai tou taqèo metasqhmatismoÔ
Fourier. Epsh anafèrontai oi idiìthte twn metasqhmatism¸n Fourier. Tèlo parousi-
zontai basikè efarmogè tou metasqhmatismoÔ Fourier diakritoÔ qrìnou.
Sto Keflaio 6 orzetai o metasqhmatismì Laplace, anafèrontai oi idiìthtè tou
kai parousizetai h sten sqèsh tou me to metasqhmatismì Fourier suneqoÔ qrìnou.
Epsh parousizetai o monìpleuro metasqhmatismì Laplace. Tèlo , parousizetai
h qr sh tou metasqhmatismoÔ Laplace sthn anlush analogik¸n susthmtwn kai th
melèth th eustjeia kai th aitiìtht tou .
Sto Keflaio 7 orzetai o metasqhmatismì z, anafèrontai oi idiìthtè tou kai
parousizetai h sten sqèsh tou me to metasqhmatismì Fourier diakritoÔ qrìnou.
Epsh parousizetai o monìpleuro metasqhmatismì z. Tèlo , parousizetai h
qr sh tou metasqhmatismoÔ z sthn anlush susthmtwn diakritoÔ qrìnou kai th
melèth th eustjeia kai th aitiìtht tou .
To biblo oloklhr¸netai me tra parart mata. Sto pr¸to Parrthma parousi-
zontai basik stoiqea gia tou migadikoÔ arijmoÔ . Sto deÔtero Parrthma parou-
sizetai o trìpo anptuxh mia rht sunrthsh se apl klsmata. Ta stoiqea
twn dÔo aut¸n pararthmtwn enai dh gnwst apì to LÔkeio. Tèlo sto trto
Parrthma paratjentai qr simoi majhmatiko tÔpoi.
Se kje keflaio uprqoun probl mata. Met apì th melèth kje kefalaou,
sa sunistoÔme na prospajete na ta lÔnete. Ta probl mata aut sa dnoun th
dunatìthta na parakoloujete thn prìodì sa kai exasfalzoun ìti èqete afomoi¸sei
to ulikì tou antstoiqou kefalaou.
Ja prèpei ed¸ na shmei¸soume ìti to biblo autì èqei kajar eisagwgikì qara-
kt ra. Sto tèlo tou uprqei bibliografa sthn opoa mporete na anatrèxete gia
plèon exeidikeumène gn¸sei .
Ja jela na euqarist sw tou spoudastè ekenou , proptuqiakoÔ kai meta-
ptuqiakoÔ , pou me prosoq melèthsan mèrh tou biblou kai me ti parathr sei tou
bo jhsan sth beltws tou.
An kai katabl jhke h mègisth dunat prospjeia na mhn uprqoun parorma-
Prìlogo iii
ta, sthn perptwsh pou diapistwje ìti uprqoun, ja epishmanontai sth dieÔjunsh
http://sig-sys-book.di.uoa.gr/ tou diktÔou. Sth dieÔjunsh aut , h opoa euelpistoÔme
ìti ja apotelèsei mia anoikt gramm epikoinwna , ja parousizoume nèe ask sei ,
¸ste na èqete perissìtere dunatìthte exskhsh .
Serafem Karampogi
Epkouro Kajhght
EjnikoÔ kai KapodistriakoÔ
Panepisthmou Ajhn¸n
ÐÅÑÉÅ×ÏÌÅÍÁ
PROLOGOS vi
1 EISAGWGH STA SHMATA 1
1.1 Taxinìmhsh Shmtwn 2
1.1.1 S mata suneqoÔ qrìnou analogik s mata, 2
1.1.2 S mata diakritoÔ qrìnou, 2
1.1.3 Yhfiak s mata, 2
1.2 Idiìthte Analogik¸n Shmtwn 3
1.2.1 Periodik kai mh periodik s mata, 3
1.2.2 Aitita kai mh aitiat s mata, 4
1.2.3 S mata peperasmèna kai s mata peperasmènh kai peirh dirkeia , 5
1.2.4 rtia kai peritt s mata, 5
1.2.5 Energeiak s mata - S mata isqÔo , 6
1.2.6 Aitiokratik kai Tuqaa - Stoqastik s mata, 7
1.3 Metatropè S mato w pro to Qrìno 8
1.3.1 Anklash, 8
1.3.2 Allag klmaka qrìnou, 8
1.3.3 Qronik metatìpish, 9
1.4 Stoiqei¸dh S mata 10
1.4.1 Migadikì ekjetikì s ma suneqoÔ qrìnou, 10
1.4.2 Migadikì ekjetikì s ma diakritoÔ qrìnou, 14
1.4.3 Idiìthte twn ekjetik¸n shmtwn, 15
1.4.4 H sunrthsh monadiaou b mato suneqoÔ qrìnou, 18
1.4.5 H kroustik sunrthsh suneqoÔ qrìnou Sunrthsh dèlta, 19
1.4.6 O orjog¸nio palmì , 24
1.4.7 O trigwnikì palmì , 24
1.4.8 H sunrthsh klsh , 25
1.4.9 H sunrthsh pros mou, 25
1.4.10 Monadiaa bhmatik akolouja - Monadiao b ma diakritoÔ qrìnou, 26
Perieqìmena v
1.4.11 To monadiao degma - Kroustik akolouja, 26
Probl mata 28
2 EISAGWGH STA SUSTHMATA 31
2.1 Orismì Sust mato - Kathgore Susthmtwn 32
2.2 Sundèsei Susthmtwn 35
2.3 Idiìthte Susthmtwn 37
2.3.1 Grammikìthta, 37
2.3.2 Aitiìthta, 37
2.3.3 Antistrèyima kai mh antistrèyima sust mata, 38
2.3.4 Sust mata statik kai dunamik, 39
2.3.5 Qronik anallowta sust mata, 39
2.3.6 Eustjeia, 40
2.4 Sqèsh metaxÔ Eisìdou - Exìdou Sust mato 41
2.4.1 Grammik qronik anallowta sust mata suneqoÔ qrìnou. -
To olokl rwma th sunèlixh , 41
2.4.2 Idiìthte th sunèlixh , 45
2.4.3 Grafikì prosdiorismì th sunèlixh , 47
2.4.4 Grammik qronik anallowta sust mata diakritoÔ qrìnou. -
To jroisma th sunèlixh , 49
2.5 Apìkrish Grammik¸n Susthmtwn se Ekjetikè Eisìdou 54
2.5.1 Suneq perptwsh, 54
2.5.2 Diakrit perptwsh, 56
Probl mata 60
3 ANAPTUGMA - METASQHMATISMOS FOURIER
ANALOGIKWN SHMATWN 63
3.1 H Idèa tou Q¸rou twn Shmtwn 63
3.1.1 To sÔnolo twn orjogwnwn ekjetik¸n periodik¸n shmtwn, 67
3.1.2 To sÔnolo twn orjogwnwn trigwnometrik¸n periodik¸n shmtwn, 68
3.2 Anptugma Fourier - Seir Fourier 69
3.2.1 Ekjetik seir Fourier, 69
3.2.2 Trigwnometrik seir Fourier, 70
3.2.3 Seirè Fourier periodik¸n shmtwn, 72
3.2.4 Ìparxh seir Fourier, 72
3.2.5 Tautìthta tou Parseval, 77
3.2.6 Fainìmeno Gibbs, 81
vi Perieqìmena
3.3 Metasqhmatismì Fourier 82
3.3.1 Ìparxh tou metasqhmatismoÔ Fourier, 91
3.3.2 Idiìthte tou metasqhmatismoÔ Fourier, 93
3.3.3 Metasqhmatismì Fourier periodik¸n shmtwn, 109
3.4 Enèrgeia kai IsqÔ 110
3.4.1 Energeiak s mata, 111
3.4.2 S mata isqÔo , 113
Probl mata 115
4 EFARMOGES TOU METASQHMATISMOU FOURIER 119
4.1 Apìkrish Suqnìthta Sust mato 119
4.1.1 H apìkrish suqnìthta gia sust mata ta opoa perigrfontai
apì diaforikè exis¸sei me stajeroÔ suntelestè , 120
4.2 Upologismì tou Antistrìfou MetasqhmatismoÔ Fourier 122
4.3 Diagrmmata Bode 125
4.4 Idanikì Fltro Basik Z¸nh - Katwperatì Fltro 128
Probl mata 133
5 SEIRA - METASQHMATISMOS FOURIER
DIAKRITOU QRONOU 137
5.1 Parstash Periodik¸n Shmtwn sto Pedo tou Qrìnou
Seir Fourier DiakritoÔ Qrìnou 138
5.1.1 Prosdiorismì th seir Fourier diakritoÔ qrìnou, 138
5.2 Metasqhmatismì Fourier DiakritoÔ Qrìnou 143
5.3 Idiìthte tou FM DiakritoÔ Qrìnou 151
5.3.1 Apodektish sto qrìno, 152
5.3.2 Parembol , 154
5.3.3 jroisma, 156
5.3.4 Idiìthta th diamìrfwsh , 157
5.3.5 O MF diakritoÔ qrìnou gia periodik s mata, 160
5.4 S mata apì deigmatolhya sto Pedo Suqnot twn 163
5.4.1 Je¸rhma deigmatolhya , 167
5.4.2 Oi Suntelestè Fourier w degmata se ma perodo tou MF, 168
5.5 Diakritì Metasqhmatismì Fourier 170
5.5.1 Kuklik anklash akolouja , 173
5.5.2 Kuklik olsjhsh akolouja , 174
5.5.3 Kuklik sunèlixh akolouji¸n, 175
Perieqìmena vii
5.5.4 Idiìthte tou diakritoÔ metasqhmatismoÔ Fourier, 176
5.5.5 H grammik sunèlixh me th bo jeia tou diakritoÔ MF, 177
5.5.6 O diakritì metasqhmatismì Fourier se morf pinkwn, 180
5.5.7 TaqÔ metasqhmatismì Fourier, 181
5.6 Efarmogè tou MF DiakritoÔ Qrìnou 186
5.6.1 H apìkrish suqnìthta gia sust mata ta opoa qarakthrzontai
apì grammikè exis¸sei diafor¸n me stajeroÔ suntelestè , 187
Probl mata 195
6 METASQHMATISMOS LAPLACE 199
6.1 Orismo 200
6.1.1 Metasqhmatismì Laplace stoiqeiwd¸n shmtwn, 202
6.1.2 Idiìthte th perioq sÔgklish -Ìparxh metasqhmatismoÔ Laplace, 206
6.1.3 Idiìthte tou metasqhmatismoÔ Laplace, 209
6.2 Antstrofo Metasqhmatismì Laplace 211
6.2.1 Upologismì tou antstrofou MetasqhmatismoÔ Laplace, 213
6.3 O monìpleuro Metasqhmatismì Laplace 216
6.4 Efarmogè twn Metasqhmatism¸n Laplace 219
6.4.1 Eplush grammik diaforik exswsh me th bo jeia MML, 220
6.4.2 H qr sh tou ML sthn anlush GQA susthmtwn, 221
6.4.3 Parathr sei gia thn perioq sÔgklish tou ML, 226
Probl mata 231
7 METASQHMATISMOS Z 233
7.1 Orismo 234
7.1.1 Metasqhmatismì z stoiqeiwd¸n akolouji¸n, 236
7.1.2 Idiìthte th perioq sÔgklish -Ìparxh metasqhmatismoÔ z, 241
7.2 Idiìthte tou MetasqhmatismoÔ z 245
7.3 O Monìpleuro Metasqhmatismì z 250
7.4 O Antstrofo Metasqhmatismì z 256
7.4.1 Upologismì tou antistrìfou Mz gia rhtè sunart sei , 257
7.4.2 Upologismì me anptuxh se apl klsmata, 257
7.4.2 Upologismì me anptuxh se dunamoseir, 261
7.5 Efarmogè twn Metasqhmatism¸n z 262
7.5.1 Sust mata ta opoa qarakthrzontai apì grammikè exis¸sei diafor¸n
me stajeroÔ suntelestè , 263
7.5.1 Melèth GQA sust mato me th bo jeia Mz, 270
viii Perieqìmena
Probl mata 274
PARARTHMA A: MERIKA BASIKA STOIQEIA
GIA TOUS MIGADIKOUS ARIJMOUS 279
A.1 Parstash migadikoÔ arijmoÔ sto migadikì eppedo 279
A.2 Suzug migadikì arijmì - Idiìthte 280
Probl mata 282
PARARTHMA B: ANAPTUXH RHTHS SUNARTHSHS
SE APLA KLASMATA 283
B.1 O bajmì tou N (x) enai mikrìtero tou bajmoÔ tou D (x) 283
B.1.1 Rze diakekrimène kai pragmatikè , 284
B.1.2 Rze pollaplè kai pragmatikè , 285
B.1.3 Migadikè rze , 286
B.2 O bajmì tou N (x) enai megalÔtero so tou bajmoÔ tou D (x) 286
PARARTHMA G: QRHSIMOI MAJHMATIKOI TUPOI 287
G.1 Trigwnometra 287
G.2 Aìrista oloklhr¸mata 288
G.2.1 Rht¸n algebrik¸n sunart sewn, 288
G.2.2 Trigwnometrik¸n sunart sewn, 289
G.2.3 Ekjetik¸n sunart sewn, 289
G.2.4 Orismèna oloklhr¸mata, 289
G.3 Gewmetrikè seirè 290
EURETHRIO 291
Pnaka suntomeÔsewn-akrwnÔmia
dB Desibel
A/D analogoyhfiakì metatropèa analog to digital converter
IDFT antstrofo diakritì metasqhmatismì Foureir inverse disctete Fourier transform
bajuperatì fltro
LPF fltro basik z¸nh lowpass filter
fltro dièleush qamhl¸n suqnot twn
GS grammikì sÔsthma linear system
GQAS grammikì qronik anallowto SÔsthma linear time invariant system
DFT diakritì metasqhmatismì Fourier discrete Fourier transform
2-D disdistata s mata two-dimensional signals
FEFE eustjeia fragmènh eisìdou bounded input bounded output
fragmènh exìdou
BPF zwnoperatì fltro
zwnodiabatì fltro bandpass filter
fltro dièleush z¸nh suqnot twn
BSF zwnofraktikì fltro bandstop filter
fltro apokop z¸nh suqnot twn
MF metasqhmatismì Fourier Fourier transform
DTFT metasqhmatismì Fourier diakritoÔ qrìnou discrete time Fourier transform
ML metasqhmatismì Laplace Laplace transform
Mz metasqhmatismì z z Transform
1-D monadistata s mata One-dimensional signal
MML monìpleuro metasqhmatismì Laplace unilateral Laplace transform
MMz monìpleuro metasqhmatismì z unilateral z Transform
PS pedo sÔgklish Region of convergence
ROC pedo sÔgklish Region of convergence
DTFS seir Fourier diakritoÔ qrìnou discrete-time Fourier series
QAS sÔsthma qronik anallowto Time invariant system
MISO sust mata me pollè eisìdou -ma exìdou multi-input, single-output
MIMO sust mata me pollè eisìdou -pollè exìdou multi-input, multi-output
SISO sust mata ma eisìdou-ma exìdou single-input, single-output
HPF uyiperatì fltro highpass filter
fltro dièleush uyhl¸n suqnot twn
D/A yhfioanalogikì metatropèa digital to analog converter
Pnaka basik¸n sumbìlwn
j tetragwnik rza tou -1 squere root of -1
jzj mètro migadikoÔ arijmoÔ z magnitude of complex quantity z
argfzg fsh (ìrisma) tou z phase angle of z
<efzg pragmatikì mèro tou z imaginary part of z
=mfzg fantastikì mèro tou z imaginary part of z
z? suzug migadikì arimjì tou z complex conjugate of z
! (kuklik ) suqnìthta gia s mata suneqoÔ qrìnou frequency for continuous-time signal
(kuklik ) suqnìthta gia s mata diakritoÔ qrìnou frequency for discrete-time signal
u(t) bhmatik sunrthsh step function
Æ(t) sunrthsh dèlta (dirac)-kroustik sunrthsh unit impulse
(t) orjog¸nio palmì rectangular pulse
(t) trigwnikì palmì triangular pulse
r(t) sunrthsh klsh ramb function
sgn(t) sunrthsh pros mou signum function
? sumbolzei to olokl rwma th sunèlixh detotes convolution operation
N kuklik sunèlixh N -shmewn N -point circular convolousion
h(t) kroustik sunrthsh impulse response
H (s) sunrthsh metafor transfer function
H (!) apìkrish suqnìthta frequency response
sin (t) sunrthsh deigmatolhya sampling function
X (!) ()
metasqhmatismì Fourier tou x t ()
Fourier transform of x t
X( ) ()
metasqhmatismì Fourier th x n ()
Fourier transform of x n
X (k) ()
diakritì metasqhmatismì Fourier th x n ()
disrete Fourier transform of x n
X (s) ()
metasqhmatismì Laplace tou x t ()
Laplace transform of x t
X (s) monìpleuro metasqhmatismì Laplace tou x t() ()
unilateral Laplace transform of x t
X (z ) ()
metasqhmatismì z th x n ()
z transform of x n
X (z) monìpleuro metasqhmatismì z th x n () ()
unilateral z transform of x n
F! upodeiknÔei zeÔgo metasqhmatism¸n Fourier Fourier transform pair
L
! upodeiknÔei zeÔgo metasqhmatism¸n Laplace Laplace transform pair
L! upodeiknÔei monìpleuro metasqhmatismì Laplace unilateral Laplace transform pair
Z
! upodeiknÔei zeÔgo metasqhmatism¸n z z transform pair
Z! upodeiknÔei monìpleuro metasqhmatismì z unilateral z transform pair
ÊÅÖÁËÁÉÏ 1
ÅÉÓÁÃÙÃÇ ÓÔÁ ÓÇÌÁÔÁ
Skopì tou kefalaou autoÔ enai na d¸sei ma genik eikìna tou ti enai s ma kai
na katatxei ta difora s mata se kathgore anloga me ti basikè tou idiìthte .
Epiprìsjeta ja oristoÔn antiproswpeutik s mata, ta opoa èqoun idiaterh shmasa
sth jewra shmtwn.
To keflaio autì, pragmateÔetai ta krit ria bsei twn opown orzontai ta s ma-
ta kai taxinome ta s mata. Epsh , anafèrei ti basikè idiìthte pou parousizoun
ta s mata kai ti metatropè s mato w pro to qrìno. Sth sunèqeia orzontai
stoiqei¸dh s mata, ta opoa pazoun ènan idiatero rìlo sth jewra shmtwn, w
ergalea gia th melèth poluplokìterwn shmtwn. Shmei¸netai ìti sto Parrthma A
uprqoun merik basik stoiqea gia tou migadikoÔ arijmoÔ .
Eisagwg
W s ma orzetai èna fusikì mègejo to opoo metablletai se sqèsh me to qrìno to
q¸ro me opoiad pote llh anexrthth metablht metablhtè . Gia pardeigma, to s -
ma omila antistoiqe sti metabolè th akoustik pesh se sqèsh me to qrìno kai
proèrqetai apì ti kin sei twn fwnhtik¸n qord¸n. To s ma eikìna antistoiqe sti
metabolè th fwteinìthta se sqèsh me ti dÔo qwrikè metablhtè . lla paradeg-
mata shmtwn enai ta seismik s mata, ta iatrik s mata (ìpw to kardiogrfhma),
o et sio dekth tim¸n katanalwt , o dekth tou posostoÔ anerga an m na k.l.p.
Apì majhmatik poyh, èna s ma ekfrzetai w sunrthsh mia perissìterwn
anexrthtwn metablht¸n.
t ! x(t)
H anexrthth metablht t enai sun jw o qrìno , h opoa mpore na èqei kai llh
()
fusik shmasa. Me x t sumbolzetai h tim tou s mato th qronik t.
Anloga me to pl jo twn anexart twn metablht¸n ta s mata qarakthrzontai
w monodistata s mata (1-D), disdistata (2-D), poludistata s mata.
2 Eisagwg sta S mata Keflaio 1
1.1 TAXINOMHSH SHMATWN
Anloga me ton tÔpo th anexrthth th exarthmènh metablht th sunrthsh
ta s mata katatssontai sti paraktw kathgore :
1.1.1 S mata suneqoÔ qrìnou analogik s mata
S mata suneqoÔ qrìnou analogik s mata enai ta s mata twn opown h anexrthth
metablht metablletai se èna suneqè disthma tim¸n. Sta monodistata s mata
to pedo orismoÔ tou s mato enai disthma th eujea twn pragmatik¸n arijm¸n.
Sto Sq ma 1.1 èqei sqediaste èna analogikì s ma. Epeid h anexrthth metablht t
sun jw enai o qrìno , ta s mata aut onomzontai s mata suneqoÔ qrìnou s mata
suneqoÔ metablht .
x(t)
t
Sq ma 1.1 Grafik anaparstash enì analogikoÔ s mato .
1.1.2 S mata diakritoÔ qrìnou
()
àna analogikì s ma xa t enai dunatì na anaparaqje apì ti timè twn deigmtwn
()
tou x n pou lambnontai an qronik diast mata TÆ . Ta qronik diast mata TÆ
kajorzontai anloga me to edo tou analogikoÔ s mato kai thn epijumht pistìthta
anaparagwg .
x(n) xa (nTÆ ); n = 0; 1; 2; ::: (1.1.1)
H diadikasa onomzetai deigmatolhya kai to qronikì disthma metaxÔ diadoqik¸n
deigmtwn perodo deigmatolhya TÆ . Me th diadikasa th deigmatolhya enì
analogikoÔ s mato prokÔptei èna s ma diakritoÔ qrìnou.
S mata diakritoÔ qrìnou enai ta s mata twn opown to pedo orismoÔ enai kpoio
diakritì sÔnolo p.q. to sÔnolo twn akerawn arijm¸n en¸ h exarthmènh metablht
enai dunatìn na lambnei opoiad pote tim . To s ma sto Sq ma 1.2a enai èna s ma
diakritoÔ qrìnou.
Sti efarmogè sti opoe enai anagkao na metaddoume na apojhkeÔoume èna
analogikì s ma metaddoume apojhkeÔoume ta degmat tou.
Enìthta 1.2 Idiìthte Analogik¸n Shmtwn 3
x(n) x(n)
n n
(á) ( â)
Sq ma 1.2 Grafik anaparstash (a) enì s mato diakritoÔ qrìnou kai (b) enì yhfiakoÔ
s mato .
1.1.3 Yhfiak s mata
H anaparstash twn analogik¸n deigmatolhpthmènwn tim¸n x n ; n () =0 1 2
; ; ; ::: me
èna peperasmèno sÔnolo epitrepìmenwn tim¸n lègetai kbntish. Me th diadikasa th
()
kbntish oi timè x n enì diakritoÔ s mato stroggulopoioÔntai sthn plhsièsterh
epitrepìmenh tim kai ètsi prokÔptei èna yhfiakì s ma.
Yhfiak s mata enai ta s mata sta opoa tìso h anexrthth metablht , ìso kai
h exarthmènh metablht mporoÔn na lambnoun mìno diakritè timè . Sto Sq ma 1.2b
fanetai èna yhfiakì s ma.
AfoÔ deigmatolhpthje kai kbantiste h èxodo ma analogik phg plhro-
fora , dhmiourgetai ma akolouja apì kbantismène timè . Kje kbantismènh st-
jmh kwdikopoietai se ma duadik akolouja m kou , ìpou N =2
enai o arijmì
twn epitrepìmenwn tim¸n.
àna sÔsthma yhfiak metdosh katagraf qou metatrèpei èna akoustikì
s ma se ma seir apì arijmoÔ bit tou opoou metaddei katagrfei p.q. se optikì
dsko. H metatrop enì analogikoÔ s mato se ma duadik akolouja onomzetai
palmokwdik diamìrfwsh.
1.2 IDIOTHTES ANALOGIKWN SHMATWN
Sthn enìthta aut parousizontai merikè basikè idiìthte pou èqoun ta analogik
s mata. Anloge idiìthte èqoun kai ta s mata diakritoÔ qrìnou.
1.2.1 Periodik kai Mh Periodik S mata
()
àna analogikì s ma x t lègetai periodikì, ìtan uprqei èna jetikì arijmì T gia
()= ( + )
ton opoo isqÔei x t x t T gia kje tim tou t. Sto Sq ma 1.3 èqei sqediaste èna
periodikì s ma. O stajerì arijmì T lègetai perodo . H elaqsth dunat perodo
enai gnwst w jemeli¸dh perodo kai sumbolzetai me T0 . Sthn prxh pollè forè
anaferìmaste apl¸ sthn perodo kai ennooÔme th jemeli¸dh.
4 Eisagwg sta S mata Keflaio 1
x(t)
-2T -T 0 T 2T t
Sq ma 1.3 Periodikì s ma suneqoÔ qrìnou.
Pardeigma periodikoÔ s mato enai to hmitonoeidè s ma
x(t) = A sin(!t + ) (1.2.1)
me perodo T =2 =!. To ! enai gnwstì w kuklik suqnìthta kai enai ! = 2f ,
ìpou f h suqnìthta tou hmtonou.
àna llo periodikì s ma enai to migadikì s ma
y(t) = Aej!t (1.2.2)
me thn dia perodo T =2
=!. An kai ta migadik s mata den èqoun fusik upìstash,
enai “elkustik” apì poyh majhmatikoÔ formalismoÔ, epeid aplousteÔoun thn
lgebra twn prxewn. Gia pardeigma, pollaplasiasmì dÔo ekjetik¸n shmtwn
antistoiqe apl¸ sthn prìsjesh twn ekjet¸n tou . Prgmati, an y1 t Aej!1 t () =
kai y2 t()= j! t
Ae , tìte y1 t y2 t A e
2 2 (
( ) ( ) =
j !1 + !2 ) t . Sto Parrthma A uprqei ma
sÔntomh parousash twn migadik¸n arijm¸n kai twn idiot twn tou .
1.2.2 Aitiat kai Mh Aitiat S mata
àna s ma x(t) lègetai aitiatì, en enai mhdenikì gia arnhtikè timè tou qrìnou t,
dhlad
x(t) = 0 gia t<0 (1.2.3)
Sthn antjeth perptwsh, to s ma lègetai mh aitiatì. Sto Sq ma 1.4 eikonzontai èna
aitiatì kai èna mh aitiatì s ma.
x(t) x(t)
0 t 0 t
(á) (â)
Sq ma 1.4 Pardeigma (a) aitiatoÔ s mato kai (b) mh aitiatoÔ s mato .
Enìthta 1.2 Idiìthte Analogik¸n Shmtwn 5
1.2.3 S mata Peperasmèna kai S mata Peperasmènh kai peirh Dirkeia
()
àna s ma x t lègetai peperasmèno an x t < j ( )j 1
, gia kje tim tou qrìnou t. àna
()
s ma x t lègetai s ma peperasmènh dirkeia an
x(t) = 0; t T1
0; t T2 (1.2.4)
( )
ìpou T1 kai T2 , T1 < T2 , enai peperasmènoi arijmo. An T1 gnei so me to meon
peiro kai T2 gnei so me to peiro, tìte to s ma èqei peirh dirkeia.
1.2.4 rtia kai Peritt s mata
àna s ma x(t) lègetai rtio parousizei rtia summetra an
x( t) = x(t); 1 < t < +1 (1.2.5)
Antjeta, lègetai perittì parousizei peritt summetra an
x( t) = x(t); 1 < t < +1 (1.2.6)
To s ma sto Sq ma 1.5a parousizei rtia summetra kai to s ma sto Sq ma 1.5b
x(t) x(t)
0 t
0 t
(á) (â)
Sq ma 1.5 S mata suneqoÔ qrìnou ta opoa parousizoun (a) rtia summetra kai (b)
peritt summetra.
peritt summetra. Kje s ma migadikì pragmatikì mpore na ekfrasje w jroi-
()
sma enì rtiou (even), xe t , kai enì perittoÔ (odd) s mato , xo t , ()
x(t) = xe (t) + xo (t) (1.2.7)
ìpou
xe (t) =
1 [x(t) + x ( t)℄ xo (t) =
1 [x(t) x ( t)℄
2 2 (1.2.8)
me ? dhl¸netai o suzug migadikì arijmì .
6 Eisagwg sta S mata Keflaio 1
Pardeigma 1.2.1
Dnetai to s ma
x(t) = 3t; t<0
t; t0 (1.2.9)
Na ekfrsete to s ma w jroisma enì rtiou kai enì perittoÔ s mato .
LÔsh To rtio s ma xe (t) enai
1
1
xe (t) = [x(t) + x( t)℄ = 1 [t + 3t℄; t 0 = 2t;2t; tt <
2 [ 3 t t℄ ; t < 0 0
2 2 0 (1.2.10)
en¸ to perittì s ma xo (t) enai
1
1
xo (t) = [x(t) x( t)℄ = 21 [[t 3t3+t℄;t℄; tt < 0 =) xo (t) = t
2 2 0 (1.2.11)
Sto Sq ma 1.6 eikonzontai to s ma x(t), to xe (t) kai to xo (t). Apì ti grafikè
parastsei twn shmtwn aut¸n fanetai ìti
x(t) = xe (t) + xo (t) (1.2.12)
x(t) xe(t) xï(t)
-t
-3t t -2t 2t
0 t
0 t 0 t
(á) (â) (ã)
Sq ma 1.6 Grafikè parastsei gia ta s mata (a) x(t), (b) xe (t) kai (g) xo (t).
1.2.5 Energeiak S mata - S mata IsqÔo
Gia kje analogikì s ma x(t), h enèrgeia tou s mato Ex, dnetai apì th sqèsh
Z T
Ex = Tlim
!1
jx(t)j2 dt (1.2.13)
T
j ( )j
ìpou x t enai to mètro tou s mato . Gia kje s ma diakritoÔ qrìnou x(n), h
E
enèrgei tou x , dnetai apì th sqèsh
1
X
Ex = jx(n)j2 (1.2.14)
n= 1
Enìthta 1.2 Idiìthte Analogik¸n Shmtwn 7
j ( )j
ìpou x n enai to mètro tou s mato kai TÆ enai h perodo deigmatolhya .
àna s ma qarakthrzetai w energeiakì s ma an
0 < Ex < 1 (1.2.15)
H mèsh isqÔ Px, tou analogikoÔ s mato x(t), dnetai apì th sqèsh
Px = Tlim 1 Z T jx(t)j2 dt
!1 2T T
(1.2.16)
An to s ma enai periodikì, tìte h mèsh isqÔ tou Px dnetai apì th sqèsh
Px = T1
Z
jx(t)j2 dt (1.2.17)
0 <T0 >
H mèsh isqÔ Px, tou s mato diakritoÔ qrìnou x(n), dnetai apì th sqèsh
Px = Nlim 1 N
X
jx(n)j2
!1 2N + 1
(1.2.18)
n= N
An to s ma enai periodikì, tìte h mèsh isqÔ tou Px dnetai apì th sqèsh
0 1
Px = N1
NX
jx(n)j2 (1.2.19)
0 n=0
àna s ma qarakthrzetai w s ma isqÔo an
0 < Px < 1 (1.2.20)
Shmei¸netai ìti gia pragmatik s mata jx(t)j2 = x2 (t) (blèpe Parrthma A).
1.2.6 Aitiokratik kai Tuqaa - Stoqastik S mata
ätan oi timè pou parnei èna s ma se kje qronik stigm orzontai qwr abebaiìth-
ta, to s ma qarakthrzetai w aitiokratikì s ma nomoteleiakì s ma. àna tètoio s -
ma, gia pardeigma, enai to sunhmtono (Sq ma 1.7a). Sthn prxh, ìmw , sunantme
poll s mata, ìpw o jermikì jìrubo , sta opoa h tim se opoiad pote qronik
stigm den mpore na prokajoriste me bebaiìthta prin emfanistoÔn. Ta s mata aut
onomzontai tuqaa stoqastik s mata (Sq ma 1.7b). Gia na epexergastoÔme tètoiou
edou s mata anagkastik katafeÔgoume sth jewra Pijanot twn kai Statistik .
Sto biblo autì ja perioristoÔme mìno sta aitiokratik s mata.
8 Eisagwg sta S mata Keflaio 1
x(t)=A cos(2 ð f0 t + ö)
x(t)
A
Acos(ö)
0 t 0
T0 t
-A
(á) (â)
Sq ma 1.7 Pardeigma (a) nomoteleiakoÔ s mato kai (b) stoqastikoÔ s mato .
1.3 METATROPES SHMATOS WS PROS TON QRONO
Pollè forè sthn prxh parousizontai s mata ta opoa sqetzontai metaxÔ tou me
allag th anexrthth metablht , dhlad tou qrìnou. Sth sunèqeia anafèrontai
oi basikè metatropè s mato w pro to qrìno.
1.3.1 Anklash
àna s ma y(t) apotele thn anklash tou s mato x(t) w pro t = 0 an
y(t) = x( t) (1.3.1)
H metatrop th anklash èqei w apotèlesma thn enallag metaxÔ “pareljìnto ”
()
kai “mèllonto ” enì s mato . An to s ma x t enai h èxodo enì magnhtof¸nou,
( )
tìte to s ma x t enai h èxodo tou idou magnhtof¸nou, ìtan autì peristrèfetai
antjeta. Sto Sq ma 1.8 èqei sqediaste èna s ma suneqoÔ qrìnou kai h anklas
tou w pro t =0
.
x(t) x(- t)
0 t 0 t
(á) (â)
Sq ma 1.8 (a) àna s ma suneqoÔ qrìnou kai (b) h anklas tou w pro t = 0.
1.3.2 Allag Klmaka Qrìnou
To s ma x1 (t) apotele ma qronik sustol tou s mato x(t), an
x1 (t) = x(at) me a > 1 (1.3.2)
Enìthta 1.3 Metatropè S mato w pro to Qrìno 9
To s ma x2 (t) apotele ma qronik diastol tou s mato x(t), an
x2 (t) = x(at) me 0 < a < 1 (1.3.3)
()
An to s ma x t enai h èxodo enì magnhtof¸nou, tìte to s ma x t enai h (2 )
èxodo tou idou magnhtof¸nou, ìtan autì peristrèfetai me diplsia taqÔthta kai
( 2)
x t= enai h èxodo , ìtan autì peristrèfetai me upodiplsia taqÔthta. Sto Sq ma
1.9 èqoun sqediaste h qronik sustol kai diastol enì s mato .
x(t) x(2 t) x(t/2)
-t 0 0 t0 t t0 0 t0 t -2 t0 0 2 t0 t
2 2
(á) (â) (ã)
Sq ma 1.9 (a) S ma, (b) h qronik sustol tou kai (g) h qronik diastol tou.
1.3.3 Qronik Metatìpish
àna s ma y(t) enai ma qronik metatopismènh kat t0 morf tou s mato x(t) an
y(t) = x(t t0 ) (1.3.4)
()
Sto Sq ma 1.10 èqei sqediaste èna s ma x t kai h qronik metatopismènh morf tou.
H qronik metatìpish enai ma polÔ sunhjismènh metabol sthn prxh. Se peript¸-
sei metdosh enì s mato èqoume qronikè kajuster sei , oi opoe exart¸ntai apì
ti idiìthte tou mèsou metdosh . Gia pardeigma, se èna thlepikoinwniakì sÔsthma
to s ma pou lambnei o dèkth enai qronik kajusterhmèno se sqèsh me autì pou
ekpèmpetai apì ton pompì.
x(t) x(t-t0)
0 t 0 t0 t
(á) (â)
Sq ma 1.10 (a) To s ma x(t) kai (b) h qronik metatopismènh morf tou.
Pardeigma 1.3.1
Dnetai to s ma 8
< 2t + 2; 1 t < 0
x(t) = 2 t; 0 t < 2 (1.3.5)
:
0; alli¸
10 Eisagwg sta S mata Keflaio 1
Na sqedisete to s ma y(t) = x( t).
LÔsh To s ma x(t) eikonzetai sto Sq ma 1.11a. To s ma y(t) apotele thn anklash
tou s mato x(t). Ja prosdiorsoume th sunrthsh tou s mato y(t)
8
< 2( t) + 2; 1 t < 0
y(t) = x( t) = 2 ( t); 0 t < 2
:
8
0; alli¸
< 2t + 2; 1 t > 0
= : 2 + t; 0 t > 2
8
0; alli¸
< t + 2; 2t<0
= : 2 2t; 0 t < 1 (1.3.6)
0; alli¸
H grafik parstash tou s mato y (t) = x( t) dnetai sto Sq ma 1.11b.
x(t) y(t)=x(-t)
2 2
2 t+2 2-t t+2 2-2t
-1 0 2 t -2 0 1 t
(á) (â)
Sq ma 1.11 H grafik parstash (a) tou s mato x(t) kai (b) tou s mato y(t) sto
Pardeigma 1.3.1
1.4 STOIQEIWDH SHMATA
H anlush enì s mato se aploÔstera s mata, twn opown h sumperifor enai ete
gnwst ete eukolìtero na melethje, apotele basik mejodologa sthn epexergasa
s mato . Sth sunèqeia ja orsoume ènan arijmì stoiqeiwd¸n shmtwn pou pazoun
ènan idiatero rìlo sth jewra shmtwn, w ergalea gia th melèth poluplokìterwn
shmtwn.
1.4.1 Migadikì ekjetikì s ma suneqoÔ qrìnou
To migadikì ekjetikì s ma suneqoÔ qrìnou orzetai apì th sqèsh
x(t) = est (1.4.1)
ìpou s = + j! ètsi x(t) = et ej!t kai èqei ti akìlouje idiìthte :
Enìthta 1.4 Stoiqei¸dh S mata 11
1. Enai antistrèyimo ( est ) 1 = 1 e st .
2.
d ( est ) = sest .
Enai diaforsimo dt
Ma shmantik kathgora ekjetik¸n shmtwn suneqoÔ qrìnou prokÔptei an to
s enai pragmatikì arijmì , s ( = )
opìte to x t ()=
et onomzetai pragmatikì
ekjetikì s ma, kai parousizei asumptwtik sumperifor anloga me ti timè tou
(blèpe Sq ma 1.12).
x(t) x(t) x(t)
c c c
0 t 0 t 0 t
(á) (â) (ã)
Sq ma 1.12 To pragmatikì ekjetikì s ma (a) gia < 0, (b) gia > 0 kai gia = 0.
Ma llh shmantik kathgora ekjetik¸n shmtwn suneqoÔ qrìnou prokÔptei an
to s enai fantastikì arijmì (s =
j!0 ), dhlad , x t ()=
ej!0 t . To s ma x t ej!0 t ()=
enai periodikì me perodo T , ìtan
!0 = 0, tìte x(t) = 1, to opoo mpore na jewrhje periodikì gia kje T .
!0 =
6 0, tìte h jemeli¸dh perodo T0 , dhlad h mikrìterh tim tou T , enai
T0 = 2=j!0 j. Prgmati, apì ton orismì isqÔei:
ej!0 t = ej!0 (t+T ) ) ej!0 t = ej!0 t ej!0 T ) ej!0 T = 1 )
os(!0 T ) + j sin(!0 T ) = 1 ) !0T = 2k ) T0 = 2=j!0 j
ìpou qrhsimopoi jhke h sqèsh tou Euler ej = os + j sin .
To gnwstì sunhmitonoeidè s ma x(t) = A os(!0 t + ') (blèpe Sq ma 1.13) enai,
epsh , periodikì me jemeli¸dh analogik perodo T0 ,
jemeli¸dh analogik kuklik
suqnìthta !0 kai jemeli¸dh analogik suqnìthta f0 ìpou f0 = 1=T0 kai !0 = 2f0 .
To sunhmitonoeidè s ma sqetzetai mesa me to migadikì ekjetikì s ma. Prg-
mati, an qrhsimopoi soume th sqèsh tou Euler, mporoÔme na ekfrsoume to migadikì
ekjetikì s ma me th bo jeia hmitonoeid¸n shmtwn th ida jemeli¸dou periìdou
apì th sqèsh
ej (!0 t+') = os( + ) + sin( + )
!0 t ' j !0 t ' (1.4.2)
MporoÔme, profan¸ , na gryoume
os(!0t + ') = <e[ej(!0 t+') ℄ kai sin(!0t + ') = =m[ej(!0 t+') ℄ (1.4.3)
12 Eisagwg sta S mata Keflaio 1
ìpou <e[℄ sumbolzei to pragmatikì kai =m[℄ to fantastikì mèro migadikoÔ arij-
moÔ.
x(t)=A cos(2 ð f0 t + ö)
T0 2ð
A ù0
Acos(ö)
T0 t
Sq ma 1.13 To sunhmitonoeidè
-A
s ma suneqoÔ qrìnou.
H sqèsh tou Euler antistrèfetai kai ètsi mporoÔme na ekfrsoume to hmtono
to sunhmtono me th bo jeia ekjetik¸n migadik¸n ìrwn
os(!0t) = e
j!0 t +e j!0 t
sin(!0t) = e
j!0 t e j!0 t
2 kai
2j (1.4.4)
To migadikì ekjetikì s ma ej!0 t , ìpw to (sun)hmitonoeidè s ma !0 t , !0 t , os( ) sin( )
enai gnwst w s mata mia suqnìthta s mata apl suqnìthta . äpw ja doÔme, ta
s mata aut qrhsimopoioÔntai gia na perigryoun ta qarakthristik poll¸n fusik¸n
diadikasi¸n.
Sto Sq ma 1.14 dnontai tra paradegmata sunhmitonoeid¸n shmtwn me diafore-
tik kuklik suqnìthta kai perodo. ParathroÔme ìti, ìtan h kuklik suqnìthta
auxnei, !1 < !2 < !3 , h jemeli¸dh perodo elatt¸netai, T1 > T2 > T3 , kai
auxnei o rujmì twn talant¸sewn tou s mato , dhlad auxnei o rujmì metabol
tou s mato . àna s ma qamhl suqnìthta metablletai me argì rujmì se antjesh me
èna s ma uyhl suqnìthta pou metablletai me gr goro rujmì.
H genik perptwsh migadikoÔ ekjetikoÔ s mato suneqoÔ qrìnou enai
x(t) = est; ìpou = j jej ; kai s = + j!0 (1.4.5)
ètsi
x(t) = j j ej e(+j!0 )t = j j et ej (!0 t+) (1.4.6)
Me th bo jeia th sqèsh tou Euler èqoume:
x(t) = j j et os(!0t + ) + j j j et sin(!0t + )
= j j et os(!0t + ) + j j j et os(!0t + =2) (1.4.7)
Enìthta 1.4 Stoiqei¸dh S mata 13
x1(t)= cos(ù1 t )
T1 t
x2(t)= cos(ù2 t )
T2 t
x3(t)= cos(ù3 t )
Sq ma 1.14 H sumperifor tou
T3 t sunhmitìnou gia diaforetikè ku-
klikè suqnìthte !1 < !2 < !3 .
Gia =0to pragmatikì kai to fantastikì mèro (tm ma) enai (sun)hmitonoeid
s mata (Sq ma 1.15a).
0
Gia > ta antstoiqa (sun)hmitonoeid s mata pollaplasizontai me ènan
( )
auxanìmeno ekjetikì pargonta et (Sq ma 1.15b).
0
Gia < ta antstoiqa (sun)hmitonoeid s mata pollaplasizontai me ènan
( )
ekjetikì pargonta et pou fjnei (Sq ma 1.15g). Ta s mata aut enai gnw-
st w fjnonta hmitonoeid s mata kai emfanzontai sti fjnouse armonikè
mhqanikè hlektrikè talant¸sei ìpw ja doÔme.
Sto Sq ma 1.15 oi diakekommène grammè antistoiqoÔn sti sunart sei j j et
kai apoteloÔn thn peribllousa th kampÔlh talntwsh .
ℜe x(t) = c cos(ù0 t+è) ℜe x(t) = c eót cos(ù0 t+è) ℜe x(t) = c eót cos(ù0 t+è)
c eót c eót
c
t t t
c eót c eót
(á) ( â) (ã)
Sq ma 1.15 Grafik anaparstash tou pragmatikoÔ mèrou tou migadikoÔ ekjetikoÔ s ma-
to (a) gia = 0, (b) gia > 0 kai (g) gia < 0.
14 Eisagwg sta S mata Keflaio 1
1.4.2 Migadikì ekjetikì s ma diakritoÔ qrìnou
To migadikì ekjetikì s ma diakritoÔ qrìnou orzetai apì th sqèsh
x(n) = n (1.4.8)
ìpou kai enai genik migadiko arijmo (enallaktik orzetai apì th x (n) = e n
ìpou =e ).
x(n) x(n)
(a) n (â) n
x(n) x(n)
n n
(ã) (ä)
Sq ma 1.16 To pragmatikì ekjetikì s ma diakritoÔ qrìnou (a) gia > 1, (b) gia 0 < < 1,
(g) gia < 1 kai (d) gia 1 < <0.
1. An kai enai pragmatiko arijmo, èqoume ti grafikè parastsei tou Sq -
mato 1.16
2. An enai fantastikì arijmì j 0 kai( = ) =
Aej , tìte x n Aej 0 n . ( )=
To s ma autì sundèetai me to (sun)hmitonoeidè s ma diakritoÔ qrìnou x n ( )=
A os( + )
0 n me th bo jeia th sqèsh tou Euler. Prgmati,
A
A os( 0 n + ) = 2 ej ej 0n + A2 e j e j 0 n
ìpou 0 enai h jemeli¸dh yhfiak kuklik suqnìthta.
3. H genik perptwsh =j j ej kai =j j ej 0 dnei
x(n) = j jj jej( 0 n+)
= j jj jn os( 0 n + ) + j j jj jn sin( 0 n + ) (1.4.9)
Sto Sq ma 1.17 eikonzontai to pragmatikì mèro tou migadikoÔ ekjetikoÔ s mato
diakritoÔ qrìnou, gia ti peript¸sei ìpou a < kai a > . jj 1 jj 1
An to n den èqei diastsei , tìte h yhfiak kuklik suqnìthta 0 kai h gwna
èqoun diastsei gwna (rad).
Enìthta 1.4 Stoiqei¸dh S mata 15
ℜe x(t) ℜe x(t)
c an c an
n n
c an c an
(á) (â)
Sq ma 1.17 To pragmatikì mèro tou migadikoÔ ekjetikoÔ s mato diakritoÔ qrìnou (a) gia
j j < 1, kai (b) gia j j > 1.
1.4.3 Idiìthte twn ekjetik¸n shmtwn
1. H pr¸th idiìthta afor thn periodikìthta tou migadikoÔ ekjetikoÔ s mato
diakritoÔ qrìnou, w pro th suqnìthta. Ta migadik ekjetik s mata suneqoÔ
qrìnou, ej!1 t kai ej!2 t , an !1 6=
!2 enai diaforetik s mata. To migadikì
ekjetikì s ma diakritoÔ qrìnou, me kuklik suqnìthta 0 +2
enai to dio me
to antstoiqo th kuklik suqnìthta 0 . Prgmati,
ej ( 0 +2)n = ej 2n ej 0n = ej 0n
àtsi, to ekjetikì s ma diakritoÔ qrìnou me kuklik suqnìthta 0 enai to dio
me ta ekjetik s mata pou èqoun kuklikè suqnìthte 0 ; 0 ; ::: +2 +4
kai gia to lìgo autì to migadikì ekjetikì s ma diakritoÔ qrìnou qreizetai na
perigrafe sto disthma kuklik¸n suqnot twn 0< 0 2
0 < .
Sto ekjetikì s ma suneqoÔ qrìnou parathroÔme ìti ìso auxnei h w tìso
auxnei kai o rujmì twn talant¸sewn. Sta ekjetik s mata diakritoÔ qrìnou,
ìso to 0 auxnei apì 0 mèqri thn tim , èqoume s mata me rujmì talntwsh
pou epsh auxnetai (Sq ma 1.18). An to 0 auxnetai apì thn tim mè-
qri thn tim 2
, èqoume t¸ra mewsh tou rujmoÔ talntwsh . àtsi, s mata
diakritoÔ qrìnou, ta opoa parousizoun mikroÔ rujmoÔ metabol (qamhlè
suqnìthte ), apoteloÔntai apì suqnìthte pou brskontai sth perioq tou 0 kai
se kje rtio pollaplsio tou . Antjeta, s mata diakritoÔ qrìnou, ta opoa
parousizoun meglou rujmoÔ metabol (uyhlè suqnìthte ), apoteloÔntai
apì suqnìthte sthn perioq tou kai se kje perittì pollaplsio tou .
2. H deÔterh idiìthta afor thn periodikìthta tou migadikoÔ ekjetikoÔ s mato
diakritoÔ qrìnou, w pro th metablht n. An to ej 0 n enai periodikì me
0
perodo N > , prèpei
ej 0 (n+N ) = ej 0n =) ej 0N = 1 =) os( 0 N ) + j sin( 0 N ) = 1
16 Eisagwg sta S mata Keflaio 1
x(n)=cos(0n)=cos(2ðn) x(n)=cos (ð n = cos (158ð n(
8 (
(á) (â)
x(n)=cos (ð n = cos (74ð n( x(n)=cos (ð n = cos (32ð n(
2 (
4 (
(ã) ( ä)
x(n)=cos(ðn)
(å)
Sq ma 1.18 Hmitonoeid s mata diakritoÔ qrìnou gia suqnìthte (a) 0 kai 2p, (b) p/8 kai
15p/8, (g) p/4 kai 7p/4, (d) p/2 kai 3p/2 kai (e) p.
dhlad , to 0N prèpei na enai pollaplsio tou 2p ètsi
0
0 N = 2k =) 2 = Nk (1.4.10)
ParathroÔme ìti to migadikì ekjetikì s ma diakritoÔ qrìnou den enai genik
2
periodikì, enai periodikì an 0 = enai rhtì arijmì .
àqoume, loipìn, gia ta migadik ekjetik s mata diakritoÔ qrìnou
An x(n) enai periodikì me jemeli¸dh perodo N , h jemeli¸dh suqnìthta enai
2=N .
Gia na enai periodikì prèpei 0=2 = k=N . An oi k kai N enai pr¸toi metaxÔ
tou , tìte h jemeli¸dh perodo enai N.
H jemeli¸dh perodo mpore na grafe N = k(2= 0 ).
Ta migadik ekjetik s mata suneqoÔ qrìnou pou èqoun kuklikè suqnìthte
pollaplsie th jemeli¸dou !0 =T0 (armonikè ), ejk(2=T0 )t , enai di-
=2
Enìthta 1.4 Stoiqei¸dh S mata 17
aforetik, dhlad
2 2
ejk T t 6= ejm T t k 6= m
Den isqÔei ìmw to dio gia ta diakritoÔ qrìnou, ìpou lìgw th ej ( 0 +2)n =
ej 0 n ta s mata fk n ejk(2=N )n ; k
( )= = 0 1
; ; ::: enai ta dia gia timè
tou k pou diafèroun pollaplsio tou N . Prgmati,
fk+N n ej (k+N ) N n ej 2n ejk N n fk n
2 2
( )= = = ()
ParathroÔme ìti uprqoun mìno N diaforetik migadik ekjetik s mata diakri-
toÔ qrìnou twn opown oi suqnìthte enai pollaplsia th jemeli¸dou . Ta s mata
aut orzoun to sÔnolo A =f ( ) () ()
f0 n ; f1 n ; f2 n ; :::; fN 1 n . An fk n den( )g ()
an kei sto A, tìte enai dio me èna apì aut, dhlad fN n ( )= ( )
f0 n ; f 1 n ( )=
()
fN 1 n kai oÔtw kajex .
()
àstw x n h akolouja diakritoÔ qrìnou, h opoa proèrqetai apì th deigmatolh-
ya tou ekjetikoÔ s mato ej!0 t se shmea ta opoa isapèqoun kat qronik diast -
mata sa me TÆ
x n ej!0 nTÆ ej (!0 TÆ )n
( )= =
An 0 enai h yhfiak kuklik suqnìthta tìte x n ( ) = ej 0 n . Sugkrnonta ti dÔo ek-
()
frsei tou x n èqoume th sqèsh metaxÔ analogik kai yhfiak kuklik suqnìth-
ta
0 = !0 TÆ (1.4.11)
To analogikì s ma x t ( ) = os( )
!0 t enai gia kje tim th !0 periodikì. To s -
ma diakritoÔ qrìnou x n ( ) = os( )
0 t enai periodikì mìno ìtan 0 = k=N 2 =
2 = ()
!0 TÆ = k=N . ParathroÔme ìti to s ma diakritoÔ qrìnou x n , to opoo prokÔptei
apì to periodikì analogikì s ma x t( ) = os( )
!0 t , enai periodikì an o lìgo th pe-
riìdou deigmatolhya TÆ pro thn perodo T0 tou analogikoÔ s mato enai rhtì
arijmì , dhlad
TÆ
T0
= Nk (1.4.12)
Prgmati, an deigmatolhpt soume to periodikì analogikì s ma x t t( ) = os(2 )
me periìdo TÆ = 1 12
= , prokÔptei to s ma diakritoÔ qrìnou x n ( ) = os(2 12)
n= ,
(blèpe Sq ma 1.19a), to opoo enai periodikì, afoÔ ikanopoietai h sunj kh (1.4.12).
ParathroÔme ìti h perodo tou analogikoÔ s mato , grammoskiasmènh perioq , sum-
pptei me thn perodo tou s mato diakritoÔ qrìnou. Se anloga sumpersmata
katal goume ìtan h perodo deigmatolhya enai TÆ = 4 31
= (blèpe Sq ma 1.19b).
Sthn perptwsh aut h perodo tou s mato diakritoÔ qrìnou enai sh me tèsseri
periìdou tou analogikoÔ s mato . Antjeta, an h perodo enai TÆ = , to = 1 12
() ()
s ma diakritoÔ qrìnou x n , se antjesh me to x t , den enai periodikì (blèpe Sq ma
1.19g).
18 Eisagwg sta S mata Keflaio 1
••• •••
x(n)=cos (2ð n(
12
(á)
••• •••
x(n)=cos (8ð n(
12 31 31
(â)
••• •••
x(n)=cos ( 12
1 n
(
(ã)
Sq ma 1.19 Hmitonoeid s mata diakritoÔ qrìnou, (a) kai (b) periodik (g) mh periodikì.
1.4.4 H sunrthsh monadiaou b mato suneqoÔ qrìnou
Ma eidik morf s mato enai h sunrthsh monadiaou b mato suneqoÔ qrìnou, h
opoa orzetai w
u(t) = 0; t<0
1; t>0 (1.4.13)
kai èqei th morf tou Sq mato 1.20a.
u(t) uÄ(t)
1 1
0 t 0 Ä t
(á) (â)
Sq ma 1.20 (a) H sunrthsh monadiaou b mato (suneqoÔ qrìnou) kai (b) h suneq
prosèggish th sunrthsh monadiaou b mato .
()
H sunrthsh u t enai asuneq kai den orzetai sto t = 0. àna llo trìpo
()
na doÔme th sunrthsh u t enai w ìrio th
8
< 0; t < 0
u (t) = 1 t; 0 < t <
:
(1.4.14)
1; t
Enìthta 1.4 Stoiqei¸dh S mata 19
H sunrthsh u (t) fanetai sto Sq ma 1.20b. ParathroÔme ìti u (t) = lim!0 u(t).
1.4.5 H kroustik sunrthsh suneqoÔ qrìnou sunrthsh dèlta
Idiatero endiafèron parousizei h pargwgo th sunrthsh u (t)
8
du (t) < 0; t < 0
Æ (t) =: 1
dt ; 0 < t < (1.4.15)
0; t >
h opoa den orzetai sta shmea asunèqeia 0 kai kai fanetai sto Sq ma 1.21a.
äÄ(t) ä(t)
1 1
Ä
0 Ä t 0 t
(á) (â)
Sq ma 1.21 (a) H pargwgo th sunrthsh u(t) kai (b) h sunrthsh dèlta Æ(t).
()
ParathroÔme ìti to embadì th Æ t enai so me th monda gia kje tim th
()
kai ìti h sunrthsh Æ t enai sh me to mhdèn èxw apì to disthma t . ätan 0
!0 h qronik dirkeia tou palmoÔ elatt¸netai, kai auxnetai to plto tou, en¸
to embadì paramènei stajerì kai so me th monda.
Sto ìrio !0 to eÔro tou palmoÔ tenei sto mhdèn kai to plto tenei sto
peiro. Orzoume th sunrthsh Æ t w ()
Æ(t) = lim Æ (t) (1.4.16)
!0
H Æ(t) onomzetai sunrthsh dèlta
sunrthsh dirac kroustik sunrthsh.
ParathroÔme ìti h kroustik sunrthsh enai sh me thn pargwgo th sunrthsh
monadiaou b mato .
du(t)
Æ(t) = (1.4.17)
dt
àna genikìtero orismì th Æ(t) enai
Æ(t) = 0; t 6= 0 (1.4.18)
kai Z 1
x(t) Æ(t t0 ) dt = x(t0 ) (1.4.19)
1
20 Eisagwg sta S mata Keflaio 1
ìpou x(t) enai suneq sunrthsh sto t0 . H (1.4.19) anafèretai kai w idiìthta
olsjhsh th kroustik sunrthsh . Apì thn (1.4.19) parathroÔme ìti, an x t , ( )=1
Z 1
Æ(t) dt = 1 (1.4.20)
1
()
H sunrthsh Æ t grafik paristnetai ìpw sto Sq ma 1.21b. To mètro tou dia-
nÔsmato , to opoo qrhsimopoioÔme gia na apod¸soume th sunrthsh dèlta, epilègetai
¸ste na enai so me to embadì th , dhlad so me 1.
Ma basik idiìthta th sunrthsh dèlta enai
Æ(t) = Æ( t)
Ma llh qr simh idiìthta th Æ(t) enai h idiìthta th allag klmaka qrìnou
1
Æ( t) = Æ(t); >0 (1.4.21)
Pardeigma 1.4.1
Na exetsete an ta paraktw s mata enai periodik ìqi. An to s ma enai periodikì,
na upologiste h jemeli¸dh suqnìtht tou.
1. x(t) = 3 os(5t + =4)
2. x(t) = 2ej(t 1)
x(t) = 1
P (t 2n)2
3. n= 1 e
4. x(t) = ( os(2t))u(t)
LÔsh
1. Exetzoume an uprqei jetikì arijmì T gia ton opoo x(t + T ) = x(t) gia kje
tim t
tou qrìnou . àtsi èqoume
x(t + T ) = x(t) =) 3 os(5t + 5T + =4) = 3 os(5t + =4) (1.4.22)
Gnwrzoume ìmw ìti an os = os , tìte ' = 2k, kai epomènw prokÔptei
ìti:
(5t + 5T + =4) + (5t + =4) = 2k =) T = (2k)=5 2t =10 (1.4.23)
(5t + 5T + =4) (5t + =4) = 2k =) T = (2k)=5 (1.4.24)
Apì thn (1.4.23) den prokÔptei stajer tim gia thn perodo. Apì thn (1.4.24)
parathroÔme ìti to s ma enai periodikì me jemeli¸dh perodo T0 = 2=5 kai
jemeli¸dh suqnìthta f0 = 5=2.
Enìthta 1.4 Stoiqei¸dh S mata 21
2. Me ìmoio trìpo èqoume
x(t + T ) = x(t) ) 2ej(t+T 1) = 2ej(t 1) ) ejT =1
os(T ) + j sin(T ) = 1 ) T = 2k ) T = 2k
ParathroÔme ìti to s ma enai periodikì me jemeli¸dh perodo T0 = 2 kai
jemeli¸dh suqnìthta f0 = 1=2.
3. H qronik metatopismènh kat T morf tou s mato
1
X
e (t 2n)
2
x(t) = (1.4.25)
n= 1
x(t + T ) = 1 e (t+T 2n) jètonta T = 2k èqoume x(t + 2k) =
P 2
enai
P1 n = 1
n= 1 e
[(t 2(n k)℄2 me allag metablht n k = m to s ma apokt th
morf
X1
e (t 2m)
2
x(t + 2k) = (1.4.26)
m= 1
Sugkrnonta ti (1.4.25) kai (1.4.26) parathroÔme ìti x(t + 2k ) = x(t), ra to
s ma enai periodikì me perodo T = 2k . H jemeli¸dh perodo tou s mato
enai T0 = 2 kai h jemeli¸dh suqnìthta f0 = 1=2.
4. ParathroÔme ìti to s ma
x(t) = ( os(2t))u(t) = 0os(2
;
t); t>0
alli¸
(1.4.27)
den enai periodikì.
Pardeigma 1.4.2
An x(t) enai to s ma pou dnetai sto Pardeigma 1.3.1 (1.3.5), na upologistoÔn ta
1. y1 (t) = x(t)u(t)
2. y2 (t) = x(t)Æ (t 1)
x(t) y1(t) y2(t)
2 2 2
2 t+2 2- t 2- t 1
-1 0 1 2 t -1 0 1 2 t -1 0 1 2 t
Sq ma 1.22 Grafikè parastsei gia ta s mata x(t), y1 (t) kai y2 (t).
LÔsh
1. Me th bo jeia th sqèsh orismoÔ th sunrthsh u(t) parathroÔme
ìti to s ma
y1 (t) enai to aitiatì tm ma tou s mato
2
x(t), dhlad , y1 (t) = 0; t; 0t<2 .
alli¸
22 Eisagwg sta S mata Keflaio 1
2. To s ma y2 (t) enai h sunrthsh dèlta qronik metatopismènh kat 1 me plto
x(1) = 1, dhlad , y2 (t) = x(1)Æ(t 1).
Sto Sq ma 1.22 eikonzontai ta s mata x(t), y1 (t) kai y2 (t).
Pardeigma 1.4.3
Na anaptuqje èna tuqao analogikì s ma se jroisma apì olisj sei th kroustik
sunrthsh .
x(t) x(t)
x(t)
t -Ä 0 Ä 2Ä kÄ t
(a1)
(a2)
x(-2Ä)äÄ(t+2Ä)Ä
x(-2Ä)
-2Ä 0
(â)
t
x(-Ä)äÄ(t+Ä)Ä
x(Ä)
-Ä 0
(ã) t
x(0)äÄ(t)Ä
x(0)
0 Ä t
(ä)
Sq ma 1.23 Anptugma s mato suneqoÔ qrìnou se olisj sei th kroustik sunrthsh .
LÔsh àstw to tuqao analogikì s ma x(t) tou Sq mato 1:23a1. JewroÔme to kli-
makwt morf s ma x^(t), tou Sq mato 1:23a2, to opoo proseggzei to s ma x(t).
Upenjumzoume ìti h Æ(t t0) enai èna palmì me arq th qronik stigm t0 , me
dirkeia kai plto so me èna. O palmì , tou Sq mato 1.23b, me arq th qronik
stigm t = 2 kai Ôyo so me thn tim tou s mato thn dia qronik stigm , x( 2)
ekfrzetai apì thn
x( 2)Æ(t + 2) (1.4.28)
Me anlogo trìpo ekfrzontai kai oi lloi palmo, oi opooi prosdiorzontai apì to
Enìthta 1.4 Stoiqei¸dh S mata 23
s ma x^(t) (blèpe Sq ma 1.23g kai d). àtsi to s ma x^(t) ekfrzetai apì thn exswsh
1
X
x^(t) = x(k)Æ (t k) (1.4.29)
k= 1
An ! 0, to s ma x^(t) ! x(t), ètsi
1
X
x(t) = lim
!0
x(k)Æ (t k) (1.4.30)
k= 1
ätan ! 0, to k gnetai h suneq metablht , to parapnw jroisma grfetai
w olokl rwma kai epeid Æ(t) = lim!0 Æ(t), to s ma x(t) dnetai apì thn exswsh
Z 1 Z 1
x(t) = x( )Æ(t ) d = x( )Æ( t) d (1.4.31)
1 1
To pardeigma autì anadeiknÔei mia fusik proèktash th (1.4.19) kai ja ma fane
qr simh sto epìmeno keflaio.
Pardeigma 1.4.4
Dnetai to s ma tou Sq mato 1.24a. Na sqedisete ta s mata x+ (t) = x(t)u(t) kai
x (t) = x( t)u(t). Parathr +
ste ìti ta x (t) kai x (t) enai aitiat s mata kai to
x(t) mpore na ekfraste w
mh aitiatì s ma jroisma twn dÔo aut¸n shmtwn me th
bo jeia th sqèsh
x(t) = x+ (t) + x ( t) (1.4.32)
x(t) x(-t)
1 1
-2 -1 0 1 t -1 0 1 2 t
(a) ( â)
x(t) u(t) x(-t)u(t)
1 1
-2 -1 0 1 t -1 0 1 2 t
(ã) (ä)
Sq ma 1.24 Ta s mata tou Paradegmato 1.4.4.
LÔsh Sto Sq ma 1.24a eikonzetai to s ma x(t), kai sto Sq ma 1.24b h anklas tou
x( t). To aitiatì tm ma tou s mato x(t), x+ (t) = x(t)u(t) eikonzetai sto Sq ma
1.24g kai to aitiatì tm ma tou s mato x( t), x (t) = x( t)u(t) eikonzetai sto
Sq ma 1.24d.
24 Eisagwg sta S mata Keflaio 1
ParathroÔme apì ta diagrmmata ìti to s ma x(t) enai so me to jroisma tou s mato
x+ (t) kai th anklash x ( t) tou s mato x (t), dhlad , enai
x(t) = x+ (t) + x ( t)
1.4.6 O orjog¸nio palmì
O orjog¸nio palmì monadiaou pltou me monadiaa qronik dirkeia sumbolzetai
w ( )
t kai dnetai apì to majhmatikì tÔpo
tj < 12
(t) = 10;; jalli¸ (1.4.33)
O orjog¸nio palmì ekfrzetai w diafor dÔo katllhla olisjhmènwn bhmatik¸n
sunart sewn. Prgmati,
(t) = u u t
1 t+
1
2 2 (1.4.34)
Sto Sq ma 1.25 uprqei h grafik parstash tou A(t=T1 ), dhlad , enì orjog¸niou
palmoÔ qronik dirkeia T1 kai pltou A.
A Ð ( Tt1 (
A
Sq ma 1.25 O orjog¸nio palmì qronik
T1 0 T1 t
2 2 dirkeia T1 kai pltou A.
1.4.7 O trigwnikì palmì
O trigwnikì palmì monadiaou pltou sumbolzetai w (t) kai dnetai apì to
majhmatikì tÔpo
8
< t + 1; 1t<0
(t) = : t + 1; 0t<1 (1.4.35)
0; alli¸
Sto Sq ma 1.26 uprqei h grafik parstash trigwnikoÔ palmoÔ.
Enìthta 1.4 Stoiqei¸dh S mata 25
Ë(t)
1
-1 0 1 t Sq ma 1.26 O trigwnikì palmì (t).
1.4.8 H sunrthsh klsh
H sunrthsh klsh sumbolzetai w r(t) kai dnetai apì to majhmatikì tÔpo
r(t) = t; t 0
0; t < 0 (1.4.36)
H sunrthsh klsh ekfrzetai kai
r(t) = tu(t) (1.4.37)
Sto Sq ma 1.27 uprqei h grafik parstash th sunrthsh klsh .
r(t)
0 t Sq ma 1.27 H sunrthsh klsh r(t).
1.4.9 H sunrthsh pros mou
H sunrthsh pros mou sumbolzetai w sgn(t) kai dnetai apì to majhmatikì tÔpo
sgn(t) = 1;1; tt >< 00 (1.4.38)
Sto Sq ma 1.28 uprqei h grafik parstash th sunrthsh pros mou.
sgn(t)
1
t
-1 Sq ma 1.28 H sunrthsh pros mou sgn(t).
26 Eisagwg sta S mata Keflaio 1
1.4.10 Monadiaa bhmatik akolouja - Monadiao b ma diakritoÔ qrìnou
H monadiaa bhmatik akolouja to monadiao b ma diakritoÔ qrìnou lambnetai apì
th sunrthsh monadiaou b mato , an antikatast soume to t me to n kai upologsoume
autì mìno gia akèraie timè tou qrìnou. àtsi, èqoume
u(n) = 0; n<0
1; n0 (1.4.39)
Sto Sq ma 1.29 èqoume th grafik parstash tou monadiaou b mato diakritoÔ
qrìnou.
u(n)
-4 -2 0 2 4 n
Sq ma 1.29 H monadiaa bhmatik akolouja.
1.4.11 To monadiao degma - Kroustik akolouja
To monadiao degma h kroustik akolouja orzetai me th sqèsh
Æ(n) = 1; n=0
0; alli¸
(1.4.40)
Sto Sq ma 1.30 èqoume th grafik parstash th kroustik akolouja . H monadi-
aa bhmatik akolouja sundèetai me th kroustik akolouja me th sqèsh
1
X
u(n) = Æ (n k ) (1.4.41)
k=0
en¸ h kroustik akolouja sundèetai me th monadiaa bhmatik akolouja me th sqèsh
Æ(n) = u(n) u(n 1) (1.4.42)
ä(n)
-4 -2 0 2 4 n
Sq ma 1.30 H kroustik akolouja.
Pardeigma 1.4.5
Na anaptuqje to s ma diakritoÔ qrìnou x(n), tou Sq mato 1.31a, se jroisma apì
olisj sei monadiaou degmato .
Enìthta 1.4 Stoiqei¸dh S mata 27
x(n)
-2 2 4 n (a)
-4 0
x (-2)ä(n+2)
n (â)
-4 -2 0 2 4
x (-1)ä(n+1)
n (ã)
-4 -2 0 2 4
x(0) ä(n)
(ä)
-4 -2 0 2 4 n
x(1) ä(n-1)
n (å)
-4 -2 0 2 4
x(2) ä(n-2)
n (óô)
-4 -2 0 2 4
Sq ma 1.31 Anptugma s mato diakritoÔ qrìnou se olisj sei monadiaou degmato .
LÔsh Upenjumzoume ìti Æ(n n0 ) enai h akolouja th opoa ìla ta stoiqea enai
mhdenik, ektì apì to stoiqeo gian = n0 , to opoo enai so me èna. H akolouja tou
Sq mato 1.31b, th opoa ìla ta stoiqea enai sa me mhdèn, ektì apì to stoiqeo th
qronik stigm n= 2, to opoo enai so me x( 2), ekfrzetai apì th
x( 2)Æ(n + 2)
Me anlogo trìpo ekfrzontai kai oi akolouje sta Sq mata 1.31g èw st. àtsi to
s ma diakritoÔ qrìnou x(n) tou Sq mato 1.31a, mpore na ekfraste w
1
X
x(n) = x(k)Æ(n k) (1.4.43)
k= 1
SÔnoyh Kefalaou
Sto keflaio autì dìjhke o orismì th ènnoia “s ma" kai h majhmatik th
èkfrash. Katatxame ta s mata se trei kathgore , ta analogik s mata, ta s mata
diakritoÔ qrìnou kai ta yhfiak s mata. Perigryame ti basikè idiìthte pou èqoun
ta analogik kai yhfiak s mata, pou apoteloÔn to antikemeno autoÔ tou biblou,
kai anafèrame ti metabolè pou ufstatai èna s ma w pro to qrìno.
28 Eisagwg sta S mata Keflaio 1
Epsh , sto keflaio autì perigryame to migadikì ekjetikì s ma kai to hmito-
noeidè s ma. Anafèrame dÔo shmantikè sunart sei , th sunrthsh monadiaou b -
mato kai th sunrthsh dèlta. Tèlo , anafèrame th sunrthsh tou orjog¸niou pal-
moÔ, thn trigwnik sunrthsh, th sunrthsh klsh kai th sunrthsh pros mou.
1.5 PROBLHMATA
1.1 Poi apì ta s mata enai periodik;
1. x1 (t) = sin(10t)
2. x2 (t) = sin(20t)
3. x3 (t) = sin(31t)
4. x4 (t) = x1 (t) + x2 (t)
5. x5 (t) = x1 (t) + x3 (t)
1.2 Dnetai to s ma, 8
< 2t + 2; 1 t < 0
x(t) = 2 t; 0 t < 2
:
0; alli¸
Na sqedisete ta s mata
1. y1 (t) = x(t + 1)
2. y2 (t) = x(2t)
3. y3 (t) = x(t=2)
4. y4 (t) = x(1 t)
5. y5 (t) = x(2t 1)
1.3 Na sqediasjoÔn ta s mata
1. x1 (t) = (2t + 6)
2. x2 (t) = (2t 1)
3. x3 (t) = r( 0; 5t + 2)
4. x4 (t) = sin (2(t 3))
1.4 Dnetai to s ma 8
< t; 0t<1
x(t) = t + 2; 1t<2
:
0; alli¸
Na sqediasjoÔn ta s mata
Enìthta 1.5 Probl mata 29
y1 (t) = xo (t)u(t)
1.
2. y2 (t) = xe (t)u(t)
ìpou xo (t) enai to perittì mèro tou s mato x(t) kai xe (t) enai to rtio mèro
tou.
1.5 Na exetsete an ta paraktw s mata enai periodik ìqi. An to s ma enai
periodikì, na upologiste h jemeli¸dh suqnìtht tou.
1. x1 (t) = 2 os(3t + =4)
2. x2 (t) = ej (t 1)
3. x3 (n) = os(8n=7 + 2)
4. x4 (n) = ej (n=8 )
5. x5 (n) = sin2 (t =6)
6. x6 (n) = os(n2 =8)
7. x7 (n) = os(n=4) os(n=4)
8. x8 (n) = 2 os(n=4) + sin(n=8) 2 os(n=2 =6)
P
9. x9 (t) = 1 n= 1 e
(t 3n)2
1.6 Na exetaste an ta s mata enai energeiak s mata s mata isqÔo kai na
upologiste h enèrgei tou h isqÔ tou .
1. x1 (t) = e t u(t); >0
2. x2 (t) = A os(!0 t + )
3. x3 (t) = Aej (!0 t+)
1.7 Na sqediasjoÔn ta s mata.
1. x(t) = 2Æ (t) + 3Æ (t 1) + 5Æ(t 2) = 1
2. y(t) = u(t + 2) u(t 1)
1.8 Dnetai to s ma x(t) tou Sq mato 1.32.
x(t) g(t) y(t) z(t)
1 1
1 1
-1 0 1 t -4 -3 -2 -1 0 t -2 -1 0 1 t -4 -3 -2 -1 0 t
Sq ma 1.32 Ta s mata tou Probl mato 1.8.
30 Eisagwg sta S mata Keflaio 1
1. Na ekfrsete to s ma x(t) me th bo jeia th bhmatik sunrthsh u(t).
2. Na ekfrsete ta s mata g (t), y (t) kai z (t) tou Sq mato 1.32 me th bo jeia
()
tou s mato x t .
1.9 Qrhsimopoi¸nta ti metatropè s mato w pro to qrìno, na gnei h grafik
parstash se sunrthsh me to qrìno tou s mato x t t ìpou( ) = (2 3)
t ( )
enai o trigwnikì palmì
1.10 Dnetai to s ma x(t) tou Sq mato 1.33.
x(t)
2Volts
1
-1 0 1 2 3 t (sec) Sq ma 1.33 To s ma tou Probl mato 1.10.
1. Na ekfraste to s ma x(t) me th bo jeia th sunrthsh klsh kai tou
orjog¸niou palmoÔ.
2. Na breje h enèrgeia tou s mato .
1.11 Na breje h pargwgo twn shmtwn
1. tou orjog¸niou palmoÔ (t)
2. tou trigwnikoÔ palmoÔ (t)
3. th suntrhsh pros mou sgn(t).
kai na gnei h grafik parstash twn antstoiqwn parag¸gwn.
Bibliografa
1.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
1.2 A. Mrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
sei Tziìla 2012.
1.3 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
1.4 A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
Hall Inc., N. Y., 1983.
1.5. R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals & Systems Continuous and
Discrete”, Prentice Hall, 1998.
ÊÅÖÁËÁÉÏ 2
ÅÉÓÁÃÙÃÇ ÓÔÁ ÓÕÓÔÇÌÁÔÁ
Skopì tou kefalaou autoÔ enai na d¸sei ma genik eikìna tou ti enai sÔsthma,
na katatxei ta sust mata anloga me ton arijmì kai to edo twn epitrepìmenwn
eisìdwn kai exìdwn kai na perigryei ti basikè idiìthtè tou . Sto keflaio autì ja
perigrafe h mèjodo prosdiorismoÔ th exìdou enì sust mato , ìtan gnwrzoume thn
esodì tou, kaj¸ kai thn èxodì tou ìtan h esodì tou diegeretai apì th sunrthsh
dèlta. Sth sunèqeia ja dexoume ìti se ma eidik kathgora susthmtwn, ìtan h
esodo enai to migadikì ekjetikì s ma kuklik suqnìthta !0 , tìte kai h antstoiqh
èxodo enai, epsh , èna migadikì ekjetikì s ma me thn dia kuklik suqnìthta, to
plto kai h fsh tou opoou èqoun uposte ma allag pou prokale to sÔsthma.
Tèlo , ja efarmìsoume ta parapnw se apl hlektrik kai mhqanik sust mata.
Eisagwg
Sto prohgoÔmeno keflaio asqolhj kame me basikoÔ orismoÔ kai ènnoie pou
aforoÔn sta s mata. Sto keflaio autì ja asqolhjoÔme me ta sust mata. To
perieqìmeno th ènnoia tou sust mato enai genikì. Suqn qrhsimopoioÔme th lè-
xh “sÔsthma” gia na anaferjoÔme se èna “sÔnolo dom¸n” kai “leitourgi¸n”. Eme
ìmw ja estisoume to endiafèron ma se ma eidik shmasa th ènnoia tou susth-
mto , aut n pou èqei mesh sqèsh me ta s mata. Sugkekrimèna, sth Jewra Susth-
mtwn sÔsthma enai h ontìthta ekenh pou epexergzetai, metabllei, katagrfei,
metaddei s mata. Gia pardeigma, èna sÔsthma yhfiak katagraf qou meta-
trèpei èna akoustikì s ma se mia seir apì arijmoÔ (bits) tou opoou katagrfei,
p.q., se optikì dsko. Antjeta, to CD player enai èna sÔsthma to opoo diabzei
tou arijmoÔ , oi opooi enai apojhkeumènoi ston optikì dsko, kai anapargei to
hqhtikì s ma to opoo mporoÔme na akoÔsoume. àna sÔsthma epikoinwna metafèrei
plhrofora, p.q. to s ma fwn , apì èna shmeo tou q¸rou, pou lègetai phg , se èna
llo shmeo, pou enai o proorismì qr sh th .
32 Eisagwg sta Sust mata Keflaio 2
2.1 ORISMOS SUSTHMATOS - KATHGORIES SUSTHMATWN
W sÔsthma orzoume, thn ontìthta ekenh h opoa epenerg¸nta se èna s ma x(t) èqei
w apotèlesma èna llo s ma y(t).
Apì majhmatik poyh, èna sÔsthma mpore na
jewrhje w èna metasqhmatismì S ()
pou metasqhmatzei èna s ma, x t , se èna llo
s ma y t ( ) = Sf ( )g
x t . H drsh enì sust mato perigrfetai sqhmatik sto Sq ma
()
2.1. To arqikì s ma x t , to opoo diegerei to sÔsthma, lègetai s ma eisìdou apl
esodo tou sust mato , en¸ to apotèlesma sth diadikasa diègersh , dhlad to s ma
()
y t lègetai s ma exìdou apl èxodo tou sust mato .
Åßóïäïò Óýóôçìá ¸îïäïò Sq ma 2.1 Sqhmatik perigraf
x(t) S y(t) sust mato .
O parapnw orismì enai polÔ genikì kai mpore na perigryei poll fusik
sust mata, ìpw : hlektrik kukl¸mata (p.q. radiìfwno), mhqanik sust mata (p.q.
autoknhto, èna rompotikì braqona), èna epikoinwniakì kanli, ènan hlektronikì
upologist kai poll lla.
Anloga me ton arijmì kai to edo twn epitrepìmenwn eisìdwn kai exìdwn, ta
sust mata diakrnontai se:
1. Sust mata ma eisìdou - ma exìdou SISO (Single-Input, Single-Output). Ta
pio apl sust mata ma eisìdou - ma exìdou enai o bajmwtì pollaplasi-
ast y t()= ()
ax t kai to sÔsthma kajustèrhsh y t x t t0 . ()= ( )
2. Sust mata me pollè eisìdou kai ma èxodo pou enai gnwst w sust mata
MISO (Multi-Input, Single-Output). àna tètoio sÔsthma enai o ajroist dÔo
perissìterwn shmtwn y(t) = x1(t) + x2 ( )t kai o pollaplasiast y t ()=
( ) ( )
x1 t x2 t .
3. Sust mata me pollè eisìdou kai pollè exìdou , gnwst w sust mata MIMO
(Multi-Input, Multi -Output).
Anloga me th fÔsh twn epitrepìmenwn eisìdwn kai exìdwn, ta sust mata diakr-
nontai w ex
1. Sust mata suneqoÔ qrìnou analogik sust mata, ìtan ta s mata eisìdou kai
ta s mata exìdou enai analogik s mata. ätan ta s mata eisìdou kai exìdou
enai s mata diakritoÔ qrìnou, tìte ta sust mata qarakthrzontai w sust -
mata diakritoÔ qrìnou.
2. Aitiokratik sust mata,ìtan ta s mata eisìdou kai exìdou enai aitiokratik
s mata. ätan ta s mata eisìdou kai exìdou enai stoqastik s mata, ta sust -
mata qarakthrzontai w stoqastik sust mata.
Enìthta 2.1 Orismì Sust mato - Kathgore Susthmtwn 33
àna pardeigma analogikoÔ kai sugqrìnw stoqastikoÔ sust mato enai to gnw-
stì kÔklwma anìrjwsh kai exomlunsh th enallassìmenh tsh tou Sq mato
2.2, sto opoo to s ma eisìdou enai h efarmozìmenh tsh eis t kai s ma exìdou h ()
anaptussìmenh tsh sta kra th antstash R, ex t . ()
D
õåéó(t) R C õåî(t)
Sq ma 2.2 Pardeigma analogikoÔ
sust mato .
àna sÔsthma epikoinwna enai èna stoqastikì sÔsthma efìson h esodì tou kai
h èxodì tou enai stoqastik s mata.
Uprqoun, epsh , sust mata ta opoa metasqhmatzoun analogikè eisìdou se
diakritè exìdou kai antijètw . Tètoia sust mata enai gnwst w ubridik sust -
mata. O analogoyhfiakì metatropèa (A/D Analog to Digital converter), o opoo
metatrèpei èna analogikì s ma se yhfiakì kai o yhfioanalogikì metatropèa (D/A),
enai ubridik sust mata.
Sth sunèqeia ja prosdiorsoume thn exswsh h opoa perigrfei th sqèsh metaxÔ
tou s mato eisìdou kai tou s mato exìdou enì hlektrikoÔ kai enì mhqanikoÔ
sust mato .
Se èna hlektrikì kÔklwma gnwrzoume ìti h tsh R t sta kra mia wmik ()
antstash R, pou diarrèetai apì reÔma èntash i t , enai ()
R (t) = R i(t) (2.1.1)
H tsh L (t) sta kra phnou, autepagwg L, pou diarrèetai apì reÔma èntash
()
i t enai
di(t)
L (t) = L (2.1.2)
dt
kai h èntash tou reÔmato fìrtish enì puknwt , qwrhtikìthta C enai
dC (t)
i(t) = C (2.1.3)
dt
ìpou C (t) enai h tsh sta kra tou puknwt .
Pardeigma 2.1.1
Na diatupwje h sqèsh th tsh eisìdou eis (t) kai th tsh exìdou (t)
ex
gia to
kÔklwma tou Sq mato 2.3.
LÔsh Efarmìzonta to deÔtero kanìna tou Kirchhoff sto brìqo tou kukl¸mato
èqoume
Ri(t) + (t) =
ex eis (t) (2.1.4)
34 Eisagwg sta Sust mata Keflaio 2
R
i(t)
õåéó(t) C õåî(t)
Sq ma 2.3 To kÔklwma tou
Paradegmato 2.1.1.
Lambnonta upìyh thn (2.1.3), h (2.1.4) grfetai
d (t)
RC
dt
ex
+ (t) = ex eis (t) (2.1.5)
H (2.1.5) enai ma diaforik exswsh me stajeroÔ suntelestè , h opoa perigrfei th
sqèsh metaxÔ eisìdou kai exìdou tou sust mato . H exswsh èqei th genik morf
dy(t)
dt
+ y(t) = x(t) (2.1.6)
H txh tou sust mato prosdiorzetai apì th megalÔterh pargwgo th exìdou y(t),
h opoa emfanzetai sth diaforik exswsh. àtsi, h (2.1.6) perigrfei èna sÔsthma
pr¸th txh .
Se èna mhqanikì sÔsthma gnwrzoume ìti isqÔei o jemeli¸dh nìmo th mhqanik
X X d2 x
Fk = ma Fk = m 2 (2.1.7)
k k
dt
ìpou Fk enai oi dunmei oi opoe askoÔntai sth mza m, x h jèsh th kai a h
epitquns th .
O nìmo tou Hook, o opoo dnei to mètro th dÔnamh Fel pou asketai apì èna
elat rio, w sunrthsh th metabol tou m kou tou kat x, enai
F el = kx (2.1.8)
ìpou k enai h stajer tou elathrou.
Epsh , gnwrzoume ìti h dÔnamh h opoa antidr sthn knhsh enì s¸mato (dÔ-
namh apìsbesh ) enai anlogh th taqÔtht tou, , kai dnetai apì th sqèsh
dx
F ap = b F ap = b
dt
(2.1.9)
ìpou b enai h stajer apìsbesh tou sust mato .
Pardeigma 2.1.2
Na diatupwje h sqèsh metaxÔ efarmozìmenh dÔnamh F (t) kai metatìpish x(t) gia
th mza m tou Sq mato 2.4.
Enìthta 2.2 Sundèsei Susthmtwn 35
x(t) k
F(t) Fåë(t)
m
Sq ma 2.4 To mhqanikì sÔsth-
Fáð(t)
ma gia to Pardeigma 2.1.2.
LÔsh Efarmìzonta to jemeli¸dh nìmo th mhqanik gia th mza m èqoume
F F ap Fel
= ma (2.1.10)
Qrhsimopoi¸nta ti (2.1.8) kai (2.1.9) parnoume
dx d2 x d2 x b dx k 1
F b kx = m 2 2 + + x= F (2.1.11)
dt dt dt m dt m m
h opoa enai mia diaforik exswsh me stajeroÔ suntelestè kai perigrfei to gram-
mikì talantwt me apìsbesh. Sth diaforik exswsh (2.1.11) perièqetai h deÔterh
pargwgo th exìdou me apotèlesma, to sÔsthma, me esodo th dÔnamh F kai èxodo
thn apomkrunsh x na enai deÔterh txh .
2.2 SUNDESEIS SUSTHMATWN
Se pollè peript¸sei , h anlush enì polÔplokou sust mato dieukolÔnetai shma-
ntik an doÔme to sÔsthma w apotèlesma diasÔndesh ligìtero polÔplokwn susth-
mtwn.
Oi pio basikè sundèsei metaxÔ susthmtwn enai h seiriak , h parllhlh, h
meikt kai h sÔndesh me anatrofodìthsh andrash (Sq ma 2.5).
H sqhmatik anaparstash dÔo susthmtwn ta opoa èqoun sundeje seiriak
fanetai sto Sq ma 2.5a. ParathroÔme ìti, ìtan dÔo sust mata 1 kai 2 sundèontai S S
S S
seiriak, me to sÔsthma 1 na prohgetai tou 2 , h èxodo tou 1 enai esodo tou S
S2 . Ma shmantik diadikasa, h opoa sqetzetai me th seiriak sÔndesh, enai h
antistrof sust mato , gia thn opoa ja mil soume sthn Enìthta 2.3.3.
H sqhmatik anaparstash dÔo susthmtwn, ta opoa èqoun sundeje parllh-
la, fanetai sto Sq ma 2.5b. ParathroÔme ìti h dia esodo trofodote kai ta
dÔo sust mata. Aut leitourgoÔn tautìqrona kai oi dÔo epimèrou èxodoi ajro-
zontai kai pargoun thn èxodo th parllhlh sÔndesh twn dÔo susthmtwn. H
ulopohsh enì sust mato , to opoo perigrfetai apì th sqèsh eisìdou-exìdou:
( )= ( )+ ( )
y t a x t x t t0 , gnetai me thn parllhlh sÔndesh enì bajmwtoÔ sust -
mato kai enì sust mato pou prokale kajustèrhsh kat t0 .
Sth meikt sÔndesh, Sq ma 2.5g, èqoume ta sust mata 1 kai 2 , ta opoa èqoun S S
S
sundeje parllhla, kai to sÔsthma 3 , to opoo èqei sundeje seiriak.
36 Eisagwg sta Sust mata Keflaio 2
Åßóïäïò Óýóôçìá Óýóôçìá ¸îïäïò
x(t) S1 S2 y(t)
(á)
Óýóôçìá
S1
Åßóïäïò ¸îïäïò
x(t) y(t)
Óýóôçìá
S2
(â)
Óýóôçìá
S1
Åßóïäïò Óýóôçìá ¸îïäïò
x(t) S3 y(t)
Óýóôçìá
S2
(ã)
Åßóïäïò Óýóôçìá ¸îïäïò
x(t) S1 y(t)
Óýóôçìá
S2
(ä)
Sq ma 2.5 (a) Seiriak sÔndesh dÔo susthmtwn, (b) parllhlh sÔndesh dÔo susthmtwn
(g) meikt sÔndesh susthmtwn kai (d) sÔndesh me anatrofodìthsh.
To sÔsthma autìmath plo ghsh enì oq mato dèqetai w esodo ma troqi
thn opoa jèloume na diagryei to ìqhma. To sÔsthma parakolouje thn troqi
pou èqei to ìqhma, sugkrnei th jèsh tou oq mato me thn epijumht jèsh, dhlad
prosdiorzei to sflma kai, ìtan exwteriko pargonte prokaloÔn parèklish apì
thn prokajorismènh troqi, probanei sti anagkae rujmsei , ¸ste to ìqhma na
akolouje thn prodiagegrammènh troqi. To parapnw sÔsthma mpore na parasta-
S S
je sqhmatik me ta sust mata 1 kai 2 ta opoa èqoun sundeje me anatrofodìthsh.
S S
Sto Sq ma 2.5d fanetai h sÔndesh twn 1 kai 2 me anatrofodìthsh. ParathroÔme
ìti anatrofodotoÔme thn èxodo tou sust mato S S
1 sto sÔsthma 2 kai, afoÔ thn
epexergastoÔme me ton elegkt 2 , S
thn sugkrnoume me to s ma anafor x t kai ()
qrhsimopoioÔme to apotèlesma th sÔgkrish gia na odhg soume to sÔsthma 1 . Me S
S ()
lla lìgia, to sÔsthma 2 tropopoie thn èxodo y t me trìpo ¸ste na mpore na
sugkrije me to epijumhtì s ma eisìdou.
Enìthta 2.3 Idiìthte Susthmtwn 37
2.3 IDIOTHTES SUSTHMATWN
Sthn enìthta aut parousizontai merikè basikè idiìthte pou èqoun ta sust ma-
ta. Prin anafèroume ti idiìthte twn susthmtwn enai skìpimo na perigryoume
ma basik ènnoia, h opoa pollè forè paralepetai sta egqeirdia. Ja lème ìti
èna sÔsthma brsketai se katstash hrema th qronik stigm t0 , en autì den èqei
uposte diègersh apì llo s ma gia kje qronik stigm t < t0 . Apì fusik poyh,
èna sÔsthma pou enai se katstash hrema se dedomènh qronik stigm t0 , shmanei
ìti den eqe apojhkeumènh enèrgeia th qronik stigm t t0 . =
2.3.1 Grammikìthta
àna sÔsthma pou enai se arqik hrema ja lègetai grammikì sÔsthma (GS), an, kai
() ()
mìno an, dojèntwn dÔo shmtwn x1 t kai x2 t isqÔei:
Sfa x1(t) + b x2(t)g = a Sfx1(t)g + b Sfx2(t)g (2.3.1)
ìpou a kai b stajerè . Dhlad h apìkrish tou sust mato se ma esodo, pou enai o
grammikì sunduasmì dÔo shmtwn, isoÔtai me ton antstoiqo grammikì sunduasmì
twn apokrsewn tou sust mato sto kajèna apì ta s mata aut. Sto Sq ma 2.6
perigrfetai sqhmatik h idiìthta th grammikìthta dÔo susthmtwn.
Åßóïäïé Åßóïäïé
x1(t) a Ãñáììéêü a
x1(t)
¸îïäïò Óýóôçìá ¸îïäïò
Ãñáììéêü y(t) y(t)
Óýóôçìá
x2(t) Ãñáììéêü
x2(t) b Óýóôçìá b
Sq ma 2.6 Sqhmatik perigraf th grammikìthta enì sust mato .
H parapnw idiìthta genikeÔetai gia opoiod pote grammikì sunduasmì pepera-
smènou arijmoÔ shmtwn eisìdou. Genkeush th (2.3.1) odhge sthn akìloujh sqèsh:
S fPk ak xk (t)g = Pk ak yk (t) (2.3.2)
ìpou yk (t) enai èxodo tou sust mato , ìtan h esodo enai to xk (t).
2.3.2 Aitiìthta
( )
àna sÔsthma enai aitiatì, an h èxodì tou th qronik stigm t0 , y t0 , exarttai apì
ti timè tou s mato eisìdou, x t , gia t ()
t0 . Dhlad , gia kje s ma eisìdou x t , ()
()
h antstoiqh èxodo y t exarttai mìno apì thn paroÔsa kai prohgoÔmene timè
38 Eisagwg sta Sust mata Keflaio 2
th eisìdou. Me lla lìgia, èna sÔsthma enai aitiatì, an oi metabolè sthn èxodo
(apotèlesma) tou sust mato potè den prohgoÔntai twn metabol¸n pou epiteloÔntai
sthn esodo tou sust mato (aita).
Ta sust mata ta opoa perigrfontai apì ti exis¸sei
y(t) = a x(t); y(t) = b x(t 1) kai y(t) =
1 Z t
x( )d (2.3.3)
C 1
enai aitiat, en¸ to sÔsthma diakritoÔ qrìnou upologismoÔ mèsh tim pou peri-
grfetai apì thn exswsh
y(n) =
1 X M
2M + 1 k= M x(n k) (2.3.4)
enai mh aitiatì sÔsthma.
2.3.3 Antistrèyima kai mh antistrèyima sust mata
àna sÔsthma lègetai antistrèyimo, an h gn¸sh th exìdou kajist efiktì ton upolo-
gismì tou s mato eisìdou. H diadikasa antistrof enì sust mato sunstataiS
ston prosdiorismì enì sust mato , to opoo sundeìmeno se seir me to sÔsthma , S
S
parèqei sthn èxodì tou to s ma eisìdou tou sust mato . H antistrof parousize-
tai se pollè efarmogè sti opoe enai epijumht h afaresh th epdrash enì
sust mato pnw se èna s ma. Se èna epikoinwniakì sÔsthma, to opoo èqei stìqo thn
ankthsh tou metadidìmenou s mato apì to lambanìmeno s ma, o dèkth apotele
èna antistrofèa tou kanalioÔ, pou katapolem ta difora fainìmena diataraq¸n. Ta
sust mata ta opoa perigrfontai apì ti sqèsei
n
X
y(t) = x(t) kai y(n) = x(k) (2.3.5)
k= 1
enai antistrèyima kai èqoun w antstrofa ta sust mata me sqèsei eisìdou-exìdou
1
y(t) = x(t) kai y(n) = x(n) x(n 1) (2.3.6)
antstoiqa. Se antjesh, to sÔsthma
y(t) = x2 (t) (2.3.7)
den enai antistrèyimo, giat kje tim th exìdou mpore na proèrqetai apì dÔo di-
aforetikè timè th eisìdou.
Enìthta 2.3 Idiìthte Susthmtwn 39
2.3.4 Sust mata Statik kai Dunamik
àna sÔsthma kaletai statikì sÔsthma qwr mn mh, en gia kje s ma eisìdou h
antstoiqh èxodo , gia kje qronik stigm , exarttai mìno apì thn tim th eisìdou
thn dia qronik stigm (Sq ma 27a). H wmik antstash enai èna pardeigma sust -
mato qwr mn mh, afoÔ h tsh sta kra th R t (èxodo ) kje qronik stigm ()
()
exarttai apì thn èntash tou reÔmato i t (esodo ) apì thn opoa diarrèetai thn
dia qronik stigm .
R t R i t ()= () (2.3.8)
x(t) y(t)
Óôáôéêü
óýóôçìá
0 t0 t 0 t0 t
(a)
x(t) y(t)
Äõíáìéêü
óýóôçìá
0 t0 t 0 t0 t
(â)
Sq ma 2.7 H esodo kai h èxodo (a) enì statikoÔ sust mato kai (b) enì dunamikoÔ
sust mato .
En èna sÔsthma den enai statikì, kaletai dunamikì sÔsthma me mn mh (Sq ma
2.7b). O puknwt , an jewrhje w sÔsthma me èxodo thn tsh sta kra tou, C t , ()
()
kai esodo to reÔma pou to fortzei i t , enai èna sÔsthma me mn mh, afoÔ h tsh
kje qronik stigm enai apotèlesma tou ìlou istorikoÔ th sunrthsh i t ()
C (t) =
1 Z t
i( )d (2.3.9)
C 1
2.3.5 Qronik Anallowta Sust mata
àna sÔsthma lègetai qronik anallowto (QA) (ametblhto) an, kai mìno an, qronikè
olisj sei tou s mato eisìdou metafrzontai se antstoiqe qronikè olisj sei
()
sthn èxodo. Me lla lìgia, an y t enai h èxodo se èna s ma eisìdou x t , tìte ()
( ) ( )
gia esodo x t t0 pargetai h èxodo y t t0 . Dhlad , to s ma exìdou paramènei
to dio, anexrthta apì to poia qronik stigm diegeroume thn esodo. To mìno pou
ufstatai enai h antstoiqh qronik metatìpish. Sto Sq ma 2.8 dnetai èna pardeigma
shmtwn eisìdou-exìdou enì qronik anallowtou sust mato .
40 Eisagwg sta Sust mata Keflaio 2
x(t) y(t)
×ñïíéêÜ
áíáëëïßùôï
0 t1 t óýóôçìá
0 t1 t
x(t-t0) y(t-t0)
×ñïíéêÜ
áíáëëïßùôï
0 t1+t0 t óýóôçìá 0 t1+t0 t
(a) (â)
Sq ma 2.8 (a) H esodo kai (b) h èxodo enì sust mato qronik anallowtou.
2.3.6 Eustjeia
àna sÔsthma lègetai ìti enai FEFE eustajè (Eustjeia Fragmènh Eisìdou Frag-
mènh Exìdou) (Bounded Input Bounded Output (BIBO) stable), an kai mìnon an gia
kje fragmènh esodo h èxodì tou paramènei fragmènh. Me lla lìgia, èna sÔsthma
lègetai FEFE - eustajè , an gia kje jetikì arijmì M1 < gia ton opoo isqÔei 1
jx(t)j M1 (2.3.10)
uprqei jetikì arijmì M2 < 1 gia ton opoo isqÔei
jy(t)j M2 (2.3.11)
ParathroÔme ìti h apaths ma gia eustjeia enì sust mato tautzetai me thn
apathsh ta s mata eisìdou kai exìdou na paramènoun peperasmèna se plto (Sq -
ma 2.9).
ÖñáãìÝíç ÖñáãìÝíç
åßóïäïò ÅõóôáèÝò Ýîïäïò
x(t) M1 óýóôçìá y(t) M1
(a)
ÖñáãìÝíç
åßóïäïò Ìç Ìç öñáãìÝíç
åõóôáèÝò Ýîïäïò
x(t) M1 óýóôçìá
(â)
Sq ma 2.9 (a) SÔsthma eustajè kai (b) sÔsthma mh eustajè , h èxodo tenei sto peiro.
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 41
Pardeigma 2.3.1
To sÔsthma to opoo perigrfetai apì thn paraktw sqèsh eisìdou x(t) exìdou y(t)
d
y(t) = S fx(t)g = x(t) (2.3.12)
dt
anafèretai w diaforist . Na exetsete, an to sÔsthma enai grammikì, qronik anal-
lowto, aitiatì kai antistrèyimo.
LÔsh An to s ma x1 (t) enai h esodo tou diaforist , tìte h èxodo tou enai h
pargwgo x_ 1 (t) tou s mato eisìdou. Omow , an x2 (t) enai to s ma eisìdou, h èxodo
enai h pargwgo x _ 2 (t). An h esodo tou sust mato enai o grammikì sunduasmì
ax1 (t) + bx2 (t), tìte h èxodo enai
d
dt 1
[ax (t) + bx2(t)℄ = a dtd x1(t) + b dtd x2 (t) (2.3.13)
ParathroÔme ìti to sÔsthma enai grammikì. O diaforist enai qronik anallowto
sÔsthma, afoÔ
d d
x(t t0 ) = x(t) (2.3.14)
dt dt t=t t0
O diaforist enai aitiatì sÔsthma afoÔ h èxodì tou exarttai mìno apì thn paroÔsa
tim th eisìdou tou. O diaforist den antistrèfetai, giat dÔo s mata ta opoa
diafèroun kat ma stajer èqoun thn dia pargwgo.
2.4 SQESH METAXU EISODOU - EXODOU SUSTHMATOS
Sthn enìthta aut ja diatup¸soume ma basik sqèsh th jewra susthmtwn. Me
th bo jeia th sqèsh aut ja mporoÔme na prosdiorzoume thn èxodo y t enì ()
()
grammikoÔ sust mato , an gnwrzoume a) thn esodo x t tou sust mato kai b) thn
apìkrish tou sust mato , ìtan autì diegeretai apì th sunrthsh Æ t . ()
2.4.1 Grammik qronik anallowta sust mata suneqoÔ qrìnou. -
To olokl rwma th sunèlixh
Apì to Pardeigma 1.4.3 gnwrzoume ìti kje s ma suneqoÔ qrìnou mpore na proseg-
giste, ìpw sto Sq ma 2.9a, apì èna s ma th morf
1
X
x^(t) = x(k)Æ (t k) (2.4.1)
k= 1
^ ()
àstw h0 t h èxodo tou upì melèth grammikoÔ sust mato , ìtan h esodo enai o
()
palmì Æ t . Lìgw th grammikìthta , ìtan h esodo tou sust mato enai o palmì
42 Eisagwg sta Sust mata Keflaio 2
x(t)
x(t)
0Ä kÄ t (a)
x(0)ä(t)Ä x(0)h0(t)Ä
x(0)
Ãñáììéêü
óýóôçìá
0Ä t (â) 0 t
x(Ä)ä(t-Ä)Ä x(Ä)hÄ(t)Ä
x(Ä)
Ãñáììéêü
óýóôçìá
0Ä t (ã) 0Ä t
x(kÄ)ä(t-kÄ)Ä x(kÄ)hkÄ(t)Ä
Ãñáììéêü
x(kÄ) óýóôçìá
0 kÄ t (ä) 0 kÄ t
x(t) y(t)
Ãñáììéêü
óýóôçìá
0 t (å)
0 t
x(t) y(t)
Ãñáììéêü
óýóôçìá
0 t (óô) 0 t
Sq ma 2.10 H grafik ermhnea th apìkrish enì grammikoÔ qronik metaballìmenou
sust mato , ìpw aut ekfrzetai apì thn Exswsh (2.4.6).
x(0)Æ (t)4, h èxodo tou enai h x h0 t (0)^ ( )
(blèpe Sq ma 2.10b). Genik, an hk ^ (t)
enai h apìkrish tou grammikoÔ sust mato sthn esodo Æ t k , dhlad , ( )
h^ k (t) = S fÆ (t k)g (2.4.2)
( ) (
tìte gia esodo x k Æ t k )
, h èxodo ja enai x k ( )h^ k (t) (blèpe Sq ma
2.10d).
An efarmoste sthn esodo tou sust mato to s ma x ^(t), tìte h èxodì tou ja
enai ( )
1
X
y^(t) = S fx^(t)g = S x(k)Æ (t k) (2.4.3)
k= 1
Gia thn pleionìthta twn shmtwn kai twn susthmtwn pou sunantme sthn prxh, h
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 43
grammikìthta isqÔei kai gia peirou ìrou . àtsi, h (2.4.3) gnetai
1
X
y^(t) = x(k)S fÆ (t k)g (2.4.4)
k= 1
ètsi apì thn (2.4.4) kai me th bo jeia th (2.4.2), h èxodo tou sust mato dnetai apì
1
x(k)h^ k (t)
X
y^(t) = (2.4.5)
k= 1
^( )
Sto Sq ma 2.10e èqei sqediaste h èxodo y t tou sust mato , ìtan h esodì tou
^( )
enai to s ma x t . H èxodo tou sust mato , lìgw th idiìthta th grammikìthta ,
enai sh me to jroisma twn epimèrou exìdwn tou sust mato , pou eikonzontai sta
Sq mata 2.10b-d.
ParathroÔme ìti gia na prosdiorsoume thn èxodo enì grammikoÔ sust mato gia
opoiod pote s ma eisìdou me th bo jeia th sqèsh (2.4.5), qreiazìmaste thn h^ k (t)
gia kje tim k.
tou
^(t) ! x(t), dhlad , x(t) = lim!1 P1k= 1 x(k)-
An ! 0, Æ (t) ! Æ (t) kai x
Æ (t k). àtsi, an h esodo tou sust mato enai to s ma x(t), h èxodo tou
sust mato ja enai
1
x(k)h^ k (t)
X
y(t) = lim y^(t) = lim (2.4.6)
!1 !1 k= 1
()
Sto Sq ma 2.10st èqei sqediaste h esodo x t , pou enai to ìrio th klimakwt
^( ) ()
morf sunrthsh x t , kai h èxodo y t , h opoa enai to ìrio th y t . ^( )
()
àstw h t h èxodo tou sust mato pou pargetai apì thn esodo Æ t , ( )
dhlad ,
h t ( ) = Sf (
Æt )g (2.4.7)
An h qronikdirkeia
twn palm¸n mikranei kai tenei sto mhdèn, , to !0
k gnetai h suneq metablht k ( ! )
, to jroisma sto dexiì mèlo th (2.4.6)
grfetai w olokl rwma kai h èxodo tou sust mato dnetai apì th sqèsh
Z 1
y(t) = x( )h ( )d (2.4.8)
1
An to grammikì sÔsthma enai kai qronik anallowto, tìte h apìkrish tou sust -
() ( )
mato h t , ìtan autì diegeretai apì th Æ t , enai dia me thn h t h0 t all () ()
qronik metatopismènh kat , dhlad h t ()= ( )
h t . àtsi, h èxodo tou sust -
mato dnetai apì th sqèsh
Z 1
y(t) = x( )h(t )d (2.4.9)
1
44 Eisagwg sta Sust mata Keflaio 2
H (2.4.9) enai gnwst kai w olokl rwma th sunèlixh , kai sumbolzetai w
y(t) = h(t) ? x(t) (2.4.10)
ParathroÔme ìti se èna GQA sÔsthma arke h gn¸sh mia mìno sunrthsh , th
h(t), gia na perigrafe pl rw h sqèsh metaxÔ tou s mato eisìdou x(t) kai tou s mato
exìdou y (t) tou sust mato me th bo jeia tou oloklhr¸mato th sunèlixh . H prxh h
opoa sunduzei dÔo s mata x(t) kai h(t) gia to sqhmatismì tou s mato y (t) kaletai
sunèlixh.
()
H sunrthsh h t , h opoa enai h èxodo tou sust mato , ìtan autì diegeretai
apì th sunrthsh Æ t ()
ht Æt ( ) = S f ( )g (2.4.11)
kaletai kroustik apìkrish tou sust mato .
H (2.4.9) grfetai kai lgo diaforetik. Allzonta ti metablhtè enai polÔ
eÔkolo na doÔme ìti mporoÔme na gryoume
Z 1
y(t) = h( )x(t )d (2.4.12)
1
Pardeigma 2.4.1
Na dexete ìti èna GQA sÔsthma enai FEFE eustajè , an h kroustik apìkris tou
enai apìluta oloklhr¸simh, dhlad , an
Z 1
jh(t)j dt < +1 (2.4.13)
1
LÔsh JewroÔme ìti h esodo enì GQA sust mato enai fragmènh, dhlad ,
jx( )j M < 1 (2.4.14)
ìpou M ma jetik stajer. H èxodo tou sust mato dnetai apì to olokl rwma th
sunèlixh
Z 1
y(t) = x( )h(t )d (2.4.15)
1
apì thn opoa sunepgetai ìti
Z 1 Z 1
jy(t)j = x( )h(t )d jx( )j jh(t )j d
1 1
Z 1
M jh(t )j d (2.4.16)
1
Met thn allag metablht èqoume
Z 1
jy(t)j M jh( )j d (2.4.17)
1
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 45
kai lìgw th (2.4.13) èpetai ìti h èxodo tou sust mato enai epsh fragmènh, opìte
to sÔsthma enai FEFE eustajè . Mpore na apodeiqje ìti h sunj kh aut enai kai
anagkaa.
Pardeigma 2.4.2
Na upologiste h kroustik apìkrish tou sust mato mèsh tim
y(t) =
1 Z t
x( )d (2.4.18)
T t T
LÔsh H kroustik apìkrish tou sust mato mèsh tim , h(t), enai sh me thn èxodo
tou sust mato an autì diegerje apì th sunrthsh Æ(t), dhlad ,
h(t) =
1 Z t Æ( )d = 1 Z t du( )
T t T T t T
= 1 [u(t) u(t T
T )℄
!
= T1 t T
2 (2.4.19)
T
ìpou lbame upìyh ìti Æ( )d = du( ) kai (t) enai o orjog¸nio palmì .
2.4.2 Idiìthte th Sunèlixh
H sunèlixh èqei ti akìlouje idiìthte :
Antimetajetik idiìthta
h1 (t) ? h2 (t) = h2 (t) ? h1 (t) (2.4.20)
H apìdeixh th parapnw idiìthta aporrèei apì ton orismì th sunèlixh . Prgmati,
allzonta th metablht t èqoume=
Z 1
h1 (t) ? h2 (t) = h1 ( )h2 (t ) d
Z
1
t =' 1
= h1 (t )h2 () d
Z
1
1
= h2 ()h1 (t ) d
1
= h2 (t) ? h1 (t) (2.4.21)
H fusik shmasa th idiìthta aut fanetai sto Sq ma 2.11, apì to opoo parath-
roÔme ìti, an dÔo sust mata enai sundedemèna se seir mporoÔme na enallxoume th
seir sÔndes tou .
46 Eisagwg sta Sust mata Keflaio 2
x(t) h1(t) h2(t) y(t) x(t) h2(t) h1(t) y(t)
Sq ma 2.11 H fusik shmasa th antimetajetik idiìthta th sunèlixh .
Prosetairistik idiìthta
h2 (t) ? [h1 (t) ? x(t)℄ = [h2 (t) ? h1 (t)℄ x(t) (2.4.22)
H apìdeixh th idiìthta akolouje thn dia porea me thn prohgoÔmenh. H fusik
shmasa th prosetairistik idiìthta fanetai sto Sq ma 2.12. ParathroÔme ìti,
ìtan dÔo sust mata sundèontai se seir, mporoÔn na antikatastajoÔn me èna tr-
to sÔsthma, to opoo èqei kroustik apìkrish sh me th sunèlixh twn kroustik¸n
apokrsewn twn dÔo susthmtwn pou èqoun sundeje se seir.
x(t) h1(t) h2(t) y(t) x(t) h1(t) * h2(t) y(t)
Sq ma 2.12 H fusik shmasa th prosetairistik idiìthta th sunèlixh .
Epimeristik idiìthta
[h1 (t) + h2 (t)℄ ? x(t) = h1 (t) ? x(t) + h2 (t) ? x(t) (2.4.23)
H apìdeixh aporrèei mesa apì tou orismoÔ . H fusik shmasa th epimeristik
idiìthta fanetai sto Sq ma 2.13. Lìgw th epimeristik idiìthta , an dÔo sust -
mata èqoun sundeje parllhla, tìte mporoÔn na antikatastajoÔn apì èna trto
sÔsthma, tou opoou h kroustik apìkrish enai sh me to jroisma twn kroustik¸n
apokrse¸n tou .
h1(t)
x(t) y(t) x(t) h1(t) + h2(t) y(t)
h2(t)
Sq ma 2.13 H fusik shmasa th epimeristik idiìthta th sunèlixh .
Tautotik idiìthta
h(t) ? Æ(t) = h(t) (2.4.24)
H tautotik idiìthta enai apìrroia tou orismoÔ th kroustik apìkrish sust ma-
to .
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 47
2.4.3 Grafikì prosdiorismì th sunèlixh
Gia na upologsoume thn èxodo enì GQA sust mato me th bo jeia tou oloklhr¸-
mato th sunèlixh
Z 1
y(t) = x( )h(t )d (2.4.25)
1
gia kje qronik stigm t akoloujoÔme ta b mata:
1. B ma: Anklash. Antistrèfoume thn kroustik apìkrish, dhlad prosdior-
( )
zoume thn h .
2. B ma: Qronik Metatìpish. Metatopzoume thn h( ) kat t kai ètsi pros-
diorzoume thn h(t ).
3. B ma: Pollaplasiasmì . Prosdiorsoume to ginìmeno x( ) h(t ).
4. B ma: Olokl rwsh Embadomètrhsh. Oloklhr¸noume to ginìmeno autì ( upo-
logsoume to embadì tou s mato tou dhmiourgetai apì th grafik parstash
tou ginomènou kai tou xona tou qrìnou ). To apotèlesma ja enai so me thn
()
èxodo tou sust mato y t thn antstoiqh qronik stigm t.
5. B ma: Epanlhyh. Ta b mata aut epanalambnontai gia ti difore timè tou
qrìnou.
Efarmìzoume ta parapnw sto pardeigma pou akolouje.
Pardeigma 2.4.3
Na upologiste, h èxodo enì grammikoÔ qronik anallowtou sust mato pou èqei
kroustik apìkrish
h(t) = 1 t; 0t1
0; alli¸
(2.4.26)
an h esodo tou enai to s ma:
x(t) = 1; 0 t 2
0; alli¸ (2.4.27)
LÔsh To GQA sÔsthma kai h esodì tou perigrfontai sto Sq ma 2.14a. Sto Sq ma
2.14b dnetai h kroustik apìkrish tou sust mato .
Sto Sq ma 2.14g enai h katoptrik morf th kroustik apìkrish tou sust mato ,
h( ). Sto Sq ma 2.14d h katoptrik morf th kroustik apìkrish èqei metatopis-
te kat t < 0, h(t ). ParathroÔme ìti to ginìmeno h(t ) x( ) enai so me mhdèn
gia kje tim tou qrìnou t mikrìterh tou mhdenì . àtsi, h èxodo tou sust mato enai
y(t) = 0 gia t<0 (2.4.28)
48 Eisagwg sta Sust mata Keflaio 2
x(t) y(t)=x(t)* h(t)
1
ÃXA
óýóôçìá (a)
0 2 t 0 t
h(ô)
1 1-ô, 0≤ô<1
h(ô)=
0, áëëßùò
(â)
0 1 ô
h(-ô)
1 1+ô, -1<ô≤0
h(-ô)=
0, áëëßùò
(ã)
-1 0 ô
x(ô) 1-t+ô, t-1<ô≤t
h(t-ô) 1
h(t-ô)=
t<0 0, áëëßùò
(ä)
t-1 t 0 2 ô
x(ô)
1
1- t
t<0<1
h(t-ô) (å)
t-1 0 t 2 ô
x(ô)
1
1<t<2 h(t-ô)
( óô )
0 t-1 t 2 ô
x(ô) h(t-ô)
1
2<t<3 3- t
(æ)
0 t-1 2 t ô
x(ô) h(t-ô)
1
3<t (ç)
0 2 t-1 t ô
Sq ma 2.14 O grafikì prosdiorismì th exìdou enì GQA sust mato me th bo jeia tou
oloklhr¸mato th sunèlixh .
Sto Sq ma 2.14e h katoptrik morf th kroustik apìkrish èqei metatopiste kat
0 t < 1. Qrhsimopoi¸nta ti (2.4.26) kai (2.4.27) h èxodo tou sust mato dnetai
apì th sqèsh
Z 1 Z t 2
y(t) = x( ) h(t ) d = 1 (1 t + ) d = t t2 gia 0 t < 1 (2.4.29)
1 0
kai enai sh me to embadì tou grammoskiasmènou trapezou sto Sq ma 2.14e.
Sto Sq ma 2.14st h katoptrik morf th kroustik apìkrish èqei metatopiste kat
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 49
1 t < 2. Qrhsimopoi¸nta ti (2.4.26) kai (2.4.27) brskoume ìti h èxodo tou
sust mato enai sh me
= 21 ;
Z t
y(t) = 1 (1 t + ) d gia 1t<2 (2.4.30)
t 1
kai enai sh me to embadì tou grammoskiasmènou trig¸nou sto Sq ma 2.14st.
Sto Sq ma 2.14z h katoptrik morf th kroustik apìkrish èqei metatopiste kat
2 t < 3. H èxodo tou sust mato dnetai t¸ra apì th sqèsh
2
= 21 (3 t)2 ;
Z
y(t) = 1 (1 t + ) d gia 2t<3 (2.4.31)
t 1
h opoa enai sh me to embadì tou grammoskiasmènou trig¸nou tou Sq mato 2.14z.
Tèlo , ìpw parathroÔme sto Sq ma 2.14h, to ginìmeno h(t )x( ) enai so me mhdèn
gia kje tim tou qrìnou t megalÔterh sh apì 3. àtsi, h èxodo tou sust mato enai
y(t) = 0; gia 3t (2.4.32)
H èxodo , loipìn, tou sust mato enai:
8
>
> t t2 =2; 0t1
y(t) =
<
1=2; 1t2
>
> (3 t)2 =2; 2t3 (2.4.33)
:
0; alli¸
Sto Sq ma 2.15 èqoume sqedisei thn esodo kai thn èxodo tou GQA sust mato .
x(t) y(t)
1 1
2
ÃXA
óýóôçìá
0 1 2 3 t 0 1 2 3 t
(a) (â)
Sq ma 2.15 (a) H esodo kai (b) h èxodo tou GQA sust mato tou Paradegmato 2.4.3.
2.4.4 Grammik qronik anallowta sust mata diakritoÔ qrìnou. -
To jroisma th sunèlixh
Sto Pardeigma 1.4.5 dexame ìti kje s ma diakritoÔ qrìnou mpore na analuje se
jroisma apì olisj sei monadiaou degmato
1
X
x(n) = x(k)Æ(n k) (2.4.34)
k= 1
50 Eisagwg sta Sust mata Keflaio 2
H èxodo enì grammikoÔ sust mato dnetai apì th
( 1 ) 1
X X
y(n) = S fx(n)g = S x(k)Æ(n k) = x(k)S fÆ(n k)g (2.4.35)
k= 1 k= 1
ìpou qrhsimopoi jhke h idiìthta th grammikìthta tou sust mato . An gia kje
()
akèraio k , hk n enai h èxodo tou sust mato pou pargetai apì thn esodo Æ n k , ( )
dhlad hk n ( ) = Sf ( )g
Æ n k , tìte h oikogèneia twn shmtwn apìkrish
fhk (n)g ; 1<k<1 (2.4.36)
metafèrei ìlh thn plhrofora pou qreiazìmaste gia na kajorsoume thn èxodo pou
pargetai apì èna s ma peperasmènh èktash me th bo jeia th
1
X
y(n) = x(k)hk (n) (2.4.37)
k= 1
Diafwtzoume thn teleutaa sqèsh me to akìloujo pardeigma.
Pardeigma 2.4.4
JewroÔme to grammikì sÔsthma S to opoo trofodotetai me to s ma x(n), pou peri-
grfetai sto Sq ma 2.16.
x(n)
Óýóôçìá
x(n) S y(n)
-1
-2 0 1 2 3 n
Sq ma 2.16 Grammikì sÔsthma diakritoÔ qrìnou kai h esodo tou.
Oi apokrsei h 1 (n); h0 (n) kai h1 (n), gia eisìdou Æ(n +
tou grammikoÔ sust mato
1); Æ(n); kai Æ(n 1) antstoiqa, èqoun sqediaste sto Sq ma 2.17. P1 H apìkrish tou
grammikoÔ sust mato , ìpw aut ekfrzetai apì th sqèsh y (n) = k= 1 x(k )hk (n)
prosdiorzetai grafik sto Sq ma 2.18.
h-1(n) h0(n) h1(n)
2 1 -1
-3 -2 -1 0 1 3 n -3 -2 -1 0 2 3 n -3 -2 1 2 3 n
Sq ma 2.17 Oi apokrsei tou grammikoÔ sust mato gia eisìdou Æ(n +1), Æ(n) kai Æ(n 1).
ätan to sÔsthma enai kai qronik anallowto, tìte
hk (n) = h0 (n k) (2.4.38)
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 51
dhlad , ìpw h Æ n ( ) ()
k enai mia qronik olsjhsh th Æ n ètsi kai h apìkrish
() ()
hk n enai mia qronik olsjhsh th apìkrish h0 n , thn opoa gia eukola thn
sumbolzoume me h n , h n ( ) ( ( ) ( ) = S f ( )g)
h0 n Æ n . àtsi, h èxodo tou sust mato
dnetai apì th sqèsh
1
X 1
X
y(n) = x(k)h(n k) y(n) = h(k)x(n k) (2.4.39)
k= 1 k= 1
H (2.4.39) enai gnwst w jroisma th sunèlixh .
x(-1) ä(n+1) x(-1) h-1(n)
Ãñáììéêü
-1 óýóôçìá -1 1
-2 0 1 2 3 n -2 2 3 n
x(0) ä(n) x(0) h0(n)
Ãñáììéêü
óýóôçìá 1
-2 -1 0 1 2 3 n -2 -1 2 3 n
x(1) ä(n-1) x(1) h1(n)
Ãñáììéêü
óýóôçìá -1
-2 -1 0 1 2 3 n -2 1 2 3 n
+1
+1
x(n)= Ók=-1 x(k) ä(n-k) y(n)=Ók=-1 x(k) hk(n)
Ãñáììéêü
-1 óýóôçìá -1 1
-2 0 1 2 3 n -2 2 3 n
Sq ma 2.18 H grafik ermhnea th apìkrish enì grammikoÔ sust mato , ìpw aut
ekfrzetai apì to jroisma th sunèlixh .
H sumperifor enì grammikoÔ qronik anallowtou sust mato qarakthrzetai
()
apì to s ma h n , to opoo kaletai apìkrish monadiaou degmato kroustik apìkri-
sh. Me lla lìgia se èna GQA sÔsthma arke h gn¸sh ma kai mìno sunrthsh th
()
kroustik apìkrish h n gia na perigrafe pl rw h sqèsh eisìdou x n kai exìdou ()
()
y n tou sust mato apì to jroisma th sunèlixh .
()
H prxh h opoa sunduzei dÔo s mata x n kai h n gia to sqhmatismì tou ()
()
s mato y n , kaletai sunèlixh kai sumbolzetai w
y(n) = h(n) ? x(n) (2.4.40)
52 Eisagwg sta Sust mata Keflaio 2
H sqèsh eisìdou - exìdou aitiat¸n GQA susthmtwn diakritoÔ qrìnou enai
n
X
y(n) = x(k)h(n k) (2.4.41)
k= 1
( )=0
afoÔ h n ; n< . 0
An h esodo enai aitiatì s ma, h èxodo dnetai se kje qronik stigm n apì to
peperasmèno jroisma
n
X
y(n) = x(k)h(n k); 0n<1 (2.4.42)
k=0
Pardeigma 2.4.5
Na upologiste h èxodo enì grammikoÔ qronik anallowtou sust mato diakritoÔ
qrìnou pou èqei kroustik apìkrish
h(n) =
n; 0n6
0; alli¸
(2.4.43)
ìtan h esodì tou enai to s ma
x(n) = 1; 0 n 4
0; alli¸ (2.4.44)
LÔsh To GQA sÔsthma kai h esodo tou perigrfontai sto Sq ma 2.19a. Sto Sq ma
2.19b dnetai h kroustik apìkrish tou sust mato . Sto Sq ma 2.19g enai h katoptrik
morf th kroustik h( k). Sto Sq ma 2.19d h katoptrik
apìkrish tou sust mato
morf th kroustik apìkrish n < 0, h(n k).
èqei metatopiste kat
1) Apì to Sq ma 2.19d parathroÔme ìti gia n < 0 to ginìmeno x(k )h(n k) enai so
me mhdèn gia kje tim tou n mikrìterh tou mhdenì . àtsi, h èxodo tou sust mato
enai:
y(n) = 0 (2.4.45)
2) Apì to Sq ma 2.19e parathroÔme ìti gia 0 n 4 to ginìmeno x(k)h(n k) enai:
k) = 0; ; 0alli¸
kn
n k
x(k)h(n (2.4.46)
ètsi, h èxodo tou sust mato enai
n n
X n k=r X
y(n) = n k = r
k=0 r=0
n+1
= 11 (2.4.47)
Enìthta 2.4 Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato 53
x(n) y(n)=x(n) * y(n)
Ã×Á
óýóôçìá (a)
-2 -1 0 1 2 3 4 5 6 n n
h(k)
-8 -6 -4 -2 0 1 2 3 4 5 6 7 8 k (â)
h(-k)
(ã)
-8 -6 -4 -2 -1 0 1 2 3 4 5 6 7 8 k
h(n-k) x(k) n<0
(ä)
n-6 n 0 4 k
h(n-k) 0<n<4
(å)
n-6 0 n 4 k
h(n-k) 4<n<6
( óô )
n-6 0 4 n k
h(n-k) 6 < n < 10
(æ)
0 n-6 4 n
k
x(k) h(n-k) 10 < n
(ç)
0 4 n-6 n k
Sq ma 2.19 O grafikì prosdiorismì th exìdou enì GQA diakritoÔ sust mato me th
bo jeia tou ajrosmato th sunèlixh . Sta sq mata e, st kai z den èqei sqediasje to s ma
eisìdou. H skiasmènh perioq prosdiorzei thn perioq sthn opoa x(k) 6= 0.
3) Apì to Sq ma 2.19st parathroÔme ìti gia 4 < n 6 h èxodo tou sust mato enai:
4
X 4
X 4
y(n) = n k = n 1 k = an
k=0 k=0 1
n 4 n+1
= 1 (2.4.48)
54 Eisagwg sta Sust mata Keflaio 2
4) Apì to Sq ma 2.19z parathroÔme ìti gia 6 < n 10 h èxodo tou sust mato enai:
4 10Xn 10Xn
y(n) =
X
n k k n+6=r
= 6 r = 6 1 r = 6 10 n
k=n 6 r=0 r=0 1
16 n 7
= 1 (2.4.49)
5) Apì to Sq ma 2.19h parathroÔme ìti gia 10 < n h èxodo tou sust mato enai:
y(n) = 0 (2.4.50)
2.5 APOKRISH GRAMMIKWN SUSTHMATWN SE EKJETIKES EISODOUS
2.5.1 Suneq perptwsh
Gnwrzoume ìti h esodo x t kai hRèxodo
1 x
() y(t) enì GQA sust mato sundèontai me to
olokl rwma th sunèlixh y t 1 ( )= ( )h(t )d . An h esodo tou sust mato
enai to ekjetikì migadikì s ma
x(t) = Aest (2.5.1)
ìpou s migadikì arijmì , tìte h èxodo enai
Z 1 Z 1 Z 1
y(t) = h(t )x( )d = h( )x(t )d = h( )Aest e s d
Z
1
1 1
1
= h( )e s d Aest (2.5.2)
1
Telik,
y(t) = H (s)Aest (2.5.3)
ìpou Z 1
H (s) = h( )e s d (2.5.4)
1
()
To H s enai èna migadikì arijmì gia thn tim s tou ekjetikoÔ s mato . En
apeleujer¸soume to s kai to af soume na metablletai, tìte to H s enai ma mi- ()
gadik sunrthsh th migadik metablht s kai orzei, ìpw ja doÔme sto Keflaio
6, to Metasqhmatismì Laplace th kroustik apìkrish tou sust mato h t kai ()
kaletai sunrthsh metafor tou sust mato .
An s =
j!0 , dhlad , h esodo tou sust mato enai to s ma
x(t) = Aej!0 t (2.5.5)
Enìthta 2.5 Apìkrish Grammik¸n Susthmtwn se Ekjetikè Eisìdou 55
h èxodo tou sust mato y(t) enai
y(t) = H (!0 )Aej!0 t (2.5.6)
ìpou Z 1
H (!) = h(t)e j!t dt (2.5.7)
1
()
To H ! enai èna migadikì arijmì gia thn tim ! tou ekjetikoÔ s mato . En h !
()
metablletai, tìte to H ! enai ma migadik sunrthsh th pragmatik metablht
()
!. H sunrthsh H ! exarttai epsh kai apì thn kroustik apìkrish tou sust -
() ()
mato h t . äpw ja doÔme sto Keflaio 3, h H ! orzei to Metasqhmatismì Fourier
th kroustik apìkrish tou sust mato kai onomzetai apìkrish suqnìthta tou
sust mato . H apìkrish suqnìthta tou sust mato grfetai w migadik sunrthsh
me th morf :
H! H ! ej arg H (!)
( ) = j ( )j (2.5.8)
j ( )j
ìpou H ! onomzetai apìkrish pltou kai arg ( )
H ! apìkrish fsh tou sust -
mato . àtsi, h èxodo tou sust mato , an to s ma eisìdou enai x t Aej (!0 t+) ,
()=
enai:
y (t) = jH (!0 )jej arg H (!0 ) Aej(!0 t+)
= jH (!0 )jAej(!0 t++arg H (!0 )) (2.5.9)
ParathroÔme ìti:
1. An h esodo enì GQA sust mato enai to migadikì ekjetikì s ma me kuklik
suqnìthta !0 , h èxodì tou enai epsh migadikì ekjetikì s ma me thn dia
kuklik suqnìthta !0 .
2. To plto th exìdou enai so me to ginìmeno tou pltou th eisìdou ep to
mètro th apìkrish suqnìthta tou sust mato upologismènou sthn kuklik
j ( )j
suqnìthta !0 , dhlad , A H !0 .
3. H fsh th exìdou tou sust mato enai metatopismènh w pro th fsh th
eisìdou kai prosdiorzetai w jroisma th fsh tou s mato eisìdou kai th
fsh th apìkrish suqnìthta prosdiorismènh sthn kuklik suqnìthta !0
tou s mato eisìdou.
Me lla lìgia, èna grammikì sÔsthma metabllei to mètro kai th fsh tou s ma-
to eisìdou, all ìqi thn kuklik suqnìtht tou. H diat rhsh th kuklik suqnìth-
ta apotele ma basik idiìthta twn grammik¸n susthmtwn. Anakefalai¸nonta ,
sumperanoume ìti, an sthn esodo enì grammikoÔ sust mato efarmoste s ma to
opoo apoteletai apì jroisma shmtwn apl¸n suqnot twn, tìte kai h èxodì tou
ja apoteletai apì upèrjesh twn diwn shmtwn me diaforetikì plto kai metatopi-
smènwn kat fsh.
56 Eisagwg sta Sust mata Keflaio 2
An h esodo tou sust mato enai
x(t) = A os(!0t + ) (2.5.10)
me ìmoio trìpo brskoume ìti h èxodo tou sust mato enai
y(t) = jH (!0 )jA os(!0t + + arg H (!0 )) (2.5.11)
gia thn opoa isqÔoun anloge parathr sei , ìpw kai sthn perptwsh ìpou h esodo
tou sust mato enai to migadikì ekjetikì s ma.
Apì ta parapnw anadeiknÔetai h fusik shmasa th apìkrish suqnìthtwn kai
dikaiologetai to ìnom th w apìkrish suqnìthta tou sust mato .
Lìgw th basik idiìthta th diat rhsh th suqnìthta , pou èqoun ta GQA
sust mata, ìtan diegerontai apì migadik ekjetik s mata, ìpw ja doÔme sto epìme-
no keflaio, enai epijumhtì sthn prospjei ma na broÔme thn apìkrish enì GQA
sust mato se tuqao s ma na prosdiorsoume trìpou anptuxh enì tuqaou s ma-
to se jroisma ekjetik¸n migadik¸n shmtwn. àtsi, ekmetalleuìmenoi thn idiìthta
th grammikìthta prokÔptei ìti h èxodo tou sust mato ja enai sh me to jroisma
twn ekjetik¸n aut¸n migadik¸n shmtwn me ti die suqnìthte , twn opown to pl-
to kai h fsh èqoun uposte thn allgh pou prokale to sÔsthma se kje ekjetikì
migadikì s ma, anloga me th suqnìtht tou, kai h opoa prosdiorzetai apì to mètro
kai th fsh th apìkrish suqnìthta tou sust mato gia th suqnìthta aut . Me ton
trìpo autì ja èqoume th dunatìthta na epexergastoÔme s mata polÔplokh morf
me th bo jeia twn aploustèrwn aut¸n ekjetik¸n shmtwn.
2.5.2 Diakrit perptwsh
() ()
Gnwrzoume ìti h esodo x n kai h èxodo y n enì diakritoÔ GQA sust mato
P1
sundèontai me to jroisma th sunèlixh y n ()=
k= 1 h k x n k . An h ( ) ( )
esodo tou sust mato enai to ekjetikì migadikì s ma apl suqnìthta
x(n) = z n (2.5.12)
ìpou z = rej migadik metablht , tìte h èxodo enai
1 " 1 #
X X
y(n) = h(k) zn k = h(k) z k zn
k= 1 k= 1
telik
y(n) = H (z ) z n (2.5.13)
Enìthta 2.5 Apìkrish Grammik¸n Susthmtwn se Ekjetikè Eisìdou 57
ìpou
1
X
H (z ) = h(k) z k (2.5.14)
k= 1
ParathroÔme ìti h èxodo lambnetai apì to dio ekjetikì s ma eisìdou dia-
() ()
bajmismèno me H z . H sunrthsh H z , ìpw ja doÔme sto Keflaio 7, enai o
Metasqhmatismì z th kroustik apìkrish kai kaletai sunrthsh metafor tou
sust mato .
An jèsoume z =
ej , dhlad , h esodo tou sust mato enai to s ma
x(n) = ej n (2.5.15)
h èxodo tou sust mato y(n) dnetai apì th
y(n) = H ( )ej n (2.5.16)
ìpou
1
X
H( )= h(k) e j k (2.5.17)
k= 1
H sunrthsh H ( )
exarttai apì thn kuklik yhfiak suqnìthta kai apì th sunrth-
sh pou perigrfei thn kroustik apìkrish tou sust mato . äpw ja doÔme sto Ke-
flaio 5, h H ( )
apotele to Metasqhmatismì Fourier diakritoÔ qrìnou th kroustik
apìkrish tou sust mato kai onomzetai apìkrish suqnìthta tou sust mato .
H diat rhsh th suqnìthta apotele, epsh , basik idiìthta twn grammik¸n
susthmtwn diakritoÔ qrìnou.
Pardeigma 2.5.1
Me th bo jeia th (2.5.6), na upologiste h apìkrish suqnìthta tou kukl¸mato tou
Sq mato 2.20, tou opoou h esodo enai h tsh in (t) kai èxodo h tsh o (t).
R
i(t)
õin(t) C õo(t)
Sq ma 2.20 To kÔklwma tou
Paradegmato 2.5.1.
LÔsh Efarmìzonta to deÔtero kanìna tou Kirchhoff sto brìqo tou kukl¸mato
èqoume
Ri(t) + o (t) = in (t) (2.5.18)
Lambnonta upìyh thn (2.1.3) h (2.5.18) grfetai
d (t)
RC o + o (t) = in (t) (2.5.19)
dt
58 Eisagwg sta Sust mata Keflaio 2
An h esodo tou sust mato enai
in (t) = ej!t (2.5.20)
tìte, sÔmfwna me th (2.5.6), h èxodo tou kukl¸mato enai
o(t) = H (!)ej!t (2.5.21)
Kai epeid
do (t)
dt
= H (!)j!ej!t (2.5.22)
h (2.5.19) dnei
RCH (!)j!ej!t + H (!)ej!t = ej!t (2.5.23)
apì thn opoa upologzetai h apìkrish suqnìthta tou sust mato
H (!) =
1
1 + jRC! (2.5.24)
Sto pardeigma pou akolouje anadeiknÔetai h fusik shmasa th apìkrish suqnìth-
ta enì sust mato .
Pardeigma 2.5.2
H apìkrish suqnìthta enì sust mato enai
H (!) =
2
p
2+j 3! (2.5.25)
Na upologiste h èxodo tou sust mato , an h esodo enai to s ma
x(t) = 4ej2t (2.5.26)
kai na gnoun oi grafikè parastsei tou pragmatikoÔ mèrou tou s mato eisìdou
kai tou s mato exìdou tou sust mato se sunrthsh me to qrìno.
LÔsh Gnwrzoume ìti, an h esodo GQA sust mato enai èna migadikì ekjetikì s ma
x(t) = Aej!0 t , h èxodo tou sust mato dnetai apì th sqèsh
y(t) = jH (!0 )jAej(!0 t++arg H (!0 )) (2.5.27)
H kuklik suqnìthta tou s mato eisìdou x(t) = Aej!0 t enai !0 = 2. H apìkrish
suqnìthta tou sust mato gia !0 = 2 enai
1 (1
2p p
H (2) = = j 3)
2+j 32 4 (2.5.28)
h opoa se polik morf grfetai
1
H (2) = e j 3
2 (2.5.29)
Enìthta 2.5 Apìkrish Grammik¸n Susthmtwn se Ekjetikè Eisìdou 59
àtsi, h èxodo tou sust mato enai
1
y(t) = e j 3 4ej2t = 2e j(2t 3 )
2 (2.5.30)
Gia to pragmatikì mèro th eisìdou kai th exìdou èqoume antstoiqa
<e [x(t)℄ = 4 os(2t) (2.5.31)
<e [y(t)℄ = 2 os 2t 3 (2.5.32)
ParathroÔme ìti h èxodo èqei thn dia suqnìthta me thn esodo, plto so me to
1/2 tou pltou th eisìdou kai diafor fsh me thn esodo sh me =3, dhlad ,
parousizei qronik kajustèrhsh kat t = T (=2) = =6. Sto Sq ma 2.21 èqei
sqediaste to pragmatikì mèro tou s mato eisìdou kai exìdou tou sust mato , sto
opoo parathroÔme ti allagè pou epibllei to sÔsthma sto plto kai th fsh tou
s mato eisìdou.
Re[ x(t)] Re[ y(t)]
Ät= ð
6
4 4
2
0
ð 2ð t H(ù) 0
ð 2ð t
-2
-4 -4
(a) (â)
Sq ma 2.21 To pragmatikì mèro (a) tou s mato eisìdou kai (b) tou s mato exìdou gia to
sÔsthma tou Paradegmato 2.5.2.
SÔnoyh Kefalaou
\
Sto keflaio autì dìjhke h ermhnea th ènnoia sÔsthma" kai h majhmatik th
èkfrash. Anafèrame tou trìpou sÔndesh susthmtwn kai perigryame ti basikè
idiìthte twn susthmtwn.
Parathr same ìti gia na perigrafe pl rw h sqèsh eisìdou-exìdou enì GQA
sust mato , me th bo jeia tou oloklhr¸mato th sunèlixh ( tou ajrosmato th
sunèlixh ), arke h gn¸sh th kroustik apìkrish tou sust mato .
Edame ìti, an h esodo enì GQA sust mato enai èna s ma apl suqnìthta ,
tìte kai h antstoiqh èxodo enai s ma th dia suqnìthta , to opoo èqei uposte al-
lag , pou epibllei to sÔsthma sto plto kai th fsh tou kai h opoa prosdiorzetai
apì th sunrthsh apìkrish suqnìthta tou sust mato .
Tèlo , rjame se ma pr¸th gnwrima me thn ènnoia tou MetasqhmatismoÔ Fouri-
er, tou MetasqhmatismoÔ Laplace kai tou MetasqhmatismoÔ z , oi opooi ja ma a-
pasqol soun se epìmena keflaia.
60 Eisagwg sta Sust mata Keflaio 2
2.6 PROBLHMATA
2.1 Na breje h sqèsh th tsh eisìdou in (t) kai th tsh exìdou o (t) gia to
kÔklwma tou Sq mato 2.22.
L
õin(t) i(t)
R õo(t)
Sq ma 2.22 To kÔklwma tou Probl -
mato 2.1.
2.2 To sÔsthma to opoo perigrfetai apì thn paraktw sqèsh eisìdou x (t), exìdou
y(t)
y(t) = jx(t)j (2.6.1)
anafèretai w sÔsthma pl rou anìrjwsh . Na exetsete an to sÔsthma enai
grammikì, qronik anallowto kai aitiatì.
2.3 Na dexete ìti to sÔsthma, sto opoo h sqèsh eisìdou x(t) kai exìdou y(t) enai
y(t) = x2 (t) (2.6.2)
enai mh grammikì sÔsthma.
2.4 H èxodo enì grammikoÔ qronik anallowtou sust mato (Sq ma 2.23b) enai o
trigwnikì palmì tou Sq mato 2.23g, ìtan h esodo enai o orjog¸nio palmì
tou Sq mato 2.23a. Na breje h èxodo tou sust mato ìtan h esodo enai to
()
s ma x1 t tou Sq mato 2.24a to s ma x2 t tou Sq mato 2.24b. ()
x(t) y(t)
1 1
ÃXA
óýóôçìá
0 1 2 3 t 0 1 2 3 t
(a) (â) (ã)
Sq ma 2.23 H esodo kai h èxodo tou GQA sust mato sto Prìblhma 2.4
x1(t) x2(t)
1 2
1
0 1 2 3 4 t
-1 0 1 2 3 t
(a) (â)
Sq ma 2.24 Oi esodoi tou GQA sust mato sto Prìblhma 2.4
Enìthta 2.6 Probl mata 61
2.5 To sÔsthma to opoo perigrfetai apì thn paraktw sqèsh eisìdou x (t), exìdou
y(t) Z t
y(t) = S fx(t)g = x( )d (2.6.3)
1
anafèretai w oloklhrwt . Na exetsete an to sÔsthma enai grammikì, qronik
anallowto, aitiatì kai na prosdioriste h kroustik apìkris tou.
2.6 To sÔsthma to opoo perigrfetai apì thn paraktw sqèsh eisìdou x (t), exìdou
y(t)
y(t) = S fx(t)g = x(t) os(!0 t) (2.6.4)
anafèretai w diamorfwt . Na exetsete an to sÔsthma enai grammikì, qronik
anallowto kai aitiatì kai na prosdioriste h kroustik tou apìkrish.
2.7 H kroustik apìkrish tou kukl¸mato RC se seir sto Sq ma 2.3 enai
1
h(t) = e u(t)
t
(2.6.5)
ìpou = RC h stajer qrìnou. An = 1se , na upologiste h èxodo tou
sust mato , ìtan h esodì tou enai to s ma
x(t) = u(t) u(t 2) (2.6.6)
2.8 H kroustik apìkrish enì GQA sust mato enai
h(t) = u(t) u(t 2) (2.6.7)
Me th bo jeia tou oloklhr¸mato th sunèlixh na upologsete thn èxodo tou
sust mato , ìtan h esodo enai
x(t) = u(t 1) u(t 2) (2.6.8)
2.9 H kroustik apìkrish enì GQA sust mato enai
h(t) = u(t 1) u(t 3) (2.6.9)
Me th bo jeia tou oloklhr¸mato th sunèlixh na upologsete thn èxodo tou
sust mato , ìtan h esodì tou enai to s ma
x(t) = sin(t); 0 t 2
0; alli¸
(2.6.10)
62 Eisagwg sta Sust mata Keflaio 2
2.10 An ta stoiqea tou kukl¸mato , pou perigrfetai sto Sq ma 2.20, enai R =
103 kai C 6 na upologiste h èxodì tou, ìtan h esodo tou enai to
= 10 F
s ma
p
x(t) = 2 sin 1000t + 3 (2.6.11)
2.11 H kroustik apìkrish enì GQA sust mato enai
h(n) = (0; 9)n u(n) (2.6.12)
Me th bo jeia tou ajrosmato th sunèlixh na upologsete thn èxodo tou
sust mato , ìtan h esodo enai to diakritì s ma
x(n) = u(n) u(n 4) (2.6.13)
2.12 H kroustik apìkrish enì GQA sust mato enai
h(n) = [ 3; 2; 1℄ (2.6.14)
"
ìpou to bèlo pro ta pnw dhl¸nei to degma gia n =0
. Me th bo jeia tou
ajrosmato th sunèlixh na upologsete thn èxodo tou sust mato , ìtan h
esodo enai to s ma
xn ( )=[1 2 3 4℄
; ; ; (2.6.15)
"
2.13 Na dexete ìti to sÔsthma to opoo perigrfetai apì th diaforik exswsh
dy(t)
dt
+ 10y(t) + 5 = x(t) (2.6.16)
den enai grammikì.
Bibliografa
2.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
2.2 A. Mrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
sei Tziìla 2012.
2.3 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
2.4 A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
Hall Inc., N. Y., 1983.
2.5. R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals & Systems Continuous and
Discrete”, Prentice Hall, 1998.
ÊÅÖÁËÁÉÏ 3
ÁÍÁÐÔÕÃÌÁ - ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ FOURIER
ÁÍÁËÏÃÉÊÙÍ ÓÇÌÁÔÙÍ
Sthn prxh, pollè forè qreizetai na prosdiorsoume thn èxodo enì sust -
mato , ìtan autì diegeretai apì èna s ma. Sto prohgoÔmeno keflaio, edame ìti
h èxodo enì GQA sust mato perièqei ti die suqnìthte me to s ma eisìdou, me
diaforetikì, ìmw , mètro kai fsh. Sto keflaio autì ja eisaggoume kai ja melet -
soume majhmatik ergalea, ta opoa ma epitrèpoun na analÔoume èna sÔnjeto s ma
se s mata apl¸n suqnot twn. Ma tètoia prosèggish ma dieukolÔnei ¸ste na up-
ologsoume thn èxodo enì sust mato , to opoo diegeretai apì èna sÔnjeto s ma, me
th bo jeia twn apokrsewn tou sust mato sti epimèrou sunist¸se sugkekrimènwn
suqnot twn. Sth sunèqeia ja efarmìsoume ti mejìdou autè ¸ste na analÔsoume
èna arijmì shmtwn, ta opoa sunantme suqn sthn prxh.
Eisagwg
Sto prohgoÔmeno keflaio, edame ìti an h esodo enì GQA sust mato enai to
migadikì ekjetikì s ma to hmitonoeidè s ma, tìte h èxodì tou enai s ma th dia
suqnìthta me diaforetikì plto kai fsh. àtsi, parathr same ìti enai polÔ eÔko-
lo na prosdiorsoume thn èxodo tou GQA sust mato , ìtan to s ma pou efarmìzetai
sthn esodì tou analuje se s mata sugkekrimènh suqnìthta .
Sto keflaio autì ja anaptÔxoume kai ja melet soume trìpou anlush enì
s mato se s mata sugkekrimènh suqnìthta . àtsi, an to s ma autì diegerei èna
sÔsthma, ekmetalleuìmenoi thn idiìthta th grammikìthta , ja prosdiorzoume thn
èxodo tou sust mato w jroisma shmtwn pou èqoun ti die suqnìthte me autè
pou perièqei to s ma eisìdou, twn opown to plto kai h fsh èqei uposte allag
pou prokale to sÔsthma.
3.1 H IDEA TOU QWROU TWN SHMATWN
H gènnhsh kai oi rze th jewra aut ofelontai sto Gllo Majhmatikì Jean Bap-
tiste Joseph Fourier (1768-1830), o opoo eis gage thn anlush mia sunrthsh se
sunart sei sugkekrimènwn suqnot twn gia na melet sei fainìmena didosh th jer-
64 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
mìthta . H anlush mia sÔnjeth posìthta se aploÔstere sunist¸se , me skopì
h melèth enì probl mato na gnetai eukolìterh, enai ma genikìterh mejodolog-
a. Gia pardeigma, sth grammik lgebra, èna dinusma analÔetai se mia bsh pou
perigrfei to q¸ro. Me aform thn parat rhsh aut a doÔme giat kai ìla ta s -
[ ℄
mata pou orzontai se èna disthma a; b mporoÔn na perigrafoÔn kai w dianÔsmata.
Prgmati, o grammikì sunduasmì dÔo h perissotèrwn s matwn dnei èna nèo s ma
sto dio disthma. Epsh , o pollaplasiasmì enì s mato me mia stajer posìth-
ta dnei èna nèo s ma sto dio disthma. Exetzonta ta s mata w dianÔsmata se
èna antstoiqo q¸ro ma anogetai o drìmo na analÔsoume èna s ma se jroisma
aploustèrwn shmtwn, sto dianusmatikì q¸ro twn shmtwn sto disthma a; b . E- [ ℄
nai skìpimo ed¸ na jumhjoÔme merikè basikè ènnoie apì th grammik lgebra kai
sth sunèqeia na orsoume antstoiqe ènnoie sta s mata.
Gia pardeigma, èna dinusma sto q¸ro twn tri¸n diastsewn paristnetai me th
bo jeia twn probol¸n tou sta monadiaa dianÔsmata tou q¸rou, ta opoa apoteloÔn
th “bsh tou q¸rou. àtsi, to dinusma a mpore na ekfraste w
a = a1 e1 + a2 e2 + a3 e3 (3.1.1)
ìpou e1 , e2 kai e2 enai ta monadiaa dianÔsmata sti trei basikè dieujÔnsei tou
q¸rou (Sq ma 3.1). To dinusma a mpore isodÔnama na parastaje me thn trida
(
suntetagmènwn a1 ; a2 ; a3 )
z
e3 a
e2 y
e1
x Sq ma 3.1 Anlush dianÔsmato .
Sto q¸ro twn n diastsewn, o opoo èqei bsh e1 ; e2 ; ::: ; en , kje dinusma
paristnetai w
n
X
a= ai ei (3.1.2)
i=1
To dinusma a paristnetai, isodÔnama, apì ti suntetagmène (a1 ; a2 ; :::; an ).
H distash tou q¸rou n, enai o arijmì twn monadiawn dianusmtwn ta opoa
enai anagkaa kai ikan gia na ekfrsoun kje dinusma tou q¸rou. Ta dianÔsma-
ta a1 ; a2 ; :::; an enai anexrthta, an kanèna apì aut den mpore na ekfraste w
grammikì sunduasmì twn llwn.
Enìthta 3.1 H Idèa tou Q¸rou twn Shmtwn 65
Pn
To dÔo dianusmtwn n diastsewn a
eswterikì ginìmeno = Pni=1 aiei kai b =
b e
i=1 i i , sumbolzetai me h i
a; b kai orzetai apì th sqèsh
n
X
ha; bi = aT b = ai bi (3.1.3)
i=1
ìpou aT enai to anstrofo dinusma tou a. To eswterikì ginìmeno èqei ti akìlouje
idiìthte
Enai jetik orismèno ha; ai > 0 ìtan a 6= 0 kai h0; 0i = 0
Antimetajetik ha; bi = (hb; ai)?
Epimeristik h(a + b); i = ha; i + hb; i
Pollaplasiasmì me stajer h a; bi = ha; bi
upenjumzetai ìti me “?” dhl¸netai o suzug migadikì . DÔo dianÔsmata enai or-
h
jog¸nia an, a; b i=0.
To mètro (norm) m ko enì dianÔsmato a sumbolzetai me k a k kai enai o mh
arnhtikì arijmì pou orzetai apì th sqèsh
k a k= ha; ai 12 = Pn
i=1 ai
2 12 (3.1.4)
dhlad , to mètro enì dianÔsmato enai so me thn tetragwnik rza tou eswterikoÔ
ginomènou tou dianÔsmato me ton eautì tou.
( )
àna sÔnolo dianusmtwn a1 ; a2 ; :::; an kaletai orjokanonikì, an aut enai an
dÔo orjog¸nia kai ìla èqoun mètro so me th monda, dhlad ,
hak ; am i = Æ(k m) = 10;; kk ==6 m
m (3.1.5)
(
Gia ma orjokanonik bsh dianusmtwn oi suntetagmène a1 ; a2 ; :::; an enì di- )
anÔsmato a enai oi probolè tou a se kje èna apì ta dianÔsmata bsh kai pros-
diorzontai apì th sqèsh
ai = ha; ei i i = 1; 2; :::; n (3.1.6)
àtsi, to a grfetai
n
X
a= ha; ei i ei (3.1.7)
i=1
66 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Sth sunèqeia ja orsoume ti antstoiqe ènnoie gia ta s mata. To eswterikì
ginìmeno () ()
dÔo shmtwn x t kai y t , ta opoa orzontai sto disthma a; b , sum- [ ℄
h ( ) ( )i
bolzetai me x t ; y t kai orzetai w
Z b
hx(t); y(t)i = x(t)y? (t)dt (3.1.8)
a
()
ìpou y ? t enai to suzugè s ma tou y(t). Enai eÔkolo na doÔme ìti o orismì autì
plhro ti akìlouje idiìthte
Enai jetik orismèno hx(t); x(t)i 0 kai hx(t); x(t)i = 0 , x(t) = 0
Antimetajetik hx(t); y(t)i = hy(t); x(t)i?
Epimeristik hx(t) + y(t); z(t)i = hx(t); z(t)i + hy(t); z(t)i
Pollaplasiasmì me stajer h x(t); y (t)i = hx(t); y (t)i
DÔo s mata enai orjog¸nia an, hx(t); y (t)i = 0.
àna migadikì q¸ro efodiasmèno me eswterikì ginìmeno kaletai kai (migadikì )
Eukledio q¸ro . Se ènan Eukledio q¸ro to eswterikì ginìmeno orzei tautìqrona
kai to mètro (norm) enì s mato w thn tetragwnik rza tou eswterikoÔ ginomènou
tou s mato me ton eautì tou, dhlad ,
qR
k x(t) k2 = hx(t); x(t)i 12 = b
a jx(t)j2 dt (3.1.9)
jj ( ) k
Profan¸ , o x t 2 enai pnta èna mh arnhtikì pragmatikì arijmì .
JewroÔme èna sÔnolo orjokanonik¸n shmtwn n t ,n f ( )g = 1 2
; ; ::: P
sto disth-
[ ℄ h ()
ma a; b , gia ta opoa isqÔei k t ; m t Æ k m kai èstw ìti h seir 1
( )i = ( )
n=1 xn n (t)
()
sugklnei se èna s ma x t sto disthma a; b , dhlad , [ ℄
1
X
x(t) = xn n (t) (3.1.10)
n=1
Tìte oi suntelestè xn ikanopoioÔn th sqèsh
Z b
xn = hx(t); n (t)i = x(t); ?
n (t)dt (3.1.11)
a
H apìdeixh th (3.1.11) enai profan , arke na pollaplasisoume kai ta dÔo mèlh
th (3.1.10) diadoqik me ti n t , n ( ) =1 2
; ; ::: kai na oloklhr¸soume. ParathroÔme
ìti sto grammikì Eukledio q¸ro, pou dhmiourgoÔn ta s mata n t , n ; ; ::: () =1 2
kai ta ìri tou , h (3.1.10) enai to anptugma tou s mato x t w pro ta s mata ()
Enìthta 3.1 H Idèa tou Q¸rou twn Shmtwn 67
()
n t kai xn den enai tpota llo apì ti probolè tou x t se kje èna apì ta ()
orjokanonik s mata n t . ()
An sthn (3.1.8) jèsoume w ìria th olokl rwsh 1
, o Eukledio q¸ro pou
( )
prokÔptei enai gnwstì kai w q¸ro L2 R , dhlad ,
L2 (R) = fx(t); t 2 ( 1; +1) :k x(t) k2 < +1g
To mètro kk
2 enai gnwstì kai w L2 -mètro. Profan¸ , sto q¸ro autì an koun
ìla ta s mata peperasmènh enèrgeia .
Sti epìmene paragrfou ja asqolhjoÔme me sugkekrimèna orjokanonik s ma-
ta kai anaptÔgmata th morf (3.1.10). Ma austhr majhmatik melèth tou L2 R ( )
enai pèra apì ta plasia tou parìnto egqeiridou. O endiaferìmeno anagn¸sth
parapèmpetai sta sqetik bibla th proteinìmenh bibliografa .
3.1.1 To sÔnolo twn orjog¸niwn analogik¸n ekjetik¸n periodik¸n shmtwn
äpw èqoume de sthn Pargrafo 1.4.1, to ekjetikì s ma ej!0 t enai periodikì me
jemeli¸dh perodo T =2
=!0 . Ta ekjetik s mata, pou èqoun kuklik suqnìth-
(
ta pollaplsia th !0 ejk!0 t ; me k = 0 1 2 )
; ; ; ::: , enai epsh periodik me
jemeli¸dei periìdou Tk =2
=k!0 , antstoiqa. ParathroÔme, ìti h perodo T =
2=!0 enai koin perodo gia ìla ta s mata ejk!0t ; me k ; ; ; :::, afoÔ = 0 1 2
T = 2! = k k!
2 = k T
k
0 0
Ta ekjetik s mata, ejk!0 t ; me k = 0; 1; 2; :::, se opoiod pote peperasmèno
qronik disthma [t0 ; t0 + T ℄, dirkeia T = 2=!0 , kaloÔntai armonik susqetizìmena
ekjetik s mata, epeid oi jemeli¸dei kuklikè suqnìthtè tou enai akèraia pol-
laplsia th kuklik suqnìthta !0 kai sqhmatzoun èna orjog¸nio sÔnolo, dhlad ,
enai an dÔo orjog¸nia. Prgmati, to eswterikì ginìmeno twn ekjetik¸n s matwn
ejk!0t kai ejm!0 t , enai
Z T Z T
hejk!0t; ejm!0 t i = ejk!0 t e jm!0 t dt = ej (k m)!0 t dt
0 0
An k 6= m, tìte
hejk!0t; ejm!0 t i = j (k 1m)! ej(k m)!0 t = j (k 1m)! ej(k m) 2T T e0 = 0
T h i
0 0 0
En¸, an k = m, enai
Z T Z T
hejk!0t ; ejm!0 ti = ej (k m)!0 t dt = 1dt = T (3.1.12)
0 0
68 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Telik,
hejk!0t ; ejm!0 ti = T Æ(k m) (3.1.13)
H apìdeixh ègine gia to disthma [0; T ℄. Me ìmoio trìpo gnetai gia opoiod pote
disthma me m ko T .
3.1.2 To sÔnolo twn orjog¸niwn analogik¸n trigwnometrik¸n periodik¸n
shmtwn
äpw èqoume de sthn Pargrafo 1.4.1, ta s mata, k!0 t kai os( ) sin(
k!0 t me k ) =
0 1 2
; ; ; ::: enai periodik me jemeli¸dei periìdou Tk =2
=k!0 , antstoiqa.
=2
ParathroÔme, ìti h perodo T =!0 enai koin perodo gia ìla ta s mata.
Ta s mata, os( ) sin( ) 1
k!0 t kai 1
k!0 t < k < , se opoiod pote peperasmèno
[ + ℄
qronikì disthma t0 ; t0 =2
T dirkeia T =!0 , kaloÔntai armonik susqetizì-
mena kai sqhmatzoun èna orjog¸nio sÔnolo. Prgmati, to eswterikì ginìmeno twn
sin( ) sin( )
trigwnometrik¸n s matwn k!0 t kai m!0 t enai
Z T
hsin(k!0t); sin(m!0t)i = sin(k!0t)sin(m!0 t)dt
0Z
= 12 1 Z T os[(k + m)!0t℄dt
T
os[(k m)!0 t℄dt
2 0
0
ParathroÔme ìti, an k 6=m ta oloklhr¸mata sto deÔtero mèlo th exswsh enai
sa me mhdèn, dedomènou ìti h olokl rwsh gnetai se ma perodo. Antjeta, gia
= 6= 0
k m to pr¸to olokl rwma enai so me T , en¸ to deÔtero enai so me mhdèn.
àtsi, to eswterikì ginìmeno twn sin( )
k!0 t kai m!0 t , enai sin( )
hsin(k!0 t); sin(m!0t)i = T2 Æ(k m) (3.1.14)
Me ìmoio trìpo apodeiknÔontai kai oi sqèsei
h os(k!0 t); os(m!0t)i = T2 Æ(k m) (3.1.15)
hsin(k!0t); os(m!0 t)i = 0; gia kje k kai m (3.1.16)
H apìdeixh ègine gia to disthma [0; T ℄ kai me ìmoio trìpo gnetai gia opoiod pote
disthma me m ko T .
Enìthta 3.2 Anptugma Fourier - Seir Fourier 69
3.2 ANAPTUGMA FOURIER - SEIRA FOURIER
3.2.1 Ekjetik seir Fourier
Sthn Enìthta 3.1.1, edame ìti ta ekjetik stoiqei¸dh s mata, ejk!0 t , k ; ; ; :::, = 0 1 2
pou orzontai se opoiod pote peperasmèno qronik disthma dirkeia t0 ; t0 T, [ + ℄
ìpou !0 =2=T kai t0 pragmatikì arijmì , sqhmatzoun èna orjog¸nio sÔnolo.
()
àstw t¸ra èna s ma x t sto disthma t0 ; t0 [ + ℄
T , kai a upojèsoume ìti enai
dunatìn na anaptuqje se jroisma ekjetik¸n stoiqeiwd¸n shmtwn,
1
X
x(t) = ak ejk!0 t (3.2.1)
k= 1
H ( 3.2.1) apotele thn ekjetik seir Fourier to anptugma Fourier tou s mato
()
x t . O upologismì twn suntelest¸n ak gnetai an pollaplasisoume kai ta dÔo
mèlh th ( 3.2.1) me e jn!0 t
1
X
x(t)e jn!0 t = ak ejk!0 t e jn!0 t (3.2.2)
k= 1
kai oloklhr¸soume apì t0 èw t0 + T
Z t0 +T 1
X Z t0 +T
x(t)e jn!0 t dt = ak ejk!0t e jn!0 t dt
t0 k= 1 t0
1
X
= ak hejk!0 t ; ejn!0 t i (3.2.3)
k= 1
Lìgw th (3.1.13) ìloi oi ìroi tou ajrosmato sto deÔtero mèlo th (3.2.3) enai
soi me to mhdèn, ektì apì ton ìro k =
n, o opoo enai so me T . Apì thn (3.2.3),
èqoume loipìn ìti
Z t0 +T Z t0 +T
x(t)e jn!0 t dt = T an , an =
1 x(t)e jn!0 t dt (3.2.4)
t0 T t0
àtsi, an uprqei to anptugma Fourier tou s mato x(t) qarakthrzetai apì to zeÔgo
twn exis¸sewn
+1
X
x(t) = ak ejk!0 t ; t 2 [t0 ; t0 + T ℄ Exswsh sÔnjesh (3.2.5)
k= 1
70 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
ak =
1 Z t0 +T x(t)e jk!0 t dt Exswsh anlush (3.2.6)
T t0
Oi migadiko suntelestè ak kaloÔntai suntelestè Fourier fasmatikè grammè tou
()
x t kai orzoun to fsma tou s mato . H stajer a0 enai h suneq h stajer
sunist¸sa tou fsmato . Kje ak antistoiqe sthn probol tou s mato x t pnw ()
sthn k sth orjog¸nia sunist¸sa ejk!0 t , dhl¸nei to fasmatikì perieqìmeno tou x t ()
sth suqnìthta k!0 kai onomzetai k sth armonik sunist¸sa. Prèpei na toniste ìti to
[ + ℄
anptugma Fourier isqÔei mìno sto disthma t0 ; t0 T kai to eÔro T kajorzei th
basik suqnìthta.
En parathr soume thn ekjetik seir Fourier (3.2.5), diapist¸noume ìti sto
jroisma uprqoun kai arnhtikè timè tou k , oi opoe , bèbaia, antistoiqoÔn se arnh-
tikè suqnìthte gia ti opoe den uprqei fusik ènnoia. Oi arnhtikè suqnìthte
upeisèrqontai sto jroisma epeid anaptÔssoume to s ma, pou enai ma pragmatik
sunrthsh, me th bo jeia migadik¸n sunart sewn, ejk!0 t . Ja epanèljoume sto shmeo
autì argìtera.
3.2.2 Trigwnometrik seir Fourier
Sthn Enìthta 3.1.2, edame ìti ta periodik trigwnometrik s mata, k!0 t kai os( )
sin( ) 1
k!0 t , 1
< k < , pou orzontai se opoiod pote peperasmèno qronikì disth-
[ + ℄
ma dirkeia t0 ; t0 T , ìpou !0 =2
=T kai t0 pragmatikì arijmì , sqhmatzoun èna
() [
orjog¸nio sÔnolo. àstw t¸ra ìti to s ma x t , sto disthma t0 ; t0 T , anaptÔs- + ℄
setai se jroisma trigwnometrik¸n shmtwn pou to kajèna apì aut èqei jemeli¸dh
kuklik suqnìthta k!0 , dhlad ,
1
X 1
X
x(t) = a0 + bk os(k!0t) + k sin(k!0t) (3.2.7)
k=1 k=1
Ja upologsoume tou suntelestè th trigwnometrik seir Fourier (3.2.7), a0 ,
()
b1 ; b2 ; :::; kai 1 ; 2 ; :::, gia opoiod pote s ma x t gia to opoo uprqei èna tètoio anp-
tugma. Gia na prosdiorsoume th sqèsh me thn opoa upologzetai o a0 oloklhr¸noume
+
thn (3.2.7) apì t0 èw t0 T kai parathroÔme ìti ìla ta oloklhr¸mata sto deÔtero
mèlo , efìson h olokl rwsh gnetai se ma perodo, enai sa me to mhdèn, ektì apì
to pr¸to to opoo enai so me T . àtsi, o suntelest a0 dnetai apì thn
Z t0 +T
a0 =
1 x(t)dt (3.2.8)
T t0
kai enai so me th mèsh tim tou s mato .
Enìthta 3.2 Anptugma Fourier - Seir Fourier 71
O upologismì twn suntelest¸n, bk , gnetai an pollaplasizoume kai ta dÔo mèlh
th (3.2.7) me os( )
n!0 t kai oloklhr¸soume apì t0 èw t0 T , w ex +
Z t0 +T Z t0 +T
x(t) os(n!0t)dt = a0 os(n!0t)
t0 t0
1
X Z t0 +T
+ bk os(k!0t) os(n!0t)dt
k=1 t0
1
X Z t0 +T
+ bk sin(k!0 t) os(n!0t)dt
k=1 t0
T
= 2 bn (3.2.9)
ìpou allxame th seir olokl rwsh kai jroish . To pr¸to olokl rwma sto
deÔtero mèlo th (3.2.9) enai so me mhdèn. Epiplèon, lìgw th (3.1.16) ìla ta
oloklhr¸mata sto deÔtero jroisma th (3.2.9) enai sa me mhdèn, en¸ lìgw th
(3.1.15) apì ta oloklhr¸mata sto pr¸to jroisma, mìno to olokl rwma gia k n =
2
enai so me T= , en¸ ìla ta lla enai sa me mhdèn. àtsi, oi suntelestè bn dnontai
apì thn
Z t0 +T
bn =
2 x(t) os(n!0 t)dt; n = 1; 2; ::: (3.2.10)
T t0
Me ìmoio trìpo brsketai ìti oi suntelestè n prosdiorzontai apì thn
Z t0 +T
n=
2 x(t)sin(n!0 t)dt; n = 1; 2; ::: (3.2.11)
T t0
Apì ta parapnw prokÔptei ìti h trigwnometrik anaparstash Fourier twn peri-
odik¸n shmtwn qarakthrzetai apì ti exis¸sei sÔnjesh kai anlush
1
X 1
X
x(t) = a0 + bk os(k!0 t) + k sin(k!0 t); t 2 [t0 ; t0 + T ℄ (3.2.12)
k=1 k=1
Z t0 +T
a0
1
= T x(t)dt
t0
Z t0 +T
bk = 2 x(t) os(k!0 t)dt (3.2.13)
T t0
Z t0 +T
k = T2 x(t)sin(k!0 t)dt
t0
72 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Me th bo jeia gnwst trigwnometrik tautìthta èqoume
bk os(k!0 t) + k sin(k!0t) = Ak os(k!0t + k )
ìpou q
Ak = b2k + 2k kai k = tan 1 k
bk
àtsi, to trigwnometrikì anptugma Fourier (3.2.12) mpore na grafe kai w
1
X
x(t) = a0 + Ak os(k!0t + k ) (3.2.14)
k=1
()
Apì thn (3.2.14) parathroÔme ìti to s ma x t èqei analuje se èna jroisma sunhm-
tonwn, kje èna apì ta opoa èqei diaforetikì plto kai fsh. Epsh , a shmeiwje
ìti ed¸ den upeisèrqontai arnhtikè suqnìthte . H suneisfor kje suqnìthta sto -
jroisma prosdiorzetai apì thn tim tou suntelest Ak , tou antstoiqou sunhmtonou.
An oi suntelestè twn ìrwn me qamhlè suqnìthte enai sqetik megalÔteroi apì tou
suntelestè twn ìrwn me uyhlè suqnìthte , tìte h taqÔthta metabol tou s mato
w pro to qrìno enai mikr kai to s ma qarakthrzetai w s ma qamhl¸n suqnot twn.
Antjeta, an oi suntelestè twn ìrwn me qamhlè suqnìthte enai sqetik mikrìteroi
apì tou suntelestè twn ìrwn me uyhlè suqnìthte , tìte h taqÔthta metabol tou
s mato w pro to qrìno enai meglh kai to s ma qarakthrzetai w s ma uyhl¸n
suqnot twn. Fusik, oi ènnoie qamhl¸n uyhl¸n suqnot twn enai ènnoie sqetikè
kai exart¸ntai apì thn kje efarmog .
3.2.3 Seirè Fourier periodik¸n shmtwn
Mèqri t¸ra orsame to anptugma se seir Fourier enì s mato se èna disthma
[t0; t0 + T ℄. àxw apì to disthma autì h seir Fourier den sugklnei kat' angkh sto
s ma x(t). A doÔme ìmw ti gnetai, en to s ma enai periodikì me perodo T , dhlad ,
x(t) = x(t + T ). To anptugma
P
Fourier tou x(t) se èna qronikì disthma eÔrou T , so
me ma perodo, enai x(t) = jk!0 t me ! = 2=T . Epeid ejk!0 t = ejk!0 (t+T ) , h
k ak e 0
seir Fourier enai periodik me perodo sh me thn perodo tou s mato , ra sugklnei
sto x(t) se ìlo to disthma 1 < k < 1. To dio isqÔei kai gia thn trigwnometrik
seir Fourier. Shmei¸noume ìti, ìtan to s ma enai periodikì, h olokl rwsh sti
exis¸sei anlush mpore na gnei se èna aujareto disthma eÔrou T .
3.2.4 Ìparxh seir Fourier
To er¸thma pou t¸ra tjetai enai en kai ktw apì poie propojèsei èna s ma
mpore na anaptuqje se seir Fourier. Mèqri t¸ra apl¸ upojèsame ìti to anp-
tugma autì uprqei. ApodeiknÔetai ìti, an plhroÔntai orismène sunj ke uprqei to
anptugma enì s mato se seir Fourier.
Enìthta 3.2 Anptugma Fourier - Seir Fourier 73
Ikan Sunj kh 1. H sunrthsh (s ma) x(t) na enai apìluta oloklhr¸simh sto
disthma eÔrou T , dhlad ,
Z t0 +T
jx(t)jdt < +1 (3.2.15)
t0
H sunj kh aut exasfalzei ìti kje suntelest ak enai peperasmèno . Prgmati,
gia kje suntelest ak enai
Z t0 +T
ja j 1 jx(t)e jk!0 t jdt 1 Z t0 +T jx(t)jdt
k
T t0 T t0
kai lìgw th (3.2.15), èqoume ak < j j 1. àna s ma to opoo parabanei th sunj kh
aut enai to s ma tou Sq mato 3.2a
x(t) = ;
1 0<t1
t
x(t) x(t) x(t)
1
1
0
2
1
4
1 t
0 1 t 0 2 4 6 8 t
(a) (â) (ã)
Sq ma 3.2 S mata to opoa den ikanopoioÔn ti sunj ke Dirichlet.
Ikan Sunj kh 2. H sunrthsh (s ma), x t , se kje peperasmèno qronikì ()
disthma prèpei na enai suneq perièqei peperasmèno arijmì asuneqei¸n, kajem-
a apì ti opoe enai peperasmènou Ôyou . àna s ma sto disthma ; to opoo [0 8℄
ikanopoie thn pr¸th sunj kh, en¸ parabanei th deÔterh sunj kh enai to s ma x t ()
8
1; 0 t < 4
>
>
1=2; 4 t < 6
>
<
x(t) = 1=4; 6 t < 7
>
> >
: .. ..
. .
Sto Sq ma 3.2b blèpoume to grfhma tou s mato x t . ParathroÔme ìti to embadì ()
()
ktw apì th x t se qronikì disthma T =8
enai mikrìtero apì 8 me apotèlesma h
pr¸th sunj kh ikanopoietai.
Ikan Sunj kh 3. H sunrthsh (s ma), x t na enai fragmènh kÔmansh , ()
dhlad , na uprqei peperasmèno arijmì megstwn kai elaqstwn sto disthma. àna
74 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
s ma to opoo ikanopoie thn pr¸th sunj kh kai parabanei thn trth enai to s ma
tou Sq mato 3.2g
x(t) = sin
2 ; 0 < t 1
t
Oi sunj ke , autè enai gnwstè w sunj ke Dirichlet. Sunart sei pou plhroÔn
ti sunj ke 2 kai 3 qarakthrzontai w tmhmatik omalè . En èna s ma plhro ti
sunj ke Dirichlet, tìte uprqei o metasqhmatismì Fourier tou.
Me to pardeigma pou akolouje ja prospaj soume na anadexoume th fusik
shmasa th ekjetik seir Fourier kai na prosdiorsoume th sqèsh th me th tri-
gwnometrik seir Fourier.
Pardeigma 3.2.1
JewroÔme to periodikì s ma x(t) me jemeli¸dh kuklik suqnìthta 2, to opoo dnetai
apì thn
+5
X
x(t) = ak ejk!0 t (3.2.16)
k= 5
a0 = 1; a1 =a 1= 1 ; a2 = a 2 = 0; a3 =a 3= 1 ; a4 = a 4 = 0 kai
ìpou
2 6
a5 = a 5 = 101 .
Me antikatstash twn suntelest¸n sthn (3.2.16) èqoume
x(t) = 1 +
1 1
ej2t + e j2t + ej6t + e j6t +
1 ej10t + e j10t
2 6 10 (3.2.17)
kai me th bo jeia th tautìthta tou Euler to s ma grfetai
x(t) = 1 + os(2t) + 13 os(6t) + 15 os(10t) (3.2.18)
H (3.2.18) apotele to trigwnometrikì anptugma tou x(t). H kataskeu tou s mato
x(t), apì armonik sunhmitonoeid s mata, fanetai sto Sq ma 3.3.
Ja doÔme ìti ta sumpersmata tou Paradegmato 3.2.1 genikeÔontai gia kje pra-
()
gmatikì s ma. An to x t enai pragmatikì, tìte x? t x t epomènw ()= ()
+1
X +1
X +1
X +1
X
a?k e jk!0 t = ak ejk!0 t ) a? k ejk!0t = ak ejk!0 t
k= 1 k= 1 k= 1 k= 1
dhlad , prokÔptei ìti
a? k = ak a?k = a k (3.2.19)
An oi suntelestè Fourier ak enai pragmatiko arijmo, ja enai ak =a k.
Enìthta 3.2 Anptugma Fourier - Seir Fourier 75
x0(t)=1
1
0 t
x0(t)+x1(t)
x1(t)=cos(2ðt ) 2
1 1
0 t 0 t
-1
x0(t)+x1(t)+x2(t)
2
x2(t)= 13 cos(6ðt )
1
0 t 0 t
x0(t)+x1(t)+x2(t)+x3(t)
2
x3(t)= 15 cos(10ð t)
1
0 t 0 t
Sq ma 3.3 Kataskeu tou s mato x(t) apì armonik susqetizìmena sunhmtona.
An diaspsoume to jroisma sto deÔtero mèlo th (3.2.5), èqoume
X1 +1
X
x(t) = ak ejn!0 t + a0 + ak ejk!0t
k= 1 k=1
+1
X +1
X
= a ke jk!0 t + a0 + ak ejk!0t )
k=1 k=1
+1 h
X i
= a0 + a ke jk!0 t + ak ejk!0t
k=1
+1 h
X i
= a0 + ak ejk!0 t + a?k e jk!0 t
k=1
kai me th bo jeia th ( 3.2.19) kai epeid <e[z℄ = (z + z? )=2 èqoume
1
X h i
x(t) = a0 + 2<e ak ejk!0 t (3.2.20)
k=1
76 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
An ekfrsoume to ak se polikè suntetagmène ak = jak jejk , èqoume
+1
X h i
x(t) = a0 + 2<e jak jej(k!0t+k ) (3.2.21)
k=1
+1
X
x(t) = a0 + Ak os(k!0t + k ) (3.2.22)
k=1
ìpou Ak = 2j j
ak . Parathr ste ìti gia th dhmiourga tou sunhmitìnou suqnìthta k!0
summetèqoun h antstoiqh jetik kai arnhtik suqnìthta tou ekjetikoÔ anaptÔgmato .
Apì ti (3.2.6), (3.2.10) kai (3.2.11) me th bo jeia th tautìthta tou Euler èqoume
2 =
ak bk j k . àtsi, an antikatast soume to ak sthn (3.2.20), èqoume
1
X
x(t) = a0 + <e [(bk j k )( os(k!0t) + j sin(k!0 t))℄
k=1
1
X
= a0 + [bk os(k!0 t) + k sin(k!0t)℄ (3.2.23)
k=1
Ta trigwnometrik anaptÔgmata Fourier, pou perigrfoun oi (3.2.22) kai (3.2.23), gi-
a pragmatik s mata enai isodÔnama me thn ekjetik seir Fourier kai perièqoun
mìno jetikè suqnìthte . H anptuxh, ìmw , se migadik s mata enai pio eÔkolh apì
majhmatik poyh kai me aut n kurw ergazìmaste. Ston Pnaka 3.1 uprqoun oi
exis¸sei sÔnjesh th ekjetik kai th trigwnometrik seir Fourier enì peri-
odikoÔ s mato kai oi sqèsei metaxÔ twn antstoiqwn suntelest¸n.
PINAKAS 3.1 SEIRES FOURIER
ak = T1 tt00 +T x(t)e jk!0 t dt
P+1 R
x(t) = k= 1 ak ejk!0 t
x(t) = a0 + +k=1
P 1
Ak os(k!0 t + k ) Ak = 2jak j
P1
x(t) = a0 + k=1 [bk os(k!0 t) + k sin(k!0 t)℄ 2ak = bk j k
Pardeigma 3.2.2
Na upologiste h mèsh isqÔ kje ìrou th ekjetik seir Fourier (3.2.5).
LÔsh Apì thn (1.2.16) h mèsh isqÔ s mato enai
Px = Tlim 1 Z T
jx(t)j2 dt
!1 2T
(3.2.24)
T
An h olokl rwsh gnei se qronikì disthma [t0 ; t0 + T ℄, èqoume
Px = T1
Z
jx(t)j2 dt (3.2.25)
<T >
Enìthta 3.2 Anptugma Fourier - Seir Fourier 77
O k sto
ìro tou migadikoÔ anaptÔgmato Fourier, ejk!0 t prosfèrei sto jroisma mèsh
isqÔ
Px = T1
Z
ak ejk!0 t a?k e jk!0 t dt = jak j2 (3.2.26)
<T >
3.2.5 Tautìthta tou Parseval
H olik mèsh isqÔ enì periodikoÔ s mato enai sh me to jroisma twn isqÔwn
ìlwn twn ìrwn th ekjetik seir Fourier, dhlad
1 Z 1
X
Px = T
jx(t)j2 dt = jak j2 (3.2.27)
<T > k= 1
H sqèsh aut onomzetai tautìthta tou Parseval kai ekfrzei th dunatìthta upolo-
gismoÔ th isqÔo sto pedo qrìnou kai sto pedo suqnot twn.
Apìdeixh
H (3.2.25) me th bo jeia th exswsh anlush dnei diadoqik
1
Px = T1
Z X
x(t) a?k e jk!0 t dt
<T > k= 1
1
X 1 Z
= T
a?k x(t)e jk!0 t dt
k= 1 <T >
1
X 1
X
= a?k ak = jak j2 (3.2.28)
k= 1 k= 1
An to s ma x(t) enai pragmatikì lìgw th (3.2.19), èqoume
1
Px = T1
Z X
jx(t)j2 dt = ja0 j2 + 2 jak j2 (3.2.29)
<T > k=1
Pardeigma 3.2.3
Na upologiste h mèsh isqÔ kje ìrou th trigwnometrik seir Fourier (3.2.14).
LÔsh O k sto
ìro th os(k!0t + k ) kai prosfèrei isqÔ
(3.2.14) enai o Ak
Px = T1
Z
A2k os2 (k!0 t + k ) dt
<T >
2Z 1 + os2(k!0t + k ) dt
= ATk 2
<T >
A2k A2k
Z Z
= 2T dt +
2T os2(k!0t + k ) dt
<T > <T >
(3.2.30)
78 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
epeid to pr¸to olokl rwma enai so me T kai to deÔtero olokl rwma enai so me
mhdèn, èqoume
2
Pk = A2k (3.2.31)
H mèsh isqÔ tou s mato lìgw th (3.2.31) ja enai
1 A2k
Px = T1
Z X
jx(t)j2 dt = ja0 j2 + 2 2 (3.2.32)
<T > k=1
pou prokÔptei kai apì thn (3.2.29) gia Ak = 2jak j. An ekfrsoume to ak sthn (3.2.29)
se kartesianè suntetagmène 2ak = bk j k , èqoume
1 Z
1X 1
Px = x(t)j2 dt = ja0 j2 + 2 2
T <T >
j 4 k=1 bk + k (3.2.33)
Apì ta Paradegmata 3.2.2 kai 3.2.3 èqoume ti akìlouje parathr sei
1. Gia pragmatik s mata, epeid a?k a k èqoume ak=a k . àtsi, h isqÔ thj j=j j
2
P =j j
k armonik , k ak , sthn ekjetik seir Fourier (3.2.5) enai sh me thn
sth
isqÔ th ksth armonik , k a k 2 .
P =j j
2. Gia pragmatik s mata isqÔei ìti Ak = 2j j
ak , dhlad ta plth tou trigw-
nometrikoÔ anaptÔgmato enai sa me to diplsio twn antstoiqwn suntelest¸n
tou ekjetikoÔ anaptÔgmato gia ti jetikè timè tou k . Epomènw , h isqÔ th
ksth armonik sthn trigwnometrik seir Fourier (3.2.22), k A2k = , enai P = 2
sh me to jroisma th isqÔo th k sth armonik kai th ksth armonik sthn
ekjetik seir. H Ôparxh arnhtik suqnìthta gia pragmatik s mata enai
apìrroia th anaparstash tou s mato me th bo jeia migadik¸n shmtwn kai
èqei w apotèlesma na moirzei exsou thn isqÔ metaxÔ jetik kai arnhtik
armonik . Sthn pragmatikìthta to arnhtikì mèro tou fsmato den ma parè-
qei kami plhrofora, prgma pou epibebai¸netai apì ti exis¸sei (3.2.22) kai
(3.2.23). Fusik, autì den isqÔei gia migadik s mata.
Pardeigma 3.2.4
Na upologistoÔn oi suntelestè th ekjetik seir Fourier tou s mato x(t) =
os(!0t).
LÔsh Me th bo jeia th sqèsh tou Euler to s ma grfetai
1 1
x(t) = ej!0 t + e j!0 t
2 2 (3.2.34)
H sÔgkrish th teleutaa exswsh me thn exswsh sÔnjesh dnei
1
a1 = a 1 = ; ak = 0; k = 0; 2; 3; :::
2 (3.2.35)
Enìthta 3.2 Anptugma Fourier - Seir Fourier 79
sto Sq ma 3.4 èqoun sqediaste oi suntelestè th ekjetik seir Fourier.
1
2
1
2
an
-2 -1 0 1 2 3 n
Sq ma 3.4 Oi suntelestè Fourier tou s mato x(t) = os(!0 t).
Pardeigma 3.2.5
Na upologistoÔn oi suntelestè th ekjetik seir Fourier tou s mato x(t) =
sin(!0t).
LÔsh Me th bo jeia th sqèsh tou Euler to s ma grfetai
x(t) =
1 j!0t 1 e j!0 t
2j e 2j (3.2.36)
H sÔgkrish th teleutaa exswsh me thn exswsh sÔnjesh dnei
a1 =
1 1
2j ; a 1 = 2j ; ak = 0; k = 0; 2; 3; ::: (3.2.37)
sto Sq ma 3.5 èqei sqediaste to mètro kai h fsh twn suntelest¸n th ekjetik seir
Fourier.
1 1 an
2 2 ð arg an
2
1
-2 -1 0 1 2 3 n -2 -1 0 2 3 n
ð
2
Sq ma 3.5 To mètro kai h fsh twn suntelest¸n Fourier tou s mato x(t) = sin(!0 t).
Pardeigma 3.2.6
Na upologistoÔn oi suntelestè th ekjetik seir kai th trigwnometrik seir
Fourier gia to periodikì orjog¸nio s ma
x(t) = 1; jtj < T1
0; T1 < jtj < T0=2 (3.2.38)
LÔsh Sto Sq ma 3.6 èqei sqediaste to periodikì orjog¸nio s ma. ParathroÔme ìti
to s ma èqei jemeli¸dh perodo T0 kai kuklik suqnìthta !0 = 2=T0. Oi suntelestè
Fourier upologzontai me th bo jeia th exswsh anlush , ìpou h olokl rwsh gnetai
apì T0=2 èw T0 =2.
àtsi, gia k = 0 èqoume
a0 =
1 Z T1
dt =
2T1 (3.2.39)
T0 T1 T0
80 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
x(t)
1
T0 T0 T1 0 T1 T0 T0 2T0 t
2 2
Sq ma 3.6 To periodikì orjog¸nio s ma tou Paradegmato 3.2.6.
en¸ gia k 6= 0 èqoume
a0
1
= T0
Z T1
e jk!0 t dt
T1
= 1 e jk!0 t T1
jk!0 T0 T1
= 1 ejk!0 T1 e jk!0 T1
jk!0 T0
= 2 sin( k!0 T1)
k! T 0 0
(3.2.40)
kai epeid !0T0 = 2, èqoume
ak =
sin(k!0T1) (3.2.41)
k
Gia thn perptwsh, ìpou T0 = 4T1, to x(t) enai summetrikì orjog¸nio s ma, dedomènou
ìti isqÔei ìti !0 T1 = =2 oi suntelestè Fourier dnontai apì th sqèsh
ak
k
= sin
k 2
; k 6= 0 kai a0 =
1
2 (3.2.42)
a1 = a 1 = 1 1 1
àtsi,
; a3 = a 3 = 3 ; a5 = a 5 = 5 ; : : : kai ak = 0, an k rtio .
Sto Sq ma 3.7 èqoun sqediaste oi suntelestè Fourier gia to periodikì orjog¸nio s ma,
an to T1 enai stajerì, kai gia diaforetikè timè sthn perodo T0 .
Me th bo jeia twn (3.2.13) upologzoume tou suntelestè th trigwnometrik seir
Fourier
a0 = 2TT01 ;
bk = 2 sin(kk!0 T1 )
; gia k = 1; 3; ::: kai bk = 0; gia k = 2; 4; :::
k = 0; gia k = 1; 2; 3; ::: (3.2.43)
Enìthta 3.2 Anptugma Fourier - Seir Fourier 81
sin ( kð
2 ( Ô0 = 4Ô1
ak kð
-2 0 2 k
sin ( kð
4 ( Ô0 = 8Ô1
ak kð
-4 0 4 k
sin ( kð
8 ( Ô0 = 16Ô1
ak kð
-8 0 8 k
Sq ma 3.7 Oi suntelestè Fourier gia to periodikì orjog¸nio s ma gia stajerì T1 kai
diaforetikè timè sthn perodo T0 .
3.2.6 Fainìmeno Gibbs
A doÔme t¸ra ti sumbanei an prospaj soume na proseggsoume to periodikì s ma
()
x t apì to peperasmèno jroisma
N
X
xN (t) = ak ejk!0 t (3.2.44)
k= N
2
sto opoo qrhsimopoioÔntai h suneq kai mìno N armonikè sunist¸se tou fs-
mato . To sflma prosèggish enai eN t ()= ()
x t xN t . Sto Sq ma 3.8 èqoume ()
sqedisei thn prosèggish tou periodikoÔ orjog¸niou s mato apì thn (3.2.44) gia
difore timè th paramètrou N .
()
H prosèggish enì s mato , x t , to opoo parousizei asunèqeie peperasmènou
Ôyou , apì èna jroisma me s mata sugkekrimènwn suqnot twn th morf ejk!0 t ,
ta opoa enai suneqe sunart sei , dhmiourge sto shmeo asunèqeia tou s mato
()
x t talant¸sei . Epiplèon, sta shmea asunèqeia to grfhma tou s mato xN t ()
dièrqetai apì to mèso th asunèqeia pou parousizei to s ma x t sto shmeo autì, ()
dhlad mpore na apodeiqje
1 [x(t ) + x(t+ )℄
xN (t) =
2 (3.2.45)
ìpou x(t ) kai x(t+ ) enai ta ìria tou s mato x(t) apì ta arister kai dexi, an-
tstoiqa, sto shmeo asunèqeia .
82 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
xN(t) N=1
t
xN(t) N=3
t
xN(t) N=7
t
xN(t) N=19
t
Sq ma 3.8 H prosèggish tou periodikoÔ orjog¸niou s mato apì to merikì jroisma (3.2.44)
gia difore timè th paramètrou N.
To plto twn talant¸sewn enai anexrthto tou pl jou twn suqnot twn pou
suneisfèroun sthn prosèggish tou s mato ()
x t apì th (3.2.44). äso to N auxne-
tai tìso perissìtere suqnìthte suneisfèroun sthn prosèggish tou s mato . ätan
N !1 , tìte ìle oi armonikè suqnìthte lambnoun mèro kai to s ma x t anak- ()
ttai pl rw . Antjeta, an to N enai peperasmèno, uprqoun suqnìthte pou de
lambnontai upìyh sto jroisma. Autì èqei w apotèlesma na parathroÔntai talan-
t¸sei sto shmeo asunèqeia .
Se antjesh me to plto twn talant¸sewn pou paramènei anallowto ìso to N
auxnetai, to eÔro th perioq , sthn opoa entopzontai oi talant¸sei , tenei sto
mhdèn. To fainìmeno autì enai gnwstì w fainìmeno Gibbs.
3.3 METASQHMATISMOS FOURIER
Sthn prohgoÔmenh enìthta, edame pw èna periodikì s ma mpore na anaptuqje sto
disthma ( 1 1)
; se ma seir Fourier, dhlad , na parastaje w èna grammikì
sunduasmì aperwn armonik¸n ekjetik¸n shmtwn. Sthn enìthta aut , ja doÔme
ìti ta apotelèsmata aut mporoÔn na epektajoÔn kai se mh periodik s mata, sto
disthma ( 1 1)
; . Epishmanoume, gia llh ma for, ìti gia mh periodik s mata
to anptugma se seir Fourier enai dunatì se peperasmènou eÔrou diast mata.
Enìthta 3.3 Metasqhmatismì Fourier 83
Sto Pardeigma 3.2.6 edame ìti oi suntelestè th seir Fourier tou periodikoÔ
orjog¸niou s mato enai
ak =
2sin(k!0T1 ) (3.3.1)
k!0 T0
ìpou T0 enai h perodo kai !0 =2
=T0 h kuklik suqnìthta. Upenjumzetai ìti oi
suntelestè Fourier ak fasmatikè grammè tou s mato prosdiorzoun th suneis-
for kje suqnìthta sto anptugma Fourier tou s mato ìpw epsh ìti apoteloÔn
to fsma tou s mato , to opoo gia to lìgo autì qarakthrzetai w grammikì fsma.
H exswsh (3.3.1) mpore na apokt sei th morf
ak =
2T1 sin(k!0T1 ) = 2T1 sin(x) (3.3.2)
T0 k!0 T1 T0 x
ìpou x =
k!0 T1 .
sin(x)
H sunrthsh x apotele thn peribllousa tou fsmato , dhlad , oi fas-
matikè grammè , oi opoe brskontai sti suqnìthte k!0 , enai fragmène apì th
sunrthsh aut , ìpw fanetai sto Sq ma 3.9.
Apì to Sq ma 3.9 èqoume ti akìlouje parathr sei gia to fsma:
ak 2T1
a0 T0
ÐåñéâÜëëïõóá
2ð 2T1 sin(ùT1 )
Äù T0 T0 ùT1
0 ù
ð 2ð ð
ù T1 ù0 T0
ù T1
Sq ma 3.9 Oi suntelestè Fourier kai h peribllous tou gia to periodikì orjog¸nio kÔma.
1. H suneq sunist¸sa tou fsmato enai a0 = 2TT01 .
2. H jemeli¸dh suqnìthta enai !0 = 2T0 .
3. H apìstash metaxÔ twn fasmatik¸n gramm¸n enai ! = 2T0 .
4. O pr¸to mhdenismì th peribllousa tou fsmato gnetai ìtan
sin(k!0 T1) = 0 ) k!0T1 = ) k = 2TT0
1
(an 2TT01 den enai akèraio arijmì , tìte den uprqei fasmatik gramm sth
suqnìthta aut ).
84 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
5. H suqnìthta tou pr¸tou mhdenismoÔ enai !=
T1 .
A upojèsoume t¸ra ìti h perodo T0 auxnetai en¸ diathroÔme stajerì to T1 .
To apotèlesma th aÔxhsh aut sth morf tou orjog¸niou kÔmato fanetai sta
Sq mata 3.10a1 ; a2 ; a3 , sta opoa èqei sqediaste to periodikì kÔma gia T0 T1 , =4
T0 =8 T1 kai T0 = 16
T1 . ParathroÔme ìti krat¸nta thn tim tou T1 stajer ,
diathroÔme stajer th qronik dirkeia twn orjog¸niwn palm¸n kai auxnonta thn
tim th periìdou T0 auxnoume thn orizìntia apìstash twn orjog¸niwn palm¸n
pou apoteloÔn to orjog¸nio kÔma. Sta Sq mata 3.10 1 ; 2 ; 3 , èqoume sqedisei ta
antstoiqa fsmata, gia ta opoa parathroÔme ìti kaj¸ auxnetai h perodo tou
orjog¸niou kÔmato
ak 1
2
Ô0 = 4Ô1
2T1
Ô0 = 4Ô1
t ð
0 ð ù
T1 T1
( a1) ( â1)
ak 1
4
2T1
Ô0 = 8Ô1
t ð
0 ð ù
Ô0 = 8Ô1 T1 T1
( a2) ( â2)
ak 1
2T1 8
Ô0 = 16Ô1
Ô0 = 16Ô1
t ð
0 ð ù
T1 T1
( a3) ( â3)
Sq ma 3.10 To periodikì orjog¸nio kÔma kai oi fasmatikè grammè tou gia stajer tim
T1 kai gia diaforetikè timè periìdou T0.
1. To plto twn fasmatik¸n gramm¸n elatt¸netai.
Enìthta 3.3 Metasqhmatismì Fourier 85
2. H apìstash metaxÔ twn fasmatik¸n gramm¸n elatt¸netai
3. To pl jo twn fasmatik¸n gramm¸n, pou perièqontai ston kentrikì lobì, auxne-
tai.
4. H suqnìthta tou pr¸tou mhdenismoÔ den metablletai
5. H peribllousa tou fsmato ,
sin(x) , diathre stajer morf .
x
ätan T0 !1 , to arqikì periodikì kÔma metatrèpetai sto mh periodikì s ma
tou orjog¸niou palmoÔ. Epsh , ìtan T0 !1
, èqoume th dhmiourga enì aperou
pl jou fasmatik¸n gramm¸n me plto to opoo tenei sto mhdèn, kai h metaxÔ tou
apìstash tenei epsh sto mhdèn.
H porea thn opoa perigryame den enai katllhlh gia na petÔqoume to fsma
enì aploÔ palmoÔ. Sth sunèqeia ja doÔme pw sto stìqo autì mporoÔme na ftsoume
w ma oriak perptwsh twn ìswn dh gnwrzoume.
Gia to periodikì orjog¸nio kÔma tou Paradegmato 3.2.6 to ginìmeno th periìdou
T0 ep to suntelest ak grfetai
T0 ak =
2sin(k!0 T1) = 2sin(!T1 ) (3.3.3)
k!0 ! !=k!0
Sto Sq ma 3.11 apoddontai oi grafikè parastsei tou ginomènou T0 ak se sunrthsh
me thn kuklik suqnìthta ! gia stajer tim tou T1 kai gia diaforetikè timè tou
T0 .
ätan to T0 auxnetai, to pl jo twn suntelest¸n th seir Fourier gnetai ìlo
kai megalÔtero, en¸ ta antstoiqa ginìmena paramènoun stajer. To disthma metaxÔ
twn deigmtwn T0 ak gnetai ìlo kai mikrìtero, dhlad ta degmata plhsizoun ìlo
kai perissìtero metaxÔ tou kai mporoÔme na poÔme ìti telik, ìtan T0 !1
, to
sÔnolo twn ginomènwn T0 ak plhsizei thn peribllousa. Kai to antstoiqo fsma
gnetai suneqè . Aut enai h basik idèa tou metasqhmatismoÔ Fourier.
2 sin(!T1 ) , h opoa enai h peribllousa twn T a apotele
H suneq sunrthsh ! 0 k
to metasqhmatismì Fourier tou orjog¸niou palmoÔ. Oi suntelestè tou anaptÔgmato
Fourier tou orjog¸niou kÔmato enai isapèqonta degmata th peribllousa , dhlad ,
tou metasqhmatismoÔ Fourier. H de apìstas tou prosdiorzetai apì thn perodo
mèsw th sqèsh
! = 2T (3.3.4)
0
Sth sunèqeia ja genikeÔsoume ta parapnw sumpersmata gia kje mh periodikì
()
s ma. àstw èna mh periodikì s ma x t peperasmènh dirkeia , dhlad x t ()=0
jj
an t > T1 (Sq ma 3.12a) gia to opoo upojètoume ìti uprqei to anptugma Fourier.
86 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
T0 ak
2T1
Ô0 = 4Ô1 2ù0
Ô0 = 4Ô1
t ð
0 ð ù
T1 T1
( a1) ( â1)
T0 ak
2T1
Ô0 = 8Ô1 4ù0
t ð
0 ð ù
Ô0 = 8Ô1 T1 T1
( a2) ( â2)
T0 ak
2T1
Ô0 = 16Ô1 8ù0
Ô0 = 16Ô1
t ð
0
ð ù
T1 T1
( a3) ( â3)
Sq ma 3.11 (a) To periodikì orjog¸nio kÔma kai (b) ta ginìmena T0 ak kai h peribllous
tou , gia stajer tim T1 kai gia diaforetikè timè periìdou T0 .
()
Me th bo jeia tou s mato x t dhmiourgoÔme to periodikì s ma x t me perodo ~( )
( 2 ) ()
T0 T0 > T1 , tou opoou to x t apotele ma perodo (Sq ma 3.12b).
~( )
Epeid to s ma x t enai periodikì, mpore na anaptuqje se seir Fourier gia
ìla ta t ;2 ( 1 +1
). Oi exis¸sei sÔnjesh kai anlush tou s mato x t enai ~( )
1
X
x~(t) = ak ejk!0 t (3.3.5)
k= 1
T0
ak =
1Z 2
x~(t)e jk!0 t dt (3.3.6)
T0 2
T0
Epeid x~(t) = x(t) gia jtj T0 , oi suntelestè th seir Fourier dnontai apì thn
2
T0
ak =
1Z 2
x(t)e jk!0 t dt (3.3.7)
T0 T0
2
Enìthta 3.3 Metasqhmatismì Fourier 87
x(t)
T1 0 T1 t
(á)
x(t)
T0 T1 0 T1 T0 2T0 t
( â)
Sq ma 3.12 (a) Mh periodikì s ma x(t) kai (b) x~(t) h periodik epèktash tou x(t).
kai, afoÔ x t ( )=0
èxw apì to disthma olokl rwsh , èqoume telik gia tou sunte-
lestè th seir Fourier
ak =
1 Z 1
x(t)e jk!0 t dt (3.3.8)
T0 1
Orzoume th migadik sunrthsh X (!) th pragmatik metablht !
Z +1
X (!) = x(t)e j!t dt (3.3.9)
1
Me th bo jeia th sunrthsh aut oi suntelestè ak mporoÔn na ekfrastoÔn w
ak =
1 X (k!0 ) (3.3.10)
T0
kai apì thn (3.3.5) to s ma x~(t), dhlad , h periodik epanlhyh tou x (t), dnetai apì
thn
+1
X 1 X (k!0 )ej!0t
x~(t) = (3.3.11)
T
k= 1 0
kai epeid !0 = 2=T0
1 +1
X
x~(t) =
2 k= 1 X (k!0 )e !0
jk!0 t (3.3.12)
A jewr soume t¸ra ìti to disthma T0 auxnei suneq¸ , me T0 . H apìstash !1
loipìn metaxÔ twn diadoqik¸n armonik¸n, !0 =2
=T0 , suneq¸ elatt¸netai kai tenei
sto mhdèn !0 ( ! )
d! kai to k!0 gnetai h suneq metablht ! k!0 ! . àtsi, ( ! )
to fsma gnetai suneqè kai to jroisma sto deÔtero mèlo th (3.3.12) grfetai w
88 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
olokl rwma. Epsh , to s ma x~(t) proseggzei to s ma x(t) kai to s ma x(t) dnetai
apì thn exswsh
Z +1
x(t) =
1
2 1 X (!)e d!
j!t (3.3.13)
H exswsh (3.3.13) apotele thn exswsh sÔnjesh kai anasunjètei to s ma sto pedo
tou qrìnou. H sunrthsh
Z +1
X (! ) = x(t)e j!t dt (3.3.14)
1
apotele thn exswsh anlush kai enai o Metasqhmatismì Fourier (MF) tou s mato
()
x t . Akribèstera, metasqhmatismì Fourier enai o kanìna eÔresh th X ! apì ()
() ()
thn x t , dhlad , h (3.3.14). H sunrthsh X ! (pou enai ma apeikìnish X IR : !
Z ) lègetai metasqhmatismì Fourier. Suqn anaferìmaste se autìn kai w to fsma
tou s mato . O metasqhmatismì Fourier èqei nìhma gia ìlo to disthma ; ( 1 +1)
kai anaparist mh periodik s mata me th bo jeia ekjetik¸n shmtwn kai me ton
trìpo autì anadeiknÔetai to fasmatikì tou perieqìmeno.
Parathr sei
1. Sto anptugma se seir Fourier, h exswsh anlush analÔei èna s ma x t sto ()
[
disthma t0 ; t0 T + ℄
sto disthma ; ( 1 +1)
an to s ma enai periodikì se
èna diakritì fsma periodik¸n ekjetik¸n shmtwn me armonik susqetizìmene
suqnìthte , pollaplsie th jemeli¸dou kuklik suqnìthta !0 , sto opoo
h armonik k txh èqei “plto " ak . An, gia pardeigma, to s ma x t enai ()
s ma tsh , h monda mètrhsh twn suntelest¸n ak enai “Volts".
2. Sto metasqhmatismì Fourier, h exswsh anlush analÔei èna mh periodikì s -
()
ma x t sto disthma ; ( 1 +1)
se èna suneqè fsma periodik¸n ekjetik¸n
shmtwn. To fasmatikì perieqìmeno sto apeirostì disthma suqnot twn !; ! [ +
℄ () [
d! enai X ! . H suneisfor twn suqnot twn !; ! d! èqei “plto " X ! + ℄ ()
( 2) ()
d!= . An, gia pardeigma, to x t enai s ma tsh , tìte o X ! èqei monda ()
mètrhsh “Volts an monda suqnìthta ". O metasqhmatismì Fourier den enai,
loipìn, èna fsma pltou , all fasmatik puknìthta pltou .
An ant th ! qrhsimopoi soume th suqnìthta f = !=2, oi exis¸sei anlush
kai sÔnjesh parnoun th morf
Z +1
X (f ) = x(t)e j 2ft dt (3.3.15)
1
Z +1
x(t) = X (f )ej 2ft df (3.3.16)
1
Enìthta 3.3 Metasqhmatismì Fourier 89
()
O metasqhmatismì Fourier X ! , gia kje tim th suqnìthta ! , enai migadik
sunrthsh kai, epomènw , mpore na anaparastaje se polik morf
X (!) = jX (!)j ej arg X (!) (3.3.17)
se kartesian morf
X (!) = <e [X (!)℄ + j =m [X (!)℄ = R(!) + jI (!) (3.3.18)
Pardeigma 3.3.1
Na upologiste o metasqhmatismì Fourier tou orjog¸niou palmoÔ dirkeia T1
x(t) = 1; jtj < T1
0; alli¸ (3.3.19)
LÔsh Epeid to s ma enai mhdèn gia t < T1 kai t > T1 , o metasqhmatismì Fourier
enai
Z +T1 1 Z +T1
j j!t +T1
X (! ) = e j!t dt = j! e j!t d ( j!t) = e T1
T1 T1 !
= 2 sin(!!T1) (3.3.20)
Sto Sq ma 3.13 dnetai h grafik parstash tou s mato x(t) kai o metasqhmatismì
Fourier tou.
x(t) X(ù)
2T1
1
ð ð
T1 T1
T1 0 T1 t 0 ù
(á) ( â)
Sq ma 3.13 (a) O orjog¸nio palmì kai (b) O metasqhmatismì Fourier tou.
Parathr sei
1. O metasqhmatismì Fourier, X (!), tou orjog¸niou palmoÔ enai pragmatik
sunrthsh.
2. H tim tou metasqhmatismoÔ Fourier sto mhdèn enai
X (0) = !lim
2sin(!T1 ) (3.3.21)
!0 !
90 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
0 1,
Efarmìzoume ton kanìna L’ Hospital gia ti aprosdiìriste morfè 0 1
sÔmfwna me ton opoo
f (x) 0 1 f (x) f 0 (x)
an lim
x!1 g (x)
= 0 1 tìte lim
x!1 g (x)
= lim
x!1 g 0 (x)
(3.3.22)
kai èqoume
X (0) = lim 2T1 os(!T1) = 2T1 (3.3.23)
!!0
3. ()
Oi timè sti opoe mhdenzetai to X ! enai ta fasmatik mhdenik, dnon-
tai apì thn exswsh sin(
!T1 )=0
kai enai oi suqnìthte ! k=T1 , k = =
1 2
; ; :::.
4. To fsma tenei sto mhdèn kaj¸ pernme se polÔ uyhlè suqnìthte , dhlad ,
j j!1
! .
5. An jewr soume to olokl rwma sÔnjesh se peperasmèno disthma suqnot twn
Z +W
x^W (t) =
1 2 sin(!T1) ej!t d!
2 W !
(3.3.24)
parousizetai to fainìmeno Gibbs. Dhlad , to x^W (t) parousizei kumnsei
gÔrw apì to shmeo asunèqeia , to plto twn opown den elatt¸netai kaj¸
to W auxnei all sumpièzontai gÔrw apì thn asunèqeia kai h enèrgei tou
tenei sto mhdèn, ìtan W . !0
6. Sto ìrio W ! 1, h (3.3.24) parnei th morf
Z +1
x^W (t) =
1 2 sin(!T1) ej!t d!
2 1 !
(3.3.25)
äpw kai sto pardeigma tou periodikoÔ orjog¸niou s mato (Sq ma 3.8), enai
^( ) = ( )
x t x t , ektì apì ta shmea asunèqeia t T1 ìpou x t 12 , pou enai
= ^( ) =
()
h mèsh tim twn tim¸n tou x t sti dÔo pleurè th asunèqeia .
Pardeigma 3.3.2
Na upologiste o metasqhmatismì Fourier th sunrthsh x(t) = Æ(t)
LÔsh O metasqhmatismì Fourier th sunrthsh dèlta enai
Z 1
X (! ) = Æ(t)e j!t dt = 1 (3.3.26)
1
R1
ìpou qrhsimopoi jhke h
1 x(t) Æ(t t0 ) dt = x(t0 ) ParathroÔme ìti to fsma th
Æ(t) kalÔptei ìlo to eÔro suqnot twn.
Enìthta 3.3 Metasqhmatismì Fourier 91
3.3.1 Ìparxh tou metasqhmatismoÔ Fourier
Sthn prohgoÔmenh enìthta orsame to metasqhmatismì Fourier èqonta upojèsei ìti ta
oloklhr¸mata (3.3.13) kai ( 3.3.14) uprqoun. Ta oloklhr¸mata aut den uprqoun
pnta enai dunatì na uprqei to èna kai na mhn uprqei to llo. Oi sunj ke
Dirichlet enai ikanè sunj ke gia na uprqoun kai ta dÔo oloklhr¸mata, ta opoa
apoteloÔn to zeÔgo metasqhmatism¸n Fourier.
()
Ikan Sunj kh 1. H sunrthsh (s ma) x t na enai apìluta oloklhr¸simh,
dhlad , Z 1
jx(t)j dt < 1 (3.3.27)
1
H sunj kh aut exasfalzei thn Ôparxh tou olokl rwmato sth (3.3.14). Prgmati,
Z 1 Z 1
jX (!)j = x(t)e j!t dt jx(t)j dt < 1 (3.3.28)
1 1
Ikan Sunj kh 2. H sunrthsh (s ma) x t enai suneq ()
perièqei peperasmèno
arijmì asuneqei¸n, kje ma apo ti opoe na enai peperasmènou Ôyou .
()
Ikan Sunj kh 3. H sunrthsh (s ma) x t enai fragmènh kÔmansh .
Pardeigma 3.3.3
Na upologiste o metasqhmatismì Fourier tou aitiatoÔ ekjetikoÔ s mato
x(t) = e at u(t) a 2 R (3.3.29)
LÔsh Epeid to s ma enai so me mhdèn gia t < 0, o metasqhmatismì Fourier tou
enai
Z +1 Z +1
X (!) = e at e j!t dt = e (a+j!)t dt
0 0
= 1 e (a+j!)t 1 = 1 h lim e (a+j!)t e0
i
a + j! 0 a + j! t!1
kai epeid
lim e (a+j!)t = lim e = tlim
!1 e [ os(!t) j sin(!t)℄ = 0 ìtan a > 0
at e j!t at
t!1 t!1
o metasqhmatismì Fourier uprqei gia a > 0 kai enai
X (!) =
1
a + j!
(3.3.30)
Sto Sq ma 3.14 dnetai h grafik parstash tou s mato x(t) kai oi grafikè parast-
sei tou mètrou kai th fsh tou metasqhmatismoÔ Fourier. ParathroÔme ìti to mètro
aposbènei sti uyhlè suqnìthte , dhlad , limj!j!1 jX (!)j = 0.
92 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
x(t) X(ù) arg X(ù)
ð
1 2
á
1 1
ð
4
á2
á
-á t
ð
4
0 t -á 0 á t ð
2
(á) ( â) (ã)
Sq ma 3.14 H grafik parstash (a) tou s mato x(t) = e t u(t), > 0, (b) tou mètrou
kai (g) th fsh tou metasqhmatismoÔ Fourier tou.
Pardeigma 3.3.4
Na upologiste to s ma, tou opoou o metasqhmatismì Fourier enai parjuro suqnot -
twn me plto W , dhlad ,
X (!) = 1; j!j < W
0; alli¸ (3.3.31)
LÔsh Epeid o metasqhmatismì Fourier tou s mato enai so me mhdèn gia !< W
kai ! > W , to s ma ja enai
Z +W
x(t) =
1 1 j!t +W
2 W e d! = 2jt e W
j!t
= 2jt1 ejW t e jW t = 1 2j sin(W t)
2jt
= sin(tW t) (3.3.32)
Sto Sq ma 3.15 dnetai to grfhma tou s mato x(t) sto pedo suqnot twn kai sto
pedo tou qrìnou.
x(t)
X(ù) W
ð
1
ð ð
W W
W 0 W ù 0 t
(á) ( â)
Sq ma 3.15 Perigraf tou s mato x(t) (a) sto pedo suqnot twn kai (b) sto pedo tou
qrìnou.
Enìthta 3.3 Metasqhmatismì Fourier 93
Oi exis¸sei X ! ( )= 2 sin(!T )
1 kai x t ()= sin(W t)
! t , ti opoe sunant same sta
Paradegmata 3.3.1 kai 3.3.4, mporoÔn na ekfrastoÔn me eniao trìpo me th bo jeia
th sunrthsh sin sin(t) ; t 6= 0
sin (t) = 1; t t=0
(3.3.33)
kai enai gnwst w sunrthsh deigmatolhya , h grafik parstash th opoa
sinc(t)
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 t
Sq ma 3.16 H sunrthsh sin (x).
fanetai sto Sq ma 3.16. ParathroÔme ìti h sunrthsh dièrqetai periodik apì to
mhdèn kai ìti to Ôyo twn deutereuìntwn lob¸n mei¸netai asumptwtik sto mhdèn. H
sunrthsh aut enai idiaterh shmasa kai thn sunantme suqn tìso sthn epexer-
gasa shmtwn (anlush Fourier, melèth GQA susthmtwn) ìso kai sti epikoinwne .
Me th bo jeia th sunrthsh deigmatolhya , o metasqhmatismì Fourier tou Pa-
()
radegmato (3.3.1) kai to s ma x t tou Paradegmato (3.3.4) grfontai w
X (!) =
2sin(!T1 ) = 2T1 sin !T 1 = 2T1 sin
!T1
(3.3.34)
! !T1
x(t) =
sin(W t) = W sin W t
= W
sin
Wt
(3.3.35)
t W t
3.3.2 Idiìthte tou metasqhmatismoÔ Fourier
Sthn enìthta aut ja parousisoume ti basikè idiìthte pou èqei o metasqhmatismì
Fourier. Gia eukola, o metasqhmatismì Fourier tou s mato x t merikè forè sum- ()
bolzetai w F [ ( )℄
x t kai h sqèsh metaxÔ tou x t kai tou metasqhmatismoÔ Fourier ()
tou upodeiknÔetai w
x(t) F! X (!) (3.3.36)
(1) Suzuga
An to s ma x(t) èqei metasqhmatismì Fourier X (!), tìte
x? (t) F! X ? ( !) (3.3.37)
94 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Apìdeixh
O metasqhmatismì Fourier tou suzugoÔ s mato enai
Z 1 Z 1 ?
F [ (t)℄ =
x? x? (t)e j!t dt = x(t) ej!t dt = X ? ( !)
1 1
IsqÔei epsh
x? ( t) F! X ? (!) (3.3.38)
(2) Grammikìthta
An x1 (t) F! X1 (!) kai x2 (t) F! X2 (!), tìte
F! X (!) + X (!)
1 x1 (t) + 2 x2 (t) 1 1 2 2 (3.3.39)
H apìdeixh enai mesh sunèpeia th grammikìthta tou oloklhr¸mato .
(3) rtio-perittì mèro s mato . Pragmatikì-fantastikì mèro fsmato
()
äpw enai gnwstì, (blèpe 1.2.7) kje s ma x t mpore na ekfraste w jroisma
() ()
enì rtiou, xe t , kai enì perittoÔ s mato , xo t . An X ! enai o metasqhmatismì ()
()
Fourier tou s mato x t , tìte èqoume
xe (t) F! <e[X (!)℄ (3.3.40)
xo (t) F! j =m[X (!)℄ (3.3.41)
H apìdeixh apotele meso epakìloujo th grammikìthta kai th suzuga .
(4) Olsjhsh sto qrìno
An x(t) F! X (!), tìte gia kje pragmatikì arijmì t0 isqÔei
x(t t0 ) F! e j!t0 X (!) (3.3.42)
Apìdeixh
O metasqhmatismì Fourier tou s mato x(t t0 ) enai
Z 1
F [x(t t0)℄ = x(t t0 )e j!t dt
1
jètw =t t0 , opìte èqw
Z 1 Z 1
F [x(t t0)℄ = x( )e j!( +t0 ) d =e j!t0 x( )e j! d =e j!t0 X (!)
1 1
Enìthta 3.3 Metasqhmatismì Fourier 95
ParathroÔme ìti, an to s ma metatopiste sto pedo tou qrìnou kat t0 , to fsma
tou pollaplasizetai me to fasmatikì pargonta e j!t0 . àtsi, to fsma enì s -
mato olisjhmènou sto qrìno èqei to dio mètro me to arqikì s ma, en¸ h fsh tou
metablletai grammik. Prgmati, an xt X! X ! ej(!) , tìte
F [ ( )℄ = ( ) = j ( )j
F [x(t t0 )℄ = e j!t0 X (!) = jX (!)j ej[(!) !t0 ℄
(5) Olsjhsh suqnìthta
An x(t) F! X (!), tìte gia kje pragmatikì arijmì !0 isqÔei
ej!0 t x(t) F! X (! !0 ) (3.3.43)
Apìdeixh
Me th bo jeia tou antistrìfou metasqhmatismoÔ Fourier brskoume ìti to s ma,
( )
pou èqei metasqhmatismì Fourier X ! !0 , enai to ej!0 t x t . Prgmati, ()
1 Z 1 X (! !0 )ej!t d! !0 =! !0
= 1 Z 1 X (!0 )ej(!0 +!0)t d!0
2 1 2 Z1
ej!0 t 1 0
= 2 1 X (!0 )ej! t d!0
= e 0 t x(t)
j!
Pardeigma 3.3.5 (H bsh th diamìrfwsh ).
Na upologiste o metasqhmatismì Fourier tou s mato
z (t) = x(t) os(!0 t) (3.3.44)
LÔsh Me th bo jeia th sqèsh tou Euler to s ma z (t) grfetai
z (t) = x(t) os(!0t) = x(t) 12 [ej!0 t + e j!0 t ℄ = 12 x(t)ej!0 t + 21 x(t)e j!0 t
Me th bo jeia th idiìthta th grammikìthta kai th olsjhsh suqnìthta , o metasqh-
matismì Fourier tou z (t) enai
1
Z (!) = F x(t)e j!0 t + F 1 x(t)e j!0 t = 12 [X (! !0 ) + X (! + !0 )℄
2 2
H idiìthta aut apotele th bsh th diamìrfwsh pou qrhsimopoietai eurèw
()
sti thlepikoinwne . Kat th diamìrfwsh, èna s ma x t pou metafèrei sugkekrimè-
nh plhrofora pollaplasizetai me èna s ma apl suqnìthta !0 t , h opoa os( )
96 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
onomzetai fèrousa, me skopì thn ekpomp tou se èna mèso metdosh , p.q., zeÔgo
surmtwn, atmìsfaira, klp.
ParathroÔme ìti o pollaplasiasmì , tou s mato x t me to !0 t den al- () os( )
loi¸nei th morf tou metasqhmatismoÔ Fourier X ! (me thn propìjesh ìti to !0 ()
()
enai arket meglo kai to X ! enai mhdèn èpeita apì ma orismènh suqnìthta,
ìpw sto Sq ma 3.17a), all metafèretai sthn perioq twn suqnot twn !0 , ìpw
perigrfetai sto Sq ma 3.17b.
X(ù)
A
W 0 W ù
(á)
F x(t) cos (ù0 t)
2W 2W
A
2
ù W 0 ù0 ù W0 0 ù W
0 ù 0 ù W
0
ù
( â)
Sq ma 3.17 H diamìrfwsh pltou (a) to fsma tou s mato mhnÔmato gia èna aujareto
s ma x(t) kai (b) to fsma tou diamorfwmènou s mato .
(6) Allag klmaka sto qrìno kai th suqnìthta - Anklash
An x(t) F! X (!), tìte gia kje pragmatikì arijmì a isqÔei
x(at) F! 1 X ! kai 1 x t F! X (a!) (3.3.45)
jaj a jaj a
Apìdeixh
O metasqhmatismì Fourier tou s mato x(at) enai
Z 1
F [x(at)℄ = x(at)e j!t dt
1
jètoume =
at kai diakrnoume dÔo peript¸sei
0
an a > enai
1
F [x(at)℄ = a
Z 1
x( )e j !a d = a1 X
!
1 a
an a < 0 enai
1
F [x(at)℄ = a
Z 1
x( )e j !a d =
1 Z 1
x( )e j !a d = a1 X !a
+1 a 1
Enìthta 3.3 Metasqhmatismì Fourier 97
H idiìthta th allag klmaka parousizetai sto Sq ma 3.18. ParathroÔme
1
ìti, an a > , to s ma sumpièzetai sto pedo tou qrìnou, me sunèpeia na metablletai
pio gr gora sth monda tou qrìnou. An analogistoÔme ìti oi gr gore metabolè sto
qrìno antistoiqoÔn se suneisfor apì uyhlìtere suqnìthte sto pedo suqnot twn,
sumperanoume ìti to fsma tou diastèlletai sto pedo suqnot twn (Sq ma 3.18b).
0 1
Antjeta, an < a < , to s ma diastèlletai sto pedo tou qrìnou, me sunèpeia na
metablletai pio arg sth monda tou qrìnou kai, epeid èna s ma qamhl suqnìth-
ta metablletai me argoÔ rujmoÔ , to fsma tou sumpièzetai (Sq ma 3.18g). An
x(t) X(ù)
2T1
1
ð ð
T1 T1
T1 0 T1 t 0 ù
(á) ÓÞìá x(t) êáé ôï öÜóìá ôïõ X(ù).
x(t) X(ù)
0 t 0 ù
(â) ÓÞìá x1(t) = x(at) ìå á > 1 êáé ôï öÜóìá ôïõ X1(ù).
x(t) X(ù)
0 t 0 ù
( ã) ÓÞìá x2(t) = x(at) ìå 0 < á < 1 êáé ôï öÜóìá ôïõ X2(ù).
Sq ma 3.18 Apeikìnish th allag klmaka .
a= 1, prokÔptei h idiìthta th Anklash
x( t) F! X ( !) (3.3.46)
(7) Je¸rhma th Sunèlixh
Ma apì ti shmantikè idiìththte tou metasqhmatismoÔ Fourier, ìson afor
th qr sh tou sta grammik qronik anallowta sust mata, enai h epdras tou
sth leitourga th sunèlixh . Gnwrzoume ìti h èxodo y t enì GQA sust mato , ()
98 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
me kroustik apìkrish h (t), ìtan h esodì tou enai to s ma x(t), dnetai apì to
olokl rwma th sunèlixh
Z 1
y(t) = x( )h(t ) d (3.3.47)
1
Sthn pargrafo aut ja anadexoume th sqèsh pou sundèei tou metasqhmatismoÔ
twn antistoqwn shmtwn. O metasqhmatismì Fourier th exìdou tou sust mato
enai
Z 1
Y (!) = y(t)e j!t dt
1
Z 1 Z 1
= x( )h(t ) d e j!t dt
Z
1 1Z
1 1
= x( ) h(t )e d j!t dt
1 1
Me allag metablht = t èqoume
Z 1 Z 1
Y (!) = x( ) h( )e j! ( + ) d d
Z
1 1Z
1 1
= x( )e j! h( )e j! d d
1 1
To perieqìmeno th agkÔlh [℄ enai o metasqhmatismì Fourier th h(t) (h(t) F!
( ))
H ! , ètsi Z 1
Y (!) = H (!) x( )e j! d
1
an X (!) enai o metasqhmatismì Fourier tou s mato x(t), èqoume
y(t) = h(t) ? x(t) F! Y (!) = H (!) X (!) (3.3.48)
ParathroÔme ìti h upologistik polÔplokh sqèsh th sunèlixh metasqhmatizìme-
nh kat Fourier katal gei se èna aplì ginìmeno sunart sewn.
To je¸rhma th sunèlixh ma dnei th dunatìthta na upologsoume to fsma tou
s mato exìdou enì GQA sust mato an gnwrzoume to fsma tou s mato eisìdou
()
X ! kai to fsma th kroustik apìkrish H ! tou sust mato . ()
Anlogh sqèsh isqÔei kai gia th sunèlixh twn metasqhmatism¸n Fourier X ! kai ()
() () ()
Y ! twn shmtwn x t kai y t antstoiqa, dhlad ,
F 1
x(t) y(t) ! X (!) ? Y (!) =
1 Z 1
2 2 X ()Y (! 1
) d (3.3.49)
Enìthta 3.3 Metasqhmatismì Fourier 99
Pardeigma 3.3.6
àstw s ma x(t) me metasqhmatismì Fourier X (!). Ja upologsoume to s ma pou èqei
metasqhmatismì Fourier jX (! )j2 = X (! ) X ? (! ).
LÔsh Me th bo jeia th idiìthta th suzuga , th anklash kai tou jewr mato
th sunèlixh , brskoume ìti to s ma, Rx( ), to opoo èqei metasqhmatismì Fourier
jX (!)j2 , dnetai apì thn
Z 1 Z 1
Rx ( ) = x( ) ? x? ( ) = x(t) x? (t ) dt = x(t + )x? (t) dt
1 1
()
To s ma Rx kaletai sunrthsh autosusqètish tou x t kai parèqei èna mètro ()
()
tou susqetismoÔ twn tim¸n tou s mato x t gia dÔo qronik stigmiìtupa pou diafè-
roun kat . Th sunrthsh autosusqètish ja th sunant soume kai sthn Enìthta 3.4.
(8) Je¸rhma tou Parseval
To je¸rhma tou Parseval ekfrzei th dunatìthta eÔresh th enèrgeia enì s -
mato ete sto pedo tou qrìnou ete sto pedo suqnot twn.
Ex =
Z 1
jx(t)j2 dt = 1 Z 1 jX (!)j2 d!
1 2 1 (3.3.50)
SÔmfwna me to je¸rhma tou Parseval h olik enèrgeia enì s mato mpore na upo-
logiste ete a) upologzonta thn enèrgeia an monda qronikoÔ diast mato xt 2 j ( )j
kai oloklhr¸nonta gia ìlo to qrìno ete b) upologzonta thn enèrgeia an monda
jX (!)j2
kuklik suqnìthta 2 kai oloklhr¸nonta gia ìle ti suqnìthte .
Apìdeixh
Gia to pr¸to mèlo th isìthta èqoume
Z 1 Z 1
jx(t)j2 dt = x(t)x? (t) dt
1 1
=
Z 1
x(t)
1 Z 1
2 1 X (!)e
? j!t d! dt
1
allzonta th seir olokl rwsh èqoume
Z 1
Z 1
jx(t)j2 dt 1 Z 1
= 2 X (!)
? x(t)e j!t dt d!
1 1 1
= 21 X ? (!)X (!) d!
Z 1
1
1 Z 1
= 2 jX (!)j2 d!
1
100 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
() =1
An x t enai h tsh sta kra antstash R R , tìte h enèrgeia pou parèqetai
1 x2 t dt. Apì to dexiì mèlo
sthn antstash dnetai apì to olokl rwma x 1 E = ()
th (3.3.50) èqoume ìti h enèrgeia x isoÔtai me to 21 tou embadoÔ pou perikleei h
E
kampÔlh X ! 2 . H posìthta loipìn X f 2 ekfrzei thn katanom th enèrgeia
j ( )j j ( )j
an monda suqnìthta kai onomzetai fasmatik puknìthta enèrgeia tou s mato
() E
x t . Me lla lìgia h stoiqei¸dh enèrgeia d pou suneisfèroun oi suqnìthte pou
brskontai sthn perioq f; f (
df + ) (
!; ! d! enai + )
dE = jX (f )j2 df ) ddfE = jX (f )j2
(9) Parag¸gish
An x(t) F! X (!), kai uprqei o metasqhmatismì Fourier th parag¸gou dxdt(t) ,
tìte
dx(t) F
dt
! j!X (!) (3.3.51)
Apìdeixh
MporoÔme na apodexoume thn idiìthta an proume to metasqhmatismì Fourier th
parag¸gou, dhlad ,
dx(t) 1 dx(t)
Z
F dt
= dt
e j!t dt (3.3.52)
1
kai oloklhr¸soume kat pargonte
dx(t)
Z 1
1 de j!t
F dt
= x(t)e j!t
1 x (t) dt
dt
1
Z 1
1
= x(t)e j!t
1 + j! 1 x(t)e
j!t dt
Gia thn apìdeixh upojètoume ìti, ìtan t ! 1 to s ma x(t) ! 0, opìte enai kai
limjtj!1 x(t)ej!t = 0. àtsi èqoume
dx(t)
F dt
= j!X (!) (3.3.53)
Epanalhptik efarmog th parapnw idiìthta dnei th genik èkfrash th idiìthta
parag¸gish sto qronikì pedo
dn x(t) F
dtn
! (j!)n X (!) (3.3.54)
Enìthta 3.3 Metasqhmatismì Fourier 101
Me parìmoio trìpo skèyh èqoume gia thn parag¸gish sto pedo suqnot twn
n X (! )
( jt)n x(t) F! d d! n (3.3.55)
Pardeigma 3.3.7
Na upologiste o metasqhmatismì Fourier th sunrthsh pros mou sgn(t)
sgn(t) = 1;1; t>0
t<0 (3.3.56)
LÔsh ParathroÔme ìti
dsgn(t)
dt
= 2Æ(t)
Lambnonta to metasqhmatismì Fourier sta dÔo mèlh th parapnw exswsh èqoume
F dsgn(
dt
t)
= F [2Æ(t)℄
Enai ìmw F [Æ(t)℄ = 1 (Pardeigma 3.3.2) kai lìgw th idiìthta th parag¸gish
èqoume
j!F [sgn(t)℄ = 2 ) F [sgn(t)℄ =
2 ; ! 6= 0 (3.3.57)
j!
(10) Olokl rwsh
An x(t) F! X (!), tìte
Z t
x( ) d F!
1 X (!) + X (!)Æ(!) (3.3.58)
1 j!
Apìdeixh
An y t ( ) = Rt ()
1 x d , tìte h y (t) mpore na jewrhje w h sunèlixh th x(t) kai
th sunrthsh monadiaou b mato u(t), dhlad ,
Z 1
y(t) = x(t) ? y(t) = x( )u(t ) d
1
Me th bo jeia tou jewr mato th sunèlixh prokÔptei ìti
Y (!) = X (!)U (!) = X (!) Æ(!) +
1 = 1 X (!) + X (!)Æ(!)
j! j!
Ma epipìlaia efarmog th idiìthta th parag¸gish ja mporoÔse na ma odhg sei
se esfalmèna sumpersmata. Prgmati,
) dydt(t) = x(t) ) j!Y (!) = X (!)
Z t
y(t) = x( ) d
1
102 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
apì thn teleutaa sqèsh den sunepgetai ìti Y ! ( ) = Xj!(! all Y (!) = Xj!(! + CÆ(!)
ìpou C ma stajer, diìti isqÔei j!Æ ! j Æ! ( ) = 0 ( ) = 0.
(11) Summetre gia pragmatik s mata
() ()
àstw x t pragmatikì s ma kai X ! o metasqhmatismì Fourier, o opoo den e-
nai aparathta kai autì pragmatikì arijmì . Ja dexoume ìti isqÔoun oi summetre
X ( !) = X ? (!)
<e[X ( !)℄ = <e[X (!)℄ (3.3.59)
=m[X ( !)℄ = =m[X (!)℄
Apìdeixh
()
Epeid to s ma x t enai pragmatikì, ja enai x? (t) = x(t). àtsi, apì thn idiìthta
th summetra èqoume
x(t) = x? (t) F! X (!) = X ? ( !)
dhlad , to fsma enai suzug rtia sunrthsh th suqnìthta .
Me th bo jeia th sqèsh tou Euler èqoume
Z 1
X (!) = x(t)e j!t dt
Z 1
1
= x(t)[ os(!t) j sin(!t)℄ dt
Z
1 Z
1 1
= x(t) os(!t) dt j x(t)sin(!t) dt
1 1
kai epeid to s ma enai pragmatikì èqoume ìti
Z 1
<e[X (!)℄ = x(t) os(!t) dt kai
Z1 1
=m[X (!)℄ = x(t)sin(!t) dt (3.3.60)
1
Apì ti teleutae sqèsei sumperanoume
<e[X (!)℄ = <e[X ( !)℄ kai
jX (!)j = jX ( !)j (3.3.61)
dhlad , to pragmatikì mèro kai to mètro th enai rtie sunart sei , kai
=m[X (!)℄ = =m[X ( !)℄ kai
arg[X (!)℄ = arg[jX ( !)℄ (3.3.62)
Enìthta 3.3 Metasqhmatismì Fourier 103
dhlad , to fantastikì mèro kai h fsh apoteloÔn perittè sunart sei .
Mpore eÔkola na apodeiqje ìti oi sqèsei (3.3.59 ) apoteloÔn kai anagkae
()
sunj ke gia na enai to s ma x t pragmatikì. Prgmati, èstw
X (!) = R(!) + jI (!)
ìpou R(! ) kai I (! ) to pragmatikì tm ma kai to fantastikì tm ma th X (!). To s ma
x(t) ja enai
x(t) =
1 Z 1
2 Z 1 X (!)e d!
j!t
= 21 [R(!) + jI (!)℄[ os(!t) + j sin(!t)℄ d!
1
1
1 Z 1
= 2 [R(!) os(!t) I (!)sin(!t)℄ d!
1
1 Z 1
+j 2 [R(!)sin(!t) + I (!) os(!t)℄ d!
1
An diaspsoume to deÔtero olokl rwma se dÔo oloklhr¸mata, me ìrio olokl rwsh
apì 1èw 0 to pr¸to kai apì 0 èw 1
to deÔtero, èqoume gia to fantastikì mèro
()
tou x t
=m[x(t)℄ = 1 Z 0 [R(!)sin(!t) + I (!) os(!t)℄ d!
2 Z1
+ 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
1
0
= 1 Z 1[R( !)sin( !t) + I ( !) os( !t)℄ d!
2 0Z
+ 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
1
0
= 1 Z 1[ R(!)sin(!t) I (!) os(!t)℄ d!
2 0Z
+ 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
1
0
= 0
àtsi, to s ma x(t) enai pragmatikì kai dnetai apì th sqèsh
x(t) =
1 Z 1
2 1[R(!) os(!t) I (!)sin(!t)℄ d! (3.3.63)
104 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Apì thn trigwnometra, epsh , gnwrzoume
R(!) os(!t) I (!)sin(!t) = A(!) os[!t + (!)℄ (3.3.64)
p
ìpou A(! ) = R2 (! ) + I 2 (! ) enai to plto tou X (! ) kai (! ) = tan 1 I (!) enai
R(!)
h fsh tou, ètsi èqoume gia to pragmatikì s ma x(t)
x(t) =
1 Z 1
2Z 1 A(!) os[!t + (!)℄ d!
= 1 A(!) os[!t + (!)℄ d!
1
(3.3.65)
0
Apì thn (3.3.65 ) parathroÔme ìti me th bo jeia tou metasqhmatismoÔ Fourier X ! ( )=
( )+ ( ) ()
R ! jI ! èna pragmatikì s ma x t anaptÔssetai se èna peiro (mh arijm simo)
pl jo shmtwn apl¸n suqnot twn. Kajema apì ti aplè autè suqnìthte upei-
[ () ℄ ()
sèrqetai me plto A ! = d! kai fsh ! , ìpou ! enai h kuklik suqnìthta.
Autì enai kai o lìgo pou h metablht ! tou metasqhmatismoÔ Fourier anafèretai
kai w kuklik suqnìthta. Apìrroia autoÔ enai kai h onomasa tou metasqhmatismoÔ
Fourier w fsma suqnot twn, kat' analoga th anlush pou ufstatai to leukì fw
sti epimèrou suqnìthte pou to apartzoun.
Shmei¸noume ìti, an èna s ma enai fantastikì, dhlad x t ()= ()
jy t ìpou y t ()
enai èna s ma pragmatikì, tìte eÔkola apodeiknÔetai ìti
X ( !) = X ? (!)
<e[X ( !)℄ = <e[X (!)℄ (3.3.66)
=m[X ( !)℄ = =m[X (!)℄
(12) Duðsmì
Thn idiìthta tou duðsmoÔ tou metasqhmatismoÔ Fourier thn èqoume dh sunant sei
sta Paradegmata 3.3.1 kai 3.3.4, ìpou edame ìti o metasqhmatismì Fourier enì
orjog¸niou palmoÔ èqei th morf mia sunrthsh sin
kai o metasqhmatismì Fourier
mia sunrthsh sin èqei th morf enì orjog¸niou palmoÔ. àstw x(t) F! X (!),
( ) = X (t) èqei metasqhmatismì Fourier
tìte to s ma y t
Y (!) = 2x( !) (3.3.67)
Apìdeixh
Apì thn exswsh anlush èqoume
X (!) =
Z 1
x(t)e j!t dt 1 Z 1
= 2 2x(t)e j!t dt
1 1
Enìthta 3.3 Metasqhmatismì Fourier 105
Me antikatstash tou t me t èqoume
X (!) =
1 Z 1
2 1 2x( t)e dt
j!t
En enallxoume to t me !, èqoume
X (t) =
1 Z 1
2 1 2x( !)e d!
j!t
An sugkrnoume thn teleutaa exswsh me th exswsh sÔnjesh , èqoume
X (t) F! 2x( !)
Sto Sq ma 3.19 perigrfetai sqhmatik h idiìthta tou duðsmoÔ.
x(t) X(ù)
2T1
1
F
ð ð
T1 T1
T1 0 T1 t 0 ù
x(t)
W X(ù)
ð
1
F
ð ð
W W
0 t W 0 W ù
Sq ma 3.19 H idiìthta duðsmoÔ tou metasqhmatismoÔ Fourier.
Efarmogè
1) Sthn skhsh 3.8 èqoume dexei
x(t) = e ajtj F! X (!) = 2
2a
a + !2
àtsi, to s ma
y(t) = 2
2
t +1
(3.3.68)
èqei metasqhmatismì Fourier
Y (!) = 2e j!j (3.3.69)
Ston Pnaka 3.2 parousizontai oi idiìthte tou metasqhmatismoÔ Fourier.
106 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
PINAKAS 3.2 Idiìthte tou metasqhmatismoÔ Fourier
Idiìthta Pedo qrìnou Pedo suqnìthta
Suzuga sto qrìno x? (t) X ? ( !)
Suzuga sth suqnìthta x? ( t) X ? (!)
Anklash x( t) X ( !)
Grammikìthta ax1 (t)+bx2 (t) aX1 (!)+bX2 (!)
rtio mèro s mato xe (t)= 12 [x(t)+x? ( t)℄ <e[X (!)℄=R(!)
Pragmatikì mèro fsmato
Perittì mèro s mato xo (t)= 12 [x(t) x? ( t)℄ j =m[X (!)℄=jI (!)
Fantastikì mèro fsmato
Qronik metatìpish x(t t0 ) e j!t0 X (!)
Olsjhsh suqnìthta ej!0 t x(t) X (! !0 )
Rt
1 x( ) d
Olokl rwsh 1 X (!)+X (!)Æ(!)
j!
X (!)=X ? (!)
<e[X (!)℄=<e[X ( !)℄
Pragmatikì s ma x(t)=x? (t) =m[X (!)℄= =m[X ( !)℄
jX (!)j=jX ( !)j
arg X (!)= arg X ( !)
Sunèlixh x(t)?y(t) X (!)Y (!)
Diamìrfwsh x(t)y(t) 2 [X (!)?Y (!)℄
1
Parag¸gish sto
dx(t) j!X (!)
dt
qronikì pedo
Parag¸gish sto tx(t) j dXd!(!)
pedo suqnot twn
x(at) jaj X ( a )
Allag klmaka 1 !
Duðsmì an F [x(t)℄ = X (!) y(t)=X (t) Y (!)=2x( !)
R1
Je¸rhma Parseval Ex = 1 jx(t)j2 dt Ex = 21 R 11 jX (!)j2 d!
2) Sto Pardeigma 3.3.2 èqoume dexei ìti Æt F [ ( )℄ = 1
. Lìgw th idiìthta tou
duðsmoÔ kai, epeid h kroustik sunrthsh enai rtia, sunepgetai ìti èna suneqè
s ma èqei ma fasmatik sunist¸sa gia ! =0
, dhlad ,
1 F! 2Æ( !) = 2Æ(!) (3.3.70)
Enìthta 3.3 Metasqhmatismì Fourier 107
Pardeigma 3.3.8
Na upologiste o metasqhmatismì Fourier tou monadiaou b mato .
LÔsh H sunrthsh u(t) mpore na grafe w
1 + 1 sgn(t)
u(t) =
2 2
1 F! Æ(!), sgn(t) F! 2 kai me th bo
Apì ta zeÔgh Fourier 2 j! jeia th idiìthta
th grammikìthta sunepgetai ìti o metasqhmatismì Fourier tou monadiaou b mato
enai
u(t) F! Æ(!) +
2 (3.3.71)
j!
Pardeigma 3.3.9
Na upologiste o metasqhmatismì Fourier tou trigwnikoÔ s mato
jtj
t
T1
= 01; T1 ; jtj < T1
alli¸
(3.3.72)
LÔsh Paragwgzonta to trigwnikì s ma dÔo forè , èqoume
d2
t
dt2 T1
= T11 Æ(t + T1) T21 Æ(t) + T11 Æ(t T1 ) (3.3.73)
Sto Sq ma 3.20 eikonzontai to trigwnikì s ma, h pr¸th kai h deÔterh pargwgì tou.
Apì thn idiìthta th parag¸gish sto qronikì pedo èqoume
d t d2 t
Ë ( Ôt (
1 dt Ë Ô1( ( ( (
dt 2 Ë Ô1
1 1
Ô1 1 1
T1 Ô1 Ô1
T1 0 T1 t T1 0 t T1 T1 t
2
1 Ô1
Ô1
(á) (â) (ã)
Sq ma 3.20 H grafikè parastsei (a) tou trigwnikoÔ palmoÔ, (b) th pr¸th kai (g) th
deÔterh parag¸gou tou.
2
F d dtx(2t) = (j!)2 X (!) (3.3.74)
Gnwrzoume ìti F [Æ(t)℄ = 1 ètsi, lìgw th idiìthta th qronik metatìpish , èqoume
F [Æ(t T1 )℄ = ej!T1 (3.3.75)
108 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Lambnonta to metasqhmatismì Fourier kai sta dÔo mèlh th (3.3.73) lìgw twn (3.3.74)
kai (3.3.75) èqoume
(j!)2F Tt1 = T1 ej!T1 2 + e j!T1
1
F Tt = os(
2 !T1 ) 2
T1 (j!)2
1
2 1=2)
= T1 sin(!T(!T
1 =2)2
= T1sin 2 !T1
2 (3.3.76)
Pardeigma 3.3.10
Na upologiste o metasqhmatismì Fourier tou s mato x(t) = os(!0t).
LÔsh An ekfrsoume to sunhmtono me th bo jeia th sqèsh tou Euler, w jroisma
migadik¸n ekjetik¸n ìrwn èqoume
1 1
x(t) = ej!0 t + e j!0 t
2 2 (3.3.77)
Gnwrzoume ìti 1 F! 2Æ(!). àtsi, efarmìzonta thn idiìthta th olsjhsh suqnìth-
ta brskoume to metasqhmatismì Fourier tou s mato .
F [x(t)℄ = F [ os(!0 t)℄ = [Æ(! !0 ) + Æ(! + !0 )℄ (3.3.78)
Pardeigma 3.3.11
Na upologiste o metasqhmatismì Fourier tou s mato x(t) = os(!0t)u(t).
LÔsh Me th bo jeia th sqèsh tou Euler to s ma grfetai
1 1
x(t) = ej!0 t u(t) + e j!0 t u(t)
2 2 (3.3.79)
Lìgw th idiìthta th olsjhsh th suqnìthta kai epeid F [u(t)℄ = j!1 + Æ(!) ,
èqoume
F [x(t)℄ = 21 j (! 1 ! ) + Æ(! !0) + 12 j (! +1 ! ) + Æ(! + !0 )
0 0
= 2 [Æ(! !0 ) + Æ(! + !0 )℄ + 2
j!
!0 !2
(3.3.80)
Ston Pnaka 3.3 uprqoun basik s mata kai oi antstoiqoi metasqhmatismo
Fourier tou .
Enìthta 3.3 Metasqhmatismì Fourier 109
PINAKAS 3.3 Metasqhmatismo Fourier merik¸n basik¸n sunart sewn
A/A Pedo qrìnou Pedo suqnìthta
1 Æ(t) 1
2 1 2Æ(!) Æ(f )
u(t) 1 + Æ(!) 1 + 1 Æ(f )
3 j! j 2f 2
4 Æ(t t0 ) e j!t0
5 ej!0 t 2Æ(! !0 )
6 os(!0 t) [Æ(! !0 ) + Æ(! + !0 )℄
7 sin(!0 t) [Æ (! ! ) Æ (! + ! )℄
j P 0 0
P1 1
8 k = 1 ak e
jk!0 t 2 k= 1 ak Æ(! k!0 )
P1 2 P1 Æ ! 2k
9 k= 1 Æ (t nT ) T k= 1 T
10 2T1 = 10;; jjttjj<T
t
>T1
1
2T1 sin !T 1 = 2 sin(!!T1 )
11 W sin W t = sin(W t) X (! ) = 1; j!j<W
t 0; j!j>W
8
< 1 jtj ; jtjT1
12 t
T1 =: T1 T1 sin 2 !T
2
1
0; jtj>T1
sin(W t)2 1 2j!Wj ; j!j2W
13 W
Wt X (! ) = 0; j!j>2W
e at u(t);
<e[a℄ > 0 1
14 a+j!
te at u(t);
<e[a℄ > 0 1
15 (a+j!)2
1
(n 1)! e u(t); <e[a℄ > 0
tn 1 at
16 (a+j!)n
17 os(!0t)u(t) [Æ (! ! ) + Æ (! + ! )℄ + j!
2 0 0 !02 !2
18 sin(!0t)u(t) 2j [Æ(! !0 ) Æ(! + !0 )℄ + !02 !2
!0
e ajtj ; <e[a℄ > 0 2a
19 a2 +!2
1
20 t jsgn 2! jsgn(f )
21 sgn(t) = 1; t>0 1 2
1; t<0 jf j!
3.3.3 Metasqhmatismì Fourier periodik¸n shmtwn
()
H qr sh th sunrthsh Æ t , ma epitrèpei na prosdiorsoume to metasqhmatismì
Fourier kai gia periodik s mata.
110 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
O metasqhmatismì Fourier th sunrthsh dèlta enai
Æ(t) F! 1 (3.3.81)
Epsh ,
1 F! 2Æ( !) = 2Æ(!) (3.3.82)
Apì thn (3.3.81) kai (3.3.82) lìgw th idiìthta olsjhsh èqoume antstoiqa
Æ(t t0 ) F! e j!t0 (3.3.83)
ej!0 t F! 2Æ(! !0 ) (3.3.84)
äpw gnwrzoume, èna periodikì s ma anaptÔssetai se seir Fourier
1
X
x(t) = ak ejk!0 t
k= 1
Me th bo jeia th (3.3.84) kai lìgw th idiìthta th grammikìthta mporoÔme na
ekfrsoume to metasqhmatismì Fourier twn periodik¸n shmtwn w ex
1
X 1
X
x(t) = ak ejk!0 t F! X (!) = 2ak Æ(! k!0 ) (3.3.85)
k= 1 k= 1
An efarmìsoume ta parapnw sta Paradegmata 3.2.4 kai 3.2.6 èqoume ta antstoiqa
fsmata sta Sq mata 3.21 kai 3.22.
ParathroÔme ìti o metasqhmatismì Fourier epektenetai kai sta periodik s -
()
mata. àtsi, to fsma X ! enì periodikoÔ s mato me periìdo T0 apoteletai apì
sunart sei dèlta omoiìmorfa katanemhmène se apìstash !0 =T0 , me Ôyo =2 2
forè ton antstoiqo suntelest th seir Fourier.
X(ù)
ð ð X(ù)=ð[ä(ù−ù0)+ä(ù+ù0)]
ù0 0 ù0 ù
Sq ma 3.21 O metasqhmatismì Fourier gia to s ma x(t) = os(!0 t).
3.4 Enèrgeia kai IsqÔ
Oi ènnoie th enèrgeia kai th isqÔo enì s mato parousisthkan sto pr¸to ke-
flaio. Sthn enìthta aut ja epektenoume ti ènnoie autè tìso sto pedo tou
qrìnou, ìso kai sto pedo suqnot twn.
Enìthta 3.3 Enèrgeia kai IsqÔ 111
∞
X(ù) X(ù)= Ó 2ða ä(ù−kù )
k 0
ð k=−∞
2 2
ù0 0 ù0 ù
Sq ma 3.22 O metasqhmatismì Fourier gia to periodikì orjog¸nio kÔma.
3.4.1 Energeiak s mata
Gia èna energeiakì s ma x (t), ìpw èqoume dei kai sto Pardeigma 3.3.6, orzetai h
sunrthsh autosusqètish Rx ( ) w
Z 1 Z 1
Rx( ) = x( ) ? x? ( ) = x(t)x? (t ) dt = x(t + )x? (t) dt (3.4.1)
1 1
Sth sunèqeia ja doÔme merikè basikè idiìthte th sunrthsh autosusqètish .
a) H enèrgeia tou s mato enai sh me thn tim th sunrthsh autosusqètish tou
()
x t , gia =0
. Prgmati,
Z 1
Rx(0) = jx(t)j2 dt = Ex (3.4.2)
1
b) O metasqhmatismì Fourier th sunrthsh autosusqètish enì s mato isoÔtai
me th fasmatik puknìthta enèrgeia tou s mato . H sunrthsh fasmatik puknìth-
ta enèrgeia perigrfei ton trìpo me ton opoo katanèmetai h enèrgeia tou s mato
sto q¸ro suqnot twn. Prgmati, lìgw tou jewr mato th sunèlixh tou metasqhma-
tismoÔ Fourier èqoume
Rx ( ) = x( ) ? x? ( ) ) F [Rx ( )℄ = jX (!)j2 (3.4.3)
kai apì to je¸rhma tou Parseval èqoume
Ex = Rx(0) =
Z 1
jx(t)j2 dt = 1 Z 1 jX (!)j2 d!
1 2 1 (3.4.4)
Sth sunèqeia, ja prosdiorsoume th sqèsh pou sundèei th sunrthsh autosusqè-
tish tou s mato eisìdou kai tou s mato exìdou enì GQA sust mato .
An s ma x(t) efarmoste sthn esodo enì GQA sust mato me kroustik apìkri-
sh h(t) kai apìkrish suqnìthta H (!), tìte h èxodo tou sust mato enai y(t) =
112 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
x(t) ? h(t) sto pedo suqnot twn Y (!) = X (!) H (!). H enèrgeia tou s mato
y(t) enai
Ey =
Z 1
jy(t)j2 dt 1 Z 1
= 2 jY (!)j2 d!
1 1
1 Z 1
= 2 jX (!)j2 jH (!)j2 d! = Ry (0) (3.4.5)
1
( )= ( ) ( )
ìpou Ry y ?y? enai h sunrthsh autosusqètish th exìdou tou sust -
mato . Qrhsimopoi¸nta ton antstrofo metasqhmatismì Fourier gia to Y ! 2 è- j ( )j
qoume
Ry ( ) = F 1 [jY (!)j2 ℄ = F 1 [jX (!)j2 jH (!)j2 ℄
= F 1 [jX (!)j2 ℄ ? F 1 [jH (!)j2 ℄
= Rx( ) ? Rh( ) (3.4.6)
Pardeigma 3.4.1
Na upologistoÔn h sunrthsh autosusqètish , h fasmatik puknìthta enèrgeia kai
h enèrgeia tou s mato x(t) = e at u(t); a > 0
LÔsh Gnwrzoume ìti
x(t) = e at u(t) F! X (!) =
1
a + j!
H fasmatik puknìthta enèrgeia tou s mato enai
jX (!)j2 = a2 +1 !2
H sunrthsh autosusqètish isoÔtai me ton antstrofo metasqhmatismì Fourier th
fasmatik puknìthta enèrgeia tou s mato
Rx ( ) = F 1 [jX (!)j2 ℄ =
1e aj j
2a
ìpou qrhsimopoi jhke to zeÔgo MF 19 tou Pnaka 3.3. H enèrgeia isoÔtai me thn tim
pou èqei h sunrthsh autosusqètish sto mhdèn, ètsi
Ex = Rx(0) = 21a
Shmei¸netai ìti h enèrgeia tou s mato mpore na breje kai apì thn (1.2.13).
Enìthta 3.3 Enèrgeia kai IsqÔ 113
3.4.2 S mata isqÔo
Sthn enìthta aut ja orsoume th mèsh qronik sunrthsh autosusqètish enì s -
mato isqÔo kai ja diatup¸soume ti basikè th idiìthte .
H mèsh qronik sunrthsh autosusqètish gia èna s ma isqÔo x t orzetai w ()
Rx( ) = Tlim 1 Z T
x(t)x? (t ) dt
!1 2T
(3.4.7)
T
H isqÔ tou s mato Px enai sh me th mèsh qronik sunrthsh autosusqètish gia
=0
. Prgmati,
Px = Tlim 1 Z T
jx(t)j2 dt = Rx(0)
!1 2T T
(3.4.8)
()
àstw Sx ! o metasqhmatismì Fourier th mèsh qronik sunrthsh autosusqèti-
sh , tìte èqoume
Rx( ) = 21 Z 1
Sx (!)e d! ) Rx (0) =
1 Z 1
2 1 Sx(!) d!
j!
1
àtsi mporoÔme na ekfrsoume thn isqÔ tou s mato x(t) me th bo jeia th Sx (! ).
Prgmati,
Px = Rx(0) = 2 1 Z 1
Sx(!) d! (3.4.9)
1
H sunrthsh Sx (! ) perigrfei ton trìpo me ton opoo katanèmetai h isqÔ tou s ma-
to sto q¸ro twn suqnot twn kai onomzetai fasmatik tou s mato
puknìthta isqÔo
x(t).
An to s ma x(t), efarmoste sthn esodo enì GQA sust mato me kroustik
apìkrish h(t) kai apìkrish suqnìthta H (! ), tìte h mèsh qronik sunrthsh auto-
susqètish th exìdou dnetai apì th sqèsh
Ry ( ) = Rx( ) ? h( ) ? h( ) (3.4.10)
H apìdeixh th (3.4.10) enai pèra apì ta plasia tou parìnto egqeiridou. O endi-
aferìmeno anagn¸sth parapèmpetai sto biblo [6℄ sthn Anafor.
Lambnonta to metasqhmatismì Fourier kai twn dÔo pleur¸n th (3.4.10) brskou-
me th sqèsh pou sundèei th fasmatik puknìthta isqÔo eisìdou kai exìdou enì GQA
sust mato , w ex
Sy (! ) = Sx(!) H (!) H ? (!)
= Sx(!) jH (!)j2 (3.4.11)
H jH (!)j2 onomzetai apìkrish isqÔo tou sust mato .
114 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
Pardeigma 3.4.2
Dnetai to s ma x(t) = u(t). Na deiqje, ìti to s ma enai s ma isqÔo kai na upo-
logistoÔn a) h isqÔ tou, b) h mèsh qronik sunrthsh autosusqètish tou kai g) h
fasmatik puknìthta isqÔo tou.
LÔsh H enèrgeia tou s mato enai
Z T Z T
Ex = Tlim
!1
ju(t)j2 dt = Tlim
!1
dt = Tlim
!1
T =1
T 0
To s ma den enai energeiakì s ma. H isqÔ tou s mato enai
Px = Tlim 1 Z T
ju(t)j2 dt = Tlim 1 Z T
dt = lim 12 = 12
!1 2T !1 2T
(3.4.12)
T 0 T !1
To s ma enai, loipìn, s ma isqÔo . H mèsh qronik sunrthsh autosusqètish tou
s mato enai
Rx ( ) = Tlim 1 Z T
u(t)u(t ) dt
!1 2T T
= Tlim 1 Z T dt = lim 1 (T ) =
1
!1 2T T !1 2T 2 (3.4.13)
H fasmatik puknìthta isqÔo tou s mato enai o metasqhmatismì Fourier th mèsh
qronik sunrthsh autosusqètish . àtsi, me th bo jeia tou zeÔgou 2 metasqhma-
tismoÔ Fourier tou Pnaka 3.3 èqoume
Sx (!) = F [Rx ( )℄ = Æ(!) (3.4.14)
SÔnoyh Kefalaou
Sthn arq tou kefalaou orsame to eswterikì ginìmeno dÔo shmtwn kai to mètro
enì s mato . Edame pìte ma oikogèneia shmtwn apotele orjokanonikì sÔnolo sto
q¸ro twn shmtwn. Parathr same ìti ta armonik migadik ekjetik s mata kai ta
trigwnometrik s mata se èna peperasmèno disthma, sunistoÔn orjog¸nio sÔnolo
ston antstoiqo q¸ro shmtwn.
Me bsh ta anwtèrw perigryame to anptugma se seir Fourier, me th bo jeia
tou opoou analÔoume èna s ma se seir apì armonik migadik ekjetik s mata
se jroisma (sun)hmitìnwn, dhlad se s mata sugkekrimènh suqnìthta . Peri-
gryame th mèjodo prosdiorismoÔ twn suntelest¸n tou anaptÔgmato kai d¸same th
fusik tou shmasa. DieurÔname ta parapnw apotelèsmata kai ètsi perigryame to
metasqhmatismì Fourier enì s mato . Parathr same ìti, ìpw to anptugma Fouri-
er twn periodik¸n shmtwn, ètsi kai o metasqhmatismì Fourier twn mh periodik¸n
shmtwn anaparist mh periodik s mata me ekjetik s mata kai me ton trìpo autì
apokalÔptei to fasmatikì tou perieqìmeno.
Enìthta 3.5 Probl mata 115
Perigryame ti basikè idiìthte pou èqei o metasqhmatismì Fourier. Parousi-
same leitourge , ìpw h diamìrfwsh, h opoa apotele basik leitourga sthn ekpom-
p enì s mato apì èna shmeo se llo mèsa apì èna kanli (zeÔgo surmtwn
th atmìsfaira ), to je¸rhma th sunèlixh , me th bo jeia tou opoou h upologi-
stik polÔplokh sqèsh th sunèlixh metasqhmatizìmenh kat Fourier katal gei se
èna aplì ginìmeno sunart sewn. Me th bo jeia tou jewr mato tou Parseval edame
ìti mporoÔme na upologsoume thn enèrgeia enì s mato ete sto pedo tou qrìnou
ete sto pedo twn suqnot twn.
Edame ìti o metasqhmatismì Fourier uprqei kai gia ta periodik s mata kai
shmei¸same ìti ta periodik s mata èqoun fsma diakritì, en¸ ta mh periodik èqoun
fsma suneqè .
Orsame th sunrthsh autosusqètish enì energeiakoÔ s mato kai th mèsh
qronik sunrthsh autosusqètish enì s mato isqÔo . Parathr same ìti oi metasqh-
matismo Fourier twn dÔo aut¸n sunart sewn enai h sunrthsh fasmatik puknìth-
ta enèrgeia kai h sunrthsh fasmatik puknìthta isqÔo .
Sto tèlo tou kefalaou parousisthkan dÔo pnake . Ston Pnaka 3.2 uprqoun
oi idiìthte tou metasqhmatismoÔ Fourier, en¸ ston Pnaka 3.3 oi metasqhmatismo
Fourier merik¸n basik¸n sunart sewn. Ja prèpei, telei¸nonta to dibasma tou ke-
falaou, na gnwrzete kal ti idiìthte kai na mporete, basizìmenoi sta paradeg-
mata tou kefalaou kai sti idiìthte , na brskete tou metasqhmatismoÔ Fourier twn
basik¸n sunart sewn pou uprqoun sto deÔtero pnaka.
3.5 PROBLHMATA
3.1 Na upologistoÔn kai na sqediastoÔn to mètro kai h fsh twn suntelest¸n th
ekjetik seir Fourier tou s mato .
x(t) = 1 + 2sin(!0 t) + os 2!0 t + 4
3.2 Na upologiste h mèsh isqÔ tou periodikoÔ orjog¸niou s mato tou Paradeg-
mato 3.2.6. Epsh , na upologiste h isqÔ twn suqnot twn pou perièqei o ken-
trikì lobì (dhlad , h sunolik isqÔ tou kentrikoÔ loboÔ). O kentrikì lobì
perièqei ìle ti suqnìthte metaxÔ tou pr¸tou arister mhdenismoÔ kai tou
pr¸tou dexi mhdenismoÔ.
3.3 Na upologistoÔn oi suntelestè th ekjetik seir Fourier gia to s ma
x(t) = os(4t) os(6t)
116 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
3.4 Na upologistoÔn oi suntelestè th ekjetik seir Fourier gia to s ma
x(t) = os2 (2t)
3.5 Na upologistoÔn oi ekjetikè seirè Fourier gia ta s mata.
1. x(t) = ej 200t
2. x(t) = os 4 (t 1)
3. x(t) = os(4t) + sin(8t)
4. x(t) = os(4t) + sin(6t)
5. x(t) enai periodikì me perodo sh me 2 kai x(t) = e t gia 1<t<1
6. x(t) = [1 + os(2t)℄[ os 10t 4
3.6 Na upologsete to mètro kai th fsh tou metasqhmatismoÔ Fourier tou aitia-
toÔ ekjetikoÔ s mato x t ()= ()
e at u t . Na parathr sete ìti X 1 kai j (0)j =
jX (a)j = ap1 2
3.7 Na upologistoÔn oi suntelestè th ekjetik seir Fourier kai th trigwno-
metrik seir gia to periodikì s ma to opoo perigrfetai sto Sq ma 3.23.
x(t)
1
-1 1 t
-1 Sq ma 3.23 To s ma tou Probl mato 3.7.
3.8 Na upologiste o metasqhmatismì Fourier tou s mato
x(t) = e ajtj ; a>0
kai na knete th grafik parstash tou s mato kai tou mètrou tou metasqh-
matismoÔ Fourier.
3.9 Na upologiste o metasqhmatismì Fourier gia kajèna apì ta s mata
1. x(t) = [eat os(!0 t)℄u(t); a > 0
2. x(t) = e ajtj sin(bt); a 6= b
3. x(t) = e2+t u( t + 1)
4. x(t) = e 3t [u(t + 2) u(t 3)℄
5. x(t) = 10;+ os(t); jjttjj >1
1
Enìthta 3.5 Probl mata 117
P
6. x(t) = 1 k=0 a Æ (t kT ); jaj < 1
k
7. x(t) = [t e 2t sin(4t)℄u(t)
8. x(t) = u(t) + 2Æ(3 2t)
3.10 Na upologiste o metasqhmatismì Fourier tou s mato x(t) = sin(!0 t) .
3.11 Na upologiste o metasqhmatismì Fourier tou s mato x(t) = sin(!0 t)u(t) .
3.12 Na upologiste o metasqhmatismì Fourier tou summetrikoÔ orjog¸niou palmoÔ
( )
t , o opoo èqei qronik dirkeia sh me ma qronik monda kai plto epsh
so me ma monda m kou , dhlad ,
1 1
(t) = 01;; 2 <t< 2
alli¸
3.13 Na upologiste o metasqhmatismì Fourier gia to s ma to opoo perigrfetai
sto Sq ma 3.24.
x(t)
2
1
3
-2 -1 1 2 4 t
-1 Sq ma 3.24 To s ma tou Probl mato 3.13.
3.14 Na upologiste o metasqhmatismì Fourier gia ta periodik s mata
1. x1 (t) = os(4t) os(6t)
2. x2 (t) = sin2 (2t)
3.15 Na upologiste o antstrofo metasqhmatismì Fourier gia kje èna apì ta
akìlouja fsmata
1. X (!) = 2 sin[3(
! 2
! 2)℄
2. X (!) = os 4! + 3
3. X (!) = 2[Æ(! 1) Æ(! + 1)℄ + 3[Æ(! 2) Æ(! + 2)℄
3.16 Na upologiste o antstrofo metasqhmatismì Fourier gia to s ma tou opoou
to mètro kai h fsh perigrfetai sto Sq ma 3.25
3.17 Na dexete ìti to s ma x t ( ) = os( )
!0 t enai s ma isqÔo kai na upologsete
thn isqÔ tou me th bo jeia tou jewr mato Parseval, dhlad ete sto pedo tou
qrìnou ete sto pedo suqnot twn.
3.18 An to s ma, x t ()= () 0
eat u t ; a > efarmoste sthn esodo enì GQA sust -
mato , to opoo èqei kroustik apìkrish h t ()=
e t u t ; > kai ()
a, na 0 6=
brejoÔn h sunrthsh autosusqètish , h fasmatik puknìthta enèrgeia kai h
enèrgeia tou s mato exìdou.
118 Anptugma - Metasqhmatismì Fourier Analogik¸n Shmtwn Keflaio 3
X(ù) arg X(ù)
1 3
1
-1 ù
ù -3
-1 0 1
Sq ma 3.25 To mètro kai h fsh tou MF tou s mato sto Prìblhma 3.16.
3.19 An to s ma x t ( )= ( )
u t efarmoste sthn esodo enì GQA sust mato , to opoo
èqei kroustik apìkrish h t ( ) = sin (6 )
t , na brejoÔn h fasmatik puknìthta
isqÔo kai h isqÔ tou s mato exìdou.
3.20 Na upologiste o metasqhmatismì Fourier gia to s ma to opoo perigrfetai
sto Sq ma 3.26.
x(t)
1
0 1 t Sq ma 3.26 To s ma tou Probl mato 3.20.
3.21 Qrhsimopoi¸nta ti idiìthte tou metasqhmatismoÔ Fourier, na breje o metasqh-
matismì Fourier tou s mato x t t ( ) = (2
ìpou 3) ( )
t enai o trigwnikì
palmì kai na gnei h grafik tou parstash se sunrthsh me th suqnìthta.
Bibliografa
3.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
3.2 N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”, Daulo , Aj na, 1994.
3.3 A. Mrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
sei Tziìla 2012.
3.4 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
3.5 A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
Hall Inc., N. Y., 1983.
3.6 R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals & Systems Continuous and
Discrete”, Prentice Hall, 1998.
3.7 A. Papoulis, “The Fourier integral and its Applications”, McGraw Hill., 1962.
3.8 J. G. Proakis, M. Salehi, “Communication System Engineering”, Prentice Hall
1994.
ÊÅÖÁËÁÉÏ 4
ÅÖÁÑÌÏÃÅÓ ÔÏÕ ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÕ FOURIER
Skopì tou kefalaou enai na parousisei merikè efarmogè tou Metasqhma-
tismoÔ Fourier (MF). Eidikìtera, sto keflaio autì ja perigrafoÔn èmmesoi trìpoi
upologismoÔ tou antstrofou MF, trìpoi oi opooi enai idiatera qr simoi, an h mor-
f tou MF den enai apl . Se aut thn perptwsh, o apeujea upologismì tou
antstrofou me thn exswsh sÔnjesh gnetai ma dÔskolh diadikasa. Epsh , ja
perigrafe ma eÔkolh mèjodo eÔresh th apìkrish suqnìthta , th kroustik
apìkrish kai th exìdou enì sust mato , tou opoou gnwrzoume th diaforik exsw-
sh pou susqetzei ta s mata eisìdou-exìdou tou sust mato .
Eisagwg
Sto Keflaio 3 orsame to MF, o opoo parèqei th dunatìthta metbash apì
to pedo tou qrìnou sto pedo suqnìthta . O MF th sunèlixh dÔo shmtwn up-
ologzetai me èna aplì ginìmeno twn antstoiqwn metasqhmatism¸n. Me ton trìpo
autì, upologzetai pr¸ta o MF th exìdou kai sth sunèqeia, me ènan antstrofo MF,
prosdiorzetai h èxodo tou sust mato sto pedo tou qrìnou. Sto
keflaio autì ja parousiastoÔn merikè akìma efarmogè tou MF sth melèth gram-
mik¸n susthmtwn.
4.1 APOKRISH SUQNOTHTAS SUSTHMATOS
Sto Keflaio 2 edame ìti èna grammikì qronik anallowto sÔsthma perigrfetai
() ()
pl rw apì thn kroustik tou apìkrish, h t , kai ìti h esodo , x t , kai h èxodo ,
()
y t , tou GQA sust mato sundèontai me to olokl rwma th sunèlixh
y(t) = Zx(t) ? y(t)
1
= x( )h(t ) d (4.1.1)
1
() ()
O metasqhmatismì Fourier H ! , th kroustik apìkrish h t , ìpw èqoume dei
sthn Enìthta 2.5, apotele thn apìkrish suqnìthta tou sust mato kai dnetai w
120 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
to phlko twn metasqhmatism¸n Fourier eisìdou-exìdou, w ex
Y (!)
H (!) =
X (! )
(4.1.2)
()
ParathroÔme ìti h sunrthsh H ! mpore na breje ete upologzonta to metasqh-
() ()
matismì Fourier th h t , afoÔ pr¸ta upologiste h h t , ete w phlko twn metasqh-
matism¸n Fourier eisìdou-exìdou. O deÔtero trìpo upologismoÔ th H ! enai ()
saf¸ eukolìtero tou pr¸tou kai gia to lìgo autì o metasqhmatismì Fourier
apotele èna isqurì majhmatikì ergaleo gia th melèth grammik¸n susthmtwn.
4.1.1 H apìkrish suqnìthta gia sust mata pou perigrfontai
apì diaforikè exis¸sei me stajeroÔ suntelestè
Sto Keflaio 2 orsame w sÔsthma thn ontìthta ekenh h opoa metatrèpei mia
fusik posìthta pou perigrfetai apì to s ma eisìdou x t se mia llh pou peri- ()
()
grfetai apì to s ma exìdou y t . H diadikasa aut metasqhmatismoÔ ekfrzetai me
th bo jeia ma diaforik exswsh pou susqetzei ta s mata eisìdou-exìdou. ätan
to sÔsthma enai grammikì qronik anallowto, ìpw èqoume sta Paradegmata 2.1.1
kai 2.1.2, h antstoiqh diaforik exswsh enai grammik me stajeroÔ suntelestè ,
dhlad èqei th genik morf
N
X dk y(t) M
X dk x(t)
ak
dtk
= bk
dtk
(4.1.3)
k=0 k=0
Sth sunèqeia ja perigryoume ton trìpo me ton opoo prosdiorzoume thn apìkrish
()
suqnìthta H ! apì thn (4.1.3) me th bo jeia tou metasqhmatismoÔ Fourier kai twn
idiot twn tou. Efarmìzoume to metasqhmatismì Fourier kai sta dÔo mèlh th exswsh
(4.1.3) kai parnoume
" # " #
N
X dk y(t) M
X dk x(t)
F ak k
dt
=F bk k
dt
k=0 k=0
Lìgw th idiìthta th grammikìthta , pou qarakthrzei to metasqhmatismì Fourier,
èqoume
k
N
X
ak F
dy (t) = X
M
bk F
k
d x(t)
k=0
dtk k=0
dtk
lìgw th idiìthta th diafìrish , èqoume thn exswsh
N
X M
X
ak (j!)k Y (!) = bk (j!)k X (!)
k=0 k=0
Enìthta 4.1 Upologismì tou Antstrofou MF 121
isodÔnama
N
X M
X
Y (!) ak (j!) k = X (! ) bk (j!)k
k=0 k=0
kai lìgw th (4.1.2), èqoume
PM
Y (!)
= PNk=0 bk (j!)k
k
H (!) =
X (!)
(4.1.4)
k=0 ak (j! )
ParathroÔme ta ex
()
H apìkrish suqnìthta H ! , enì GQA sust mato enai ma rht sunrthsh,
dhlad mpore na ekfraste w lìgo dÔo poluwnÔmwn th metablht j! . ( )
Ston upologismì th apìkrish suqnìthta tou sust mato den upeisèrqontai
oi arqikè sunj ke sti opoe brsketai to sÔsthma, se antjesh me th lÔsh
th (4.1.3), h opoa exarttai apì ti arqikè sunj ke tou sust mato . Autì
ofeletai sto gegonì ìti o metasqhmatismì Fourier propojètei ènarxh th
diadikasa sto 1 , pou enai to ktw ìrio tou oloklhr¸mato ston tÔpo
orismoÔ tou (3.3.14) kai apì sÔmbash deqìmaste ìti sto oi arqikè sunj ke 1
enai pnta mhdèn.
Pardeigma 4.1.1 (SÔsthma pr¸th txh ).
Na upologiste h apìkrish suqnìthta kai h kroustik apìkrish tou GQA sust mato
pr¸th txh , to opoo, ìpw enai gnwstì, perigrfetai apì th diaforik exswsh
dy(t)
dt
+ ay(t) = bx(t); a > 0 (4.1.5)
LÔsh Efarmìzonta to metasqhmatismì Fourier kai sta dÔo mèlh th exswsh , lìgw
twn idiot twn th grammikìthta kai diafìrish , èqoume diadoqik
dy(t)
F dt
+ F [ay(t)℄ = F [bx(t)℄
(j!)Y (!) + aY (!) = bX (!)
b
H (!) =
j! + a
(4.1.6)
ìpou sthn teleutaa isìthta qrhsimopoi jhke to je¸rhma th sunèlixh Y (!) = H (!)
X (!) Sto Pardeigma 3.3.3 èqoume dexei
x(t) = e at u(t) F! X (!) =
1
j! + a
(4.1.7)
Epomènw , h kroustik apìkrish tou sust mato pr¸th txh enai
h(t) = be (t)
at u (4.1.8)
122 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
4.2 UPOLOGISMOS TOU ANTISTROFOU METASQHMATISMOU
FOURIER
Enai profanè ìti, an gnwrzoume thn apìkrish suqnìthta enì sust mato , tìte me
th bo jeia th (3.3.13), h opoa perigrfei ton antstrofo metasqhmatismì Fourier,
mporoÔme na upologsoume thn kroustik apìkrish tou sust mato . An h morf th
() ()
H ! den enai apl , tìte o apeujea upologismì th h t apì thn (3.3.13) mpore na
apodeiqje ma epponh diadikasa. Gia to lìgo autì, sun jw , akoloujoÔntai èmmesoi
trìpoi upologismoÔ tou antstrofou metasqhmatismoÔ Fourier. An h H ! èqei apl ()
morf , ìpw sto Pardeigma 4.1.1, enai dunatìn me th bo jeia tou Pnaka 3.3 na
prosdiorzoume eÔkola thn kroustik apìkrish tou sust mato . Genikìtera, an h
apìkrish suqnìthta mpore na ekfraste w jroisma epimèrou stoiqeiwd¸n ìrwn,
tìte me th bo jeia tou Pnaka 3.3 kai twn idiot twn tou metasqhmatismoÔ Fourier
mporoÔme na upologsoume thn kroustik apìkrish tou sust mato . Sto Parrthma
B perigrfetai h diadikasa anptuxh ma rht sunrthsh , se jroisma apl¸n
klasmtwn. Paraktw efarmìzoume th mejodologa aut se èna pardeigma.
Pardeigma 4.2.1 (SÔsthma deÔterh txh ).
Dnetai to GQA sÔsthma deÔterh txh , to opoo arqik brsketai se hrema, kai
qarakthrzetai apì th diaforik exswsh
d2 y(t)
dt2
+ 4 dydt(t) + 3y(t) = dxdt(t) + 2x(t) (4.2.1)
Na upologiste h kroustik apìkrish tou sust mato .
LÔsh Efarmìzoume to metasqhmatismì Fourier kai sta dÔo mèlh th exswsh (4.2.1)
kai me th bo jeia th idiìthta th grammikìthta kai th diafìrish , pou èqei o
metasqhmatismì Fourier, brskoume ìti h apìkrish suqnìthta tou sust mato enai
H (!) =
(j!) + 2
(j!) + 4(j!) + 3
2 (4.2.2)
AnalÔoume ta polu¸numa tou arijmht kai tou paranomast se ginìmena poluwnÔmwn
pr¸tou deÔterou bajmoÔ w pro (j!) kai sth sunèqeia anaptÔssoume thn apìkrish
suqnìthta se apl klsmata. àtsi, parnoume
H (!) =
(j!) + 2 C1 C2
(j! + 1)(j! + 3) = j! + 1 + j! + 3
Sth sunèqeia upologzoume ti stajerèC1 kai C2
j! + 2 1
C1 = [(j! + 1)H (!)℄jj!= 1 = =
j! + 3 j!= 1 2
j! + 2 1
C2 = [(j! + 3)H (!)℄jj!= 3 = ) C2 =
j! + 1 j!= 3 2
Enìthta 4.1 Upologismì tou Antstrofou MF 123
Epomènw , h apìkrish suqnìthta parnei th morf
H (!) =
1 1 1 1
2 j! + 1 + 2 j! + 3 (4.2.3)
Me th bo jeia th idiìthta th grammikìthta tou metasqhmatismoÔ Fourier kai th
(4.1.7), h kroustik apìkrish tou sust mato enai
1 1
h(t) = e t u(t) + e 3t u(t)
2 2 (4.2.4)
Pardeigma 4.2.2
An h esodo tou sust mato sto Pardeigma 4.2.1 enai
x(t) = e t u(t) (4.2.5)
na upologiste h èxodo tou sust mato .
LÔsh O metasqhmatismì Fourier tou s mato eisìdou x(t) = e t u(t) enai X (!) =
1=(j! + 1). Me th bo jeia tou jewr mato th sunèlixh , o metasqhmatismì Fourier
th exìdou enai
j! + 2
1
Y (!) = H (!)X (!) = = (j! +j!1)2+(j!2 + 3)
(j! + 1)(j! + 3)
j! + 1
Sthn perptwsh aut h anptuxh se apl klsmata tou Y (! ) èqei th morf
C C12 C21
Y (!) = 11 + +
j! + 1 (j! + 1) j! + 3
2
Sth sunèqeia upologzoume ti C11 , C12 kai C21
stajerè
C11 =
1 d 2 d j! + 2 1
(2 1)! d(j!) (j! + 1) Y (!) j!= 1 = d(j!) j! + 3 j!= 1 ) C11 = 4
j! + 2 1
C12 = (j! + 1)2 Y (!) j!= 1 = ) C11 =
j! + 3 j!= 1 2
j! + 2 1
C21 = [(j! + 3)Y (!)℄jj!= 3 = ) C21 =
(j! + 1) j!= 3
2 4
Epomènw , o metasqhmatismì Fourier th exìdou parnei th morf
Y (!) =
1 1 +1 1 1 1
4 j! + 1 2 (j! + 1) 4 j! + 3
2 (4.2.6)
An efarmìsoume thn idiìthta th diafìrish sthn (4.1.7) sto pedo suqnot twn, èqoume
t x(t) F! j X (!)
d!
t e at u(t) F! 1
(j! + a)2 (4.2.7)
124 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
Me th bo jeia tou antstrofou metasqhmatismoÔ Fourier, th idiìthta th grammikìth-
ta , th (4.1.7) kai th (4.2.7) brskoume ìti h èxodo tou sust mato enai
y(t) =
1 e t + 1 te t 1e 3t u(t)
4 2 4 (4.2.8)
Prèpei na toniste sta Paradegmata 4.2.1 kai 4.2.2 ìti, an zhtetai mìno h y(t) kai ìqi h
Y (!), tìte o eukolìtero trìpo eÔres th enai h apeujea eplush th diaforik
exswsh .
Pardeigma 4.2.3 (Prosdiorismì sust mato apì thn esodì tou kai èxodì tou).
H èxodo enì GQA sust mato se s ma eisìdou x(t) = e 2t u(t) enai y(t) = e t u(t)
Na breje h apìkrish suqnìthta tou sust mato kai h kroustik apìkrish.
LÔsh O metasqhmatismì Fourier tou s mato eisìdou x(t) enai
X (!) =
1
2 + j!
kai o metasqhmatismì Fourier tou s mato exìdou y(t) enai
Y (! ) =
1
1 + j!
H apìkrish suqnìthta tou sust mato upologzetai me th bo jeia th 4.1.2
Y (!)
H (! ) =
X (!)
= 21 ++ j!
j!
(4.2.9)
H apìkrish suqnìthta tou sust mato grfetai w
H (!) = 1 +
1
1 + j!
H kroustik apìkrish tou sust mato enai
h(t) = Æ(t) + e tu(t) (4.2.10)
Shmei¸netai ìti, ìtan to s ma eisìdou enai s ma ma suqnìthta , ja prèpei kai to s ma
exìdou na enai s ma th dia suqnìthta kai sthn perptwsh aut prosdiorzetai mìno
h tim th apìkrish suqnìthta sth suqnìthta tou s mato eisìdou.
4.3 DIAGRAMMATA BODE
Apì to je¸rhma th sunèlixh gnwrzoume ìti o metasqhmatismì Fourier th eisìdou
X (!) kai th ()
exìdou Y ! enì grammikoÔ qronik anallowtou sust mato , to opoo
()
èqei apìkrish suqnìthta H ! , sundèontai me th sqèsh
Y (!) = H (!) X (!) (4.3.1)
Enìthta 4.2 Diagrmmata Bode 125
ParathroÔme ìti o metasqhmatismì Fourier th exìdou prokÔptei w ginìmeno tou
metasqhmatismoÔ Fourier th eisìdou me thn apìkrish suqnìthta . Apì thn (4.3.1)
èqoume gia ta mètra kai ti fsei twn antistoqwn posot twn ti exis¸sei
jY (!)j = jH (!)j jX (!)j kai argY (!) = argH (!) + argX (!) (4.3.2)
H ajroistik morf th deÔterh exswsh epitrèpei ton prosdiorismì th grafik
parstash th fsh exìdou me apl prìsjesh twn grafhmtwn th fsh eisìdou
me th fsh th apìkrish suqnìthta . Gia na petÔqoume anlogh sumperifor gia to
mètro, logarijmzoume thn pr¸th exswsh kai èqoume
logjY (!)j = logjH (!)j + logjX (!)j (4.3.3)
Suqn, gia th grafik anaparstash tou mètrou, qrhsimopoioÔme logarijmik klma-
ka kai w monda mètrou to decibel (dB). H klmaka twn dB baszetai sthn antistoiqa
dB = 20log10 jH (!)j (4.3.4)
Endeiktik èqoume ti akìlouje timè
0 dB antistoiqe se jH (!)j = 1;
20 dB antistoiqe se jH (!)j = 10; 20 dB antistoiqe se jH (!)j = 0; 1
40 dB antistoiqe se jH (!)j = 100; 40 dB antistoiqe se jH (!)j = 0; 01
ParathroÔme epiplèon ìti
1 dB antistoiqe se jH (!)j 1; 12 kai 6 dB antistoiqe se jH (!)j 2
Diagrmmata pou apeikonzoun th fsh kai to mètro se dB, se sunrthsh me th
suqnìthta, onomzontai diagrmmata Bode. Epeid o logrijmo ektenei thn klmaka,
h qrhsimopohsh logarijmik klmaka exasfalzei kalÔterh eukrneia ìtan to eÔro
twn suqnot twn pou ma endiafèrei enai meglo periorzetai se mikrè timè kont
sto mhdèn. Efarmìzoume ta parapnw sto Pardeigma 4.3.1.
Pardeigma 4.3.1
Na upologiste h apìkrish tou sust mato pr¸th txh ìtan h esodo enai h sunrth-
sh monadiaou b mato .
LÔsh O metasqhmatismì Fourier tou monadiaou b mato enai (blèpe Pnaka 3.3)
U (!) =
1 + Æ(!) (4.3.5)
j!
Apì to je¸rhma th sunèlixh prokÔptei ìti o metasqhmatismì Fourier th exìdou
1 + Æ(!)
enai
b
Y (!) = H (!) U (!) =
j! + j!
126 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
gia ! 6= 0 epeid Æ(!) = 0, èqoume
b b 1 b 1
Y (! ) =
(j! + a)j! = +
a j! + a a j!
Me th bo jeia tou antstrofou metasqhmatismoÔ Fourier, th idiìthta th grammikìth-
ta , th (4.1.7) kai tou metasqhmatismoÔ Fourier tou monadiaou b mato upologzoume
thn èxodo tou sust mato
b b at
y(t) = e u(t) (4.3.6)
a a
H kroustik apìkrish tou sust mato pr¸th txh kai h apìkris tou sto monadiao
b ma paristnontai grafik sto Sq ma 4.1.
h(t) y(t)
b
b a
b( 1
a 1 e (
b
e
0 ô t 0 ô t
(a) (â)
Sq ma 4.1 Apokrsei sust mato pr¸th txh (a) kroustik apìkrish (b) apìkrish sto
monadiao b ma.
H asumptwtik katstash th apìkrish sto monadiao b ma enai b=a. H parmetro
=1=a onomzetai qronik stajer kai shmatodote to rujmì me ton opoo to sÔsth-
ma apokrnetai. Th qronik stigm t =
, h kroustik apìkrish mei¸nei thn tim pou
1
eqe arqik =e forè , en¸ h apìkrish sto monadiao b ma apèqei =e forè apì thn 1
telik th tim (Sq ma 4.1). ParathroÔme ìti, kaj¸ a , h qronik stajer ! +1
mikranei kai h ptwtik tsh th kroustik apìkrish gnetai pio apìtomh.
H apìkrish suqnìthta , h kroustik apìkrish kai h apìkrish sto monadiao b ma
tou sust mato pr¸th txh , ìtan a b, enai =
H (! ) =
1 ; h(t) = 1 e t
u (t) kai y(t) = 1
e
t
u (t)
j! + 1
(4.3.7)
To mètro th apìkrish suqnìthta h apìkrish pltou tou sust mato enai
r
jH (!)j = H (!)H ? (!) = j!1+ 1 j!1 + 1 = p 1 2 2
p
(4.3.8)
1+ !
kai se dB
20log10 jH (!)j = 10log10 1 + (!)2 (4.3.9)
ParathroÔme ìti,
Enìthta 4.2 Diagrmmata Bode 127
1
An ! << , isqÔei log 1 + ( ) log 1 = 0
10 ! 2 10 . Sunep¸ , sti qamh-
lè suqnìthte to mètro se dB th apìkrish suqnìthta enai perpou mhdèn,
20log j ( )j 0
efìson 10 H ! gia ! << = .1
An ! >> 1, isqÔei log10 1 + (!) log10 (!)2 = 20log10 + 20log10 !.
2
Sunep¸ , sti uyhlè suqnìthte to mètro se dB proseggzetai apì grammik
sunrthsh tou log10 (! ), h opoa èqei klsh -20,
20log jH (!)j 20log 20log ! gia ! >> 1
10 10 10
0
-3dB
20log10 H(ù)
-3
-10
-20
log10( 1 ( log10(1ô( log10(10
ô(
10 ô
log10(ù)
arg H(ù)
ð
4
ð
2
log10( 1 ( log10(1ô( log10(10
ô(
10 ô
log10(ù)
Sq ma 4.2 Ta diagrmmata Bode tou sust mato pr¸th txew .
Sto Sq ma 4.2 fanontai ta diagrmmata Bode sust mato pr¸th txew . Gia to
shmeo tom twn asÔmptwtwn eujei¸n pou proseggzoun to mètro sti qamhlè kai
uyhlè suqnìthte isqÔei 10 ! log ( ) = log ( )
10 kai antistoiqe sth suqnìthta ! =
1= . Sth suqnìthta aut to mètro se dB enai
" #
20log10 H
1 = 10log 1 2 + 1 = 10log (2) 3dB
10 10
Gia to lìgo autì, h kuklik suqnìthta ! =1
= onomzetai kuklik suqnìthta -3 dB.
1 p2
Genik, h kuklik suqnìthta -3dB enai h kuklik suqnìthta gia thn opoa to mètro
th apìkrish suqnìthta enì sust mato apokt to = th mègisth tim tou
128 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
mètrou th apìkrish suqnìthta tou sust mato .
jH (!)jj! 3dB = p12 jH (!)jmax (4.3.10)
Se anloga sumpersmata katal goume gia th fsh, ìpou sthn perptwsh aut
uprqoun trei asÔmptwte eujee (Sq ma 4.2).
4.4 IDANIKO FILTRO BASIKHS ZWNHS - BAJUPERATO FILTRO
àna sÔsthma to opoo enisqÔei apodunam¸nei to mètro th apìkrish suqnìthta
anloga me thn tim to disthma tim¸n th suqnìthta ! , onomzetai fltro. Idanikì
bajuperatì fltro idanikì fltro basik z¸nh
onomzetai to GQA sÔsthma to
opoo èqei apìkrish suqnìthta
H (! ) = e j!t0 ; j!j < !
0; j!j > ! (4.4.1)
ìpou t0 enai stajer
posìthta. H stajer kuklik suqnìthta ! qarakthrzetai w
kuklik tou fltrou. Sto Sq ma 4.3 dnetai h grafik parstash
suqnìthta apokop
tou mètrou kai th fsh tou idanikoÔ fltrou basik z¸nh . To mètro th apìkrish
H(ù) arg H(ù)
1
ùc
-ùc 0 ù
-ùc 0 ùc ù
Æþíç Æþíç êëßóç =-t0
áðïêïðÞò Æþíç äéÝëåõóçò áðïêïðÞò
(a) ( â)
Sq ma 4.3 (a) To mètro kai (b) h fsh th apìkrish suqnìthta tou idanikoÔ fltrou
basik z¸nh . H klsh th eujea prosdiorzetai apì to t0 .
suqnìthta tou bajuperatoÔ fltrou enai so me 1 gia ! < ! < ! . Dedomènou
ìti Y ! ( )= ( ) ( )
H ! X ! , enai profanè ìti oi suqnìthte tou s mato eisìdou pou
brskontai se autì to disthma dièrqontai apì to fltro me ametblhto plto . Gia
to lìgo autì, to disthma autì kaletai kai z¸nh dièleush tou fltrou. Epsh ,
epeid to mètro th apìkrish suqnìthta tou bajuperatoÔ fltrou enai so me 0
gia ! < ! kai ! < ! , enai profanè ìti to bajuperatì fltro aporrof ti
suqnìthte ekene tou fsmato tou s mato eisìdou pou enai megalÔtere apì th
suqnìthta apokop . To disthma autì apotele th z¸nh apokop tou fltrou.
emfanzetai kai w katwperatì fltro kai katwdiabatì fltro
Enìthta 4.3 Idanikì Fltro Basik Z¸nh - Bajuperatì Fltro 129
A upojèsoume t¸ra, ìti sthn esodo tou bajuperatoÔ fltrou to s ma apotele-
()
tai apì dÔo sunist¸se , thn xep t pou enai h epijumht sunist¸sa tou s mato kai
()
thn xan t pou enai h anepijÔmhth sunist¸sa, p.q. èna s ma parembol jìrubo .
j
àstw de ìti Xep ! ( )j = 0 j j
gia ! > ! se antjesh me thn anepijÔmhth sunist¸sa,
th opoa o metasqhmatismì Fourier den ikanopoie antstoiqh sqèsh. Gia mia tè-
toia perptwsh, to idanikì bajuperatì fltro ja af nei thn epijumht sunist¸sa na
dièrqetai en¸ ja aporrof sei to tm ma th anepijÔmhth sunist¸sa to opoo periè-
qei suqnìthte megalÔtere apì th suqnìthta apokop , me apotèlesma th beltwsh
th poiìthta tou s mato xep t . ()
A upojèsoume t¸ra ìti to mh mhdenikì mèro tou metasqhmatismoÔ Fourier, X ! , ()
()
tou s mato eisìdou, x t , entopzetai sth z¸nh dièleush . Tìte o metasqhmatismì
Fourier th exìdou tou sust mato enai
Y (!) = X (!)H (!) = X (!)e j!t0
sto pedo tou qrìnou
y(t) = x(t t0 ) (4.4.2)
Me lla lìgia, to gegonì ìti h fsh th apìkrish suqnìthta enai grammik
sunrthsh th suqnìthta , h epdrash tou fltrou se èna s ma eisìdou, me fasmatikì
perieqìmeno entopismèno sth z¸nh dièleush , enai ma qronik kajustèrhsh t0 .
Apì to metasqhmatismì Fourier tou orjog¸niou palmoÔ kai me th bo jeia th
idiìthta th qronik metatìpish upologzetai h kroustik apìkrish tou idanikoÔ
katwperatoÔ filtroÔ
h(t) =
sin[! (t t0)℄ = ! sin ! (t t0 )
(t t0 )
(4.4.3)
!
H grafik parstash th kroustik apìkrish enai sto Sq ma 4.4.
h(t)
ùc
ð
t ð ð
0 ùc t
0 ùc
0 t
0 t
Tc 2ð
ùc
Sq ma 4.4 H kroustik apìkrish tou idanikoÔ bajuperatoÔ fltrou.
Parathr sei
1. äso mikrìterh enai h suqnìthta apokop , tìso megalÔterh enai h dirkeia
th kroustik apìkrish .
130 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
2. To idanikì katwperatì fltro enai mh aitiatì, efìson h kroustik apìkris
tou enai mh mhdenik gia arnhtikè timè tou qrìnou kai, epomènw , enai mh
pragmatopoi simo. An h tim th stajer t0 enai arket meglh, oi timè th
kroustik apìkrish ti arnhtikè qronikè stigmè mporoÔn na jewrhjoÔn
amelhtèe . Kai w ek toÔtou mporoÔme na proseggsoume to fltro me èna
aitiatì sÔsthma.
3. äso megalÔterh enai h suqnìthta apokop , tìso taqÔtera to fltro èqei th du-
natìthta na parakolouje apìtome metabolè tou s mato eisìdou. Autì enai
logikì, afoÔ gr gore qronikè metabolè antistoiqoÔn sti uyhlè suqnìthte ,
oi opoe dièrqontai apì to fltro an epilèxoume meglh suqnìthta apokop .
H grafik parstash th apìkrish pltou twn pragmatik¸n fltrwn basik
z¸nh ta opoa sunantme sthn prxh, fanetai sto Sq ma 4.5. Sta pragmatik fltra
ektì apì ti z¸ne dièleush kai apokop uprqei kai h z¸nh metbash . Epsh ,
sta pragmatik fltra h suqnìthta apokop enai sh me th suqnìthta 3dB
H(ù)
A
A
2
-ùc ùc ù Sq ma 4.5 To mètro th apìkrish
0
Æþíç Æþíç Æþíç Æþíç Æþíç suqnìthta enì pragmatikoÔ fltrou
áðïêïðÞò ìåôÜâáóçò äéÝëåõóçò ìåôÜâáóçò áðïêïðÞò
basik z¸nh .
Anloga me thn perioq twn suqnot twn pou dièrqontai apì to fltro autì qarak-
thrzetai w
1. bajuperatì fltro fltro basik z¸nh fltro dièleush qamhl¸n suqnot -
twn (lowpass filter (LPF)) Sq ma 4.6a.
2. uyiperatì fltro fltro dièleush uyhl¸n suqnot twn (highpass filter (HPF))
Sq ma 4.6b.
3. zwnoperatì fltro zwnodiabatì fltro fltro dièleush z¸nh suqnot twn
(bandpass filter (BPF)) Sq ma 4.6g..
4. zwnofraktikì fltro fltro apokop z¸nh suqnot twn (bandstop filter (B-
SF)) Sq ma 4.6d.
Oi apokrsei pltou twn antistoqwn idanik¸n fltrwn fanontai sto Sq ma 4.6 kai
twn pragmatik¸n fltrwn sto Sq ma 4.7.
Pardeigma 4.4.1
Dnetai to sÔsthma to opoo perigrfetai sto Sq ma 4.8.
1. Na breje h kroustik apìkrish tou sust mato .
Enìthta 4.3 Idanikì Fltro Basik Z¸nh - Bajuperatì Fltro 131
H(ù) H(ù)
LPF HPF
1 1
-ùc 0 ùc ù -ùc 0 ùc ù
(á) ( â)
H(ù) H(ù)
ÂPF ÂSF
1 1
-ù2 -ù1 0 ù1 ù2 ù -ù2 -ù1 0 ù1 ù2 ù
( ã) ( ä)
Sq ma 4.6 Oi apokrsei pltou idanikoÔ (a) bajuperatoÔ (b) uyiperatoÔ (g) zwnoperatoÔ
kai (d) zwnofraktikoÔ fltrou.
H(ù) H(ù) HPF
A LPF A
A A
2 2
-ùc 0 ùc ù -ùc 0 ùc ù
(á) ( â)
H(ù) H(ù) ÂSF
A ÂPF A
A A
2 2
-ù2 -ù1 0 ù1 ù2 ù -ù2 -ù1 0 ù1 ù2 ù
( ã) ( ä)
Sq ma 4.7 Oi apokrsei pltou pragmatikoÔ (a) bajuperatoÔ (b) uyiperatoÔ (g) zwnop-
eratoÔ kai (d) zwnofraktikoÔ fltrou.
2. Na gnei h perigraf tou sust mato sto pedo suqnìthta .
3. Na breje h apìkrish suqnìthta tou sust mato .
LÔsh
1. Gnwrzoume ìti h kroustik apìkrish enì sust mato enai sh me thn èxodì tou
ìtan to s ma eisìdou enai h kroustik sunrthsh Æ(t), ètsi èqoume
Z t
h(t) = (Æ() Æ( )) d
1
= u(t) u(t )
= t =2 (4.4.4)
132 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
Åßóïäïò Óýóôçìá ¸îïäïò
x(t) ïëïêëÞñùóçò y(t)
Óýóôçìá ∫ (⋅) dt
êáèõóôÝñçóçò
êáôÜ ô
Sq ma 4.8 Perigraf tou sust mato tou Paradegmato 4.4.1 sto pedo tou qrìnou.
2. Me th bo jeia twn idiot twn th qronik metatìpish kai th olokl rwsh
tou metasqhmatismoÔ Fourier èqoume thn perigraf tou sust mato sto pedo
suqnìthta tou Sq mato 4.9.
3. Me th bo jeia th prosetairistik kai th epimeristik idiìthta th sunèlixh
èqoume gia thn apìkrish suqnìthta tou sust mato
H (!) = [H1 (!) H2 (!)℄H3 (!) = 1 j! e j!
2
= !
ej! 2 e j! 2
e j! 2
2j
!
= sin 2 e j! 2 (4.4.5)
H apìkrish suqnìthta mpore na breje, epsh , upologzonta to metasqhma-
tismì Fourier th kroustik apìkrish tou sust mato .
Åßóïäïò ¸îïäïò
X(ù) 1
Ç1(ù)=1 Ç3(ù)= jù Y(ù)
Ç2(ù)=e- jùô
Sq ma 4.9 Perigraf tou sust mato tou Paradegmato 4.4.1 sto pedo suqnìthta .
SÔnoyh Kefalaou
Sto keflaio autì upologsame thn apìkrish suqnìthta enì GQA sust mato
apì th diaforik exswsh pou susqetzei ta s mata eisìdou-exìdou, ekmetalleuìmenoi
ti idiìthte th grammikìthta , th diafìrish kai to je¸rhma th sunèlixh . ätan
h apìkrish suqnìthta èqei apl morf , tìte enai dunatì me th bo jeia twn gnw-
st¸n zeug¸n MF, pou anafèrontai ston Pnaka 3.3, na upologsoume thn kroustik
apìkrish tou sust mato . Sto keflaio autì parousisthkan,epsh , èmmesoi trìpoi
upologismoÔ tou antstrofou MF, oi opooi enai idiatera qr simoi ìtan o MF den
èqei apl morf . Eidikìtera, sti perissìtere praktikè efarmogè , o MF enai ma
rht sunrthsh. Sthn perptwsh aut analÔoume th sunrthsh se jroisma apl¸n
klasmtwn kai me th bo jeia tou Pnaka 3.3 upologzoume ton antstrofo MF. H
Enìthta 4.5 Probl mata 133
parapnw mejodologa efarmìzetai kai gia ton upologismì th exìdou, sto pedo tou
qrìnou, enì GQA sust mato , en èqoume upologsei pr¸ta ton MF th exìdou me
th bo jeia tou jewr mato th sunèlixh .
Epsh , sto keflaio autì parousisthkan ta diagrmmata Bode. Ta diagrmmata
Bode, epeid o logrijmo ektenei thn klmaka, exasfalzoun perissìterh eukrneia
an to eÔro twn suqnot twn pou ma endiafèrei enai meglo , epsh , an periorzetai
se mikrè timè kont sto mhdèn. Tèlo , parousisthkan oi ènnoie twn idanik¸n kai
pragmatik¸n fltrwn.
4.5 PROBLHMATA
4.1 Dnetai to kÔklwma pou apoteletai apì antstash R K , phno L ; H= 10 =0 1
kai puknwt C = 10
F se seir, to opoo perigrfetai sto Sq ma 4.10. An h
esodo tou sust mato enai h efarmozomènh tsh in t kai èxodo h èntash ()
()
tou reÔmato i t , na upologiste h apìkrish suqnìthta tou sust mato .
A B
L
õin(t) i(t)
R
C
Ä Ã Sq ma 4.10 To kÔklwma tou Probl mato 4.1.
4.2 Na upologiste h èntash tou reÔmato pou diarrèei to kÔklwma tou Sq mato
4.8 ìtan h tsh eisìdou enai
in (t) = 10 os 2t + 3
4.3 Dnetai to GQA sÔsthma to opoo èqei kroustik apìkrish
h(t) =
sin(4t)
t
Me th bo jeia tou jewr mato th sunèlixh na prosdioriste h èxodo tou
sust mato ìtan h esodo tou sust mato enai to s ma
x(t) = os(2t) + sin(6t)
4.4 H diaforik exswsh h opoa sundèei thn esodo kai thn èxodo enì GQA sust -
mato enai
dy(t)
dt
+ 2y(t) = x(t)
134 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
1. Na prosdioriste h apìkrish suqnìthta tou sust mato kai na gnoun ta
diagrmmata Bode.
2. An h esodo tou sust mato enai to s ma x (t) = e t u(t), na upologiste
o metasqhmatismì Fourier th exìdou.
3. ()
AfoÔ anaptuqje se apl klsmata h Y ! na upologiste h èxodo y(t)
tou sust mato , ìtan h esodo enai to s ma x t . ()
4.5 An h phg tsh th morf tou Sq mato 4.11 efarmìzetai sthn esodo enì
idanikoÔ katwperatoÔ fltrou, me apìkrish suqnìthta
H (!) = e j! ; j!j < 4
0; j!j > 4
Na upologiste h èxodo tou fltrou.
õ(t)
V
-2ð -ð ð 2ð t
-V Sq ma 4.11
4.6 àstw ìti h phg tsh th morf tou Sq mato 4.11 efarmìzetai sthn esodo
enì GQA sust mato pr¸th txh , to opoo qarakthrzetai apì thn exswsh
dy(t)
dt
+ y(t) = x(t)
Na upologiste h èxodo tou sust mato .
4.7 To aitiatì ekjetikì s ma tou Sq mato 4.12a efarmìzetai sthn esodo tou ida-
nikoÔ fltrou basik z¸nh tou Sq mato 4.12b. Na upologiste h suqnìthta
apokop ! , ètsi ¸ste to fltro na epitrèpei th dièleush
R 1 th mis1 enèrgeia
1 x . = tan
tou s mato eisìdou. Dnetai to aìristo olokl rwma a2 + x2 dt a a
x(t)
2 t Ç(ùù
ùó )
x(t)=2e 5 1
x(t) y(t)
0 -ùc 0 ùc ù
t
(á) ( â)
Sq ma 4.12 (a) To s ma eisìdou kai (b) to idanikì fltro sto Prìblhma 4.7.
Enìthta 4.5 Probl mata 135
4.8 Dnetai to kÔklwma to opoo perigrfetai sto Sq ma 4.13. Na upologiste h
apìkrish suqnìthta tou sust mato kai na gnei h grafik parstash th
apìkrish pltou se sunrthsh me th suqnìthta.
R=1 Ù L= 12 H
Åßóïäïò ¸îïäïò
x(t) y(t)
C= 2 F
Sq ma 4.13 To kÔklwma tou Probl mato 4.8.
4.9 Kat th diamìrfwsh, ()
èna s ma m t periorismènou eÔrou z¸nh , dhlad ,
M (!) = 0 gia j!j > W (Sq ma 4.12b), pou metafèrei sugkekrimènh plhrofo-
ra, pollaplasizetai me èna s ma apl suqnìthta !0 t , h opoa onomze-os( )
tai fèrousa, me skopì thn ekpomp tou se èna mèso metdosh , p.q., zeÔgo
surmtwn, atmìsfaira, klp. Sto Sq ma 4.14a perigrfetai èna aplopoihmèno
sÔsthma epikoinwna . An jewr soume ìti kat th metdosh tou s mato den
alloi¸netai apì to mèso kai ìti o jìrubo tou kanalioÔ enai amelhtèo , tìte
()
to lambanìmeno s ma r t enai so me to ekpempìmeno. JewroÔme ìti h z¸nh
dièleush tou idanikoÔ katoperatoÔ fltrou sto dèkth enai sh me to eÔro
()
z¸nh W tou s mato mhnÔmato m t . Na melethje to sÔsthma sto pedo
suqnìthta .
M(ù)
u(t) êáíÜëé r(t) z(t) y(t)
m(t) ìåôÜäïóçò
Êáôùðåñáôü A
ößëôñï
cos(ùc t) cos(ùc t) ù
W 0 W
Ðïìðüò ÄÝêôçò
(á) (â)
Sq ma 4.14 (a) To aplopoihmèno sÔsthma epikoinwna kai (b) to periorismènou eÔrou
z¸nh fsma tou s mato mhnÔmato gia èna aujareto s ma m(t).
4.10 ätan to s ma eisìdou se èna grammikì qronik analloi¸to sÔsthma enai x (t) =
e at , to s ma exìdou enai y t ()=
e bt u t . Na brejoÔn ()
1. h apìkrish suqnìthta kai
2. h kroustik apìkrish tou sust mato .
4.11 Me th bo jeia th (3.3.83) na breje o metasqhmatismì Fourier tou periodikoÔ
()
orjog¸niou s mato x t tou Paradegmato 3.2.6.
()
An to s ma x t efarmoste sthn esodo grammikoÔ qronik anallowtou sust -
mato me kroustik apìkrish h t 1 ( ) = sin( )
t , na dexete, qrhsimopoi¸nta to
t
136 Efarmogè tou MetasqhmatismoÔ Fourier Keflaio 4
je¸rhma th sunèlixh , ìti h èxodo tou sust mato enai
1
y(t) = + os
t
2 2
4.12 Apì thn idiìthta th olsjhsh th kroustik sunrthsh
Z 1
x(t)Æ(t t0 ) dt = x(t0 )
1
ParathroÔme ìti h sunèlixh kje sunrthsh me thn kroustik sunrthsh èqei
w apotèlesma ma olisjhmènh èkdosh th arqik sunrthsh , dhlad ,
g(t) Æ(t t0 ) = g(t t0 )
An to s ma x t 2 t efarmoste sthn esodo grammikoÔ qronik anal-
( ) = sin ( )
()
lowtou sust mato me kroustik apìkrish h t , na breje kai na sqediasje o
metasqhmatismì Fourier th exìdou tou sust mato ìtan
1. h(t) = 1 + os 2t
P
2. h(t) = 1 k= 1 Æ (t kT )
4.13 Na breje o majhmatikì tÔpo th kroustik apìkrish tou sust mato tou
Sq mato 4.15 kai na gnei h grafik th parstash se sunrthsh me to qrìno.
(Upìdeixh: Na jewr sete to sÔsthma w thn en seir sÔndesh dÔo sust matwn).
Åßóïäïò Óýóôçìá Óýóôçìá ¸îïäïò
ïëïêëÞñùóçò ïëïêëÞñùóçò
x(t) t t y(t)
dt dt
Óýóôçìá −∞ Óýóôçìá −∞
êáèõóôÝñçóçò êáèõóôÝñçóçò
êáôÜ ô êáôÜ ô
Sq ma 4.15 To sÔsthma sto Prìblhma 4.13.
Bibliografa
4.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
4.2 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
4.3 A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
Hall Inc., N. Y., 1983.
ÊÅÖÁËÁÉÏ 5
ÓÅÉÑÁ - ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ FOURIER
ÄÉÁÊÑÉÔÏÕ ×ÑÏÍÏÕ
Sto keflaio autì ja melet soume majhmatik ergalea, ta opoa ma epitrèpoun
na analÔoume èna sÔnjeto s ma diakritoÔ qrìnou se s mata diakritoÔ qrìnou apl¸n
suqnot twn. Mia tètoia prosèggish ma dieukolÔnei ¸ste na upologsoume thn èxodo
enì sust mato diakritoÔ qrìnou, to opoo diegeretai apì èna sÔnjeto s ma, me
th bo jeia twn apokrsewn tou sust mato sti ep mèrou sunist¸se twn apl¸n
suqnot twn sti opoe analÔetai to sÔnjeto s ma. Sth sunèqeia ja efarmìsoume
ti mejìdou autè , ¸ste na analÔsoume ènan arijmì shmtwn ta opoa sunantme
suqn sth prxh. Tèlo , sto keflaio autì ja parousiastoÔn merikè efarmogè tou
metasqhmatismoÔ Fourier diakritoÔ qrìnou.
Eisagwg
Gnwrzoume ìti to migadikì ekjetikì s ma diakritoÔ qrìnou ej (2=N )n enai pe-
riodikì me jemeli¸dh perodo N . Ta ekjetik s mata pou èqoun kuklik suqnìthta
pollaplsia th 0 =2 = 0 1 2
=N (ejk 0 n , me k ; ; ; ::: ) enai epsh periodik. Ta
ekjetik s mata e jk 0 n kaloÔntai armonik susqetizìmena ekjetik s mata diakritoÔ
qrìnou epeid oi jemeli¸dei suqnìthtè tou enai akèraia pollaplsia th kuklik
suqnìthta 0 . Ta migadik ekjetik s mata diakritoÔ qrìnou twn opown oi kuklikè
2
suqnìthte diafèroun kat pollaplsio tou enai dia. Prgmati:
ej ( +2)n = ej n ej 2n = ej n
Uprqoun N to pl jo diaforetik migadik ekjetik s mata diakritoÔ qrìnou ta
opoa sqhmatzoun èna orjog¸nio sÔnolo dhlad , enai an dÔo orjog¸nia. Prgmati
to eswterikì ginìmeno twn ekjetik¸n shmtwn ejk 0 n kai ejm 0 n enai
X1
hejk 0n; ejm 0ni =
N
ej (k m) 0 n = N; k=m = NÆ(k m)
n=0
0; k 6= m
138 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
5.1 PARASTASH PERIODIKWN SHMATWN -
SEIRA FOURIER DIAKRITOU QRONOU
Ta periodik s mata diakritoÔ qrìnou paristnontai me peperasmèna ajrosmata
NX1
2
x(n) = ak ejk N n (5.1.1)
k=0
H exswsh aut dnei thn parstash ( anptugma) periodik¸n shmtwn diakritoÔ
qrìnou se seir Fourier diakritoÔ qrìnou.
5.1.1 Prosdiorismì th seir Fourier diakritoÔ qrìnou.
()
An x n enai ma akolouja h opoa enai periodik me perodo N , o prosdiorismì
twn suntelest¸n ak ja mporoÔse na gnei apì th lÔsh tou grammikoÔ sust mato
X1
N
x(0) = ak
k=0
X1
N
2
x(1) = ak ejk N
k=0
.. ..
. .
X1
N
ak ejk N (N 1)
2
x(N 1) = (5.1.2)
k=0
àna llo trìpo prosdiorismoÔ enai o pollaplasiasmì kai twn dÔo mel¸n th
(5.1.1) me e jm(2=N )n kai ajrosoume w pro n, dhlad ,
NX1 NX1 N
X1
x(n)e jm 2N n = ak ej (k m) 2N n
n=0 n=0 k=0
NX1 NX1
ej (k m) N n
2
= ak
k=0 n=0
kai lìgw th hejk 0n; ejm 0ni = NÆ(k m) enai
NX1
x(n)e jm 2N n = Nam
n=0
X1
= N1 x(n)e
N
am jm 2N n
n=0
Enìthta 5.1 Parstash Periodik¸n Shmtwn - Seir Fourier DiakritoÔ Qrìnou 139
àtsi èqoume ti exis¸sei :
X1
N
2
x(n) = ak ejk N n ; Exswsh sÔnjesh (5.1.3)
k=0
NX1
ak =
1 x(n)e jk 2N n Exswsh anlush (5.1.4)
N n=0
To zeÔgo twn exis¸sewn aut¸n orzoun th seir Fourier diakritoÔ qrìnou (discrete-
time Fourier series (DTFS) tou periodikoÔ s mato diakritoÔ qrìnou x n . Oi sunte- ()
lestè ak kaloÔntai suntelestè Fourier , ìpw ja doÔme, fasmatikè grammè .
Pardeigma 5.1.1
Na breje h parstash se seir Fourier tou s mato diakritoÔ qrìnou x(n) = sin( 0 n).
LÔsh Gnwrzoume ìti to s ma enai periodikì an 2= 0 enai akèraio rhtì ari-
jmì , ètsi mìno tìte mporoÔme na èqoume anptugma se seir Fourier diakritoÔ qrìnou.
Diakrnoume ti peript¸sei :
1. To s ma enai periodikì me jemeli¸dh perodo N kai 0 = 2=N . Me th bo jeia
th sqèsh tou Euler to s ma grfetai
x(n) = sin( 0 n)
= 21j ej 2N n 21j e j 2N n (5.1.5)
Sugkrnonta thn (5.1.5) me thn exswsh sÔnjesh (5.1.3), parathroÔme ìti oi
suntelestè enai a1 = 1=(2j ) kai a 1 = 1=(2j ) kai ak = 0 gia thn upìloiph
perodo. Oi suntelestè auto epanalambnontai me perodo sh me N ètsi èqoume:
akN +1 =
1 kai akN 1 = 1 ; k = 0; 1; 2; : : :
2j 2j (5.1.6)
Sto Sq ma 5.1 èqoun sqediaste to s ma x(n) kai oi suntelestè th seir Fourier
diakritoÔ qrìnou me N = 5 oi opooi epanalambnontai. Prosoq ìmw sthn
exswsh sÔnjesh uprqoun mìno oi suntelestè mia periìdou.
2. An 2= 0 = N=m, dhlad , rhtì 0 = (2m)=N . Upojètoume ìti
arijmì , tìte
ta m kai N den èqoun koinì pargonta ètsi to x(n) èqei jemeli¸dh perodo sh
me N . Me th bo jeia th sqèsh tou Euler to s ma grfetai
x(n) = sin
2 m
n
N
= 21j ejm 2N n 21j e jm 2N n (5.1.7)
apì ìpou èqoume: am = 1=(2j ) a m = 1=(2j ) kai ak = 0 gia thn upìloiph
perodo. Sto Sq ma 5.2 èqoun sqediaste to s ma x(n) kai oi suntelestè Fourier
ìtan m = 3 kai N = 5. Lìgw periodikìthta (N = 5) enai :::a7 = a2 = a 3 =
a 8 = ::: = 1=(2j ), en¸ h exswsh sÔnjesh èqei mìno dÔo ìrou .
140 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
3. ätan to s ma enai mh periodikì, den anaptÔssetai se seir Fourier diakritoÔ
qrìnou.
x(n)
2ð
N x(t)= sin(ù0 t )
Ù0
••• •••
3 4 8 9
0 1 2 5 6 7 10 n
(a)
ak
1 N
••• 2j •••
6 1 4 9
10 9 8 7 5 4 3 2 0 1 2 3 5 6 7 8 10 k
1
2j
(â)
Sq ma 5.1 (a) To s ma x(n) = sin 2N n , ìpou N = 5 kai (b) oi suntelestè Fourier.
x(n)
N m 2ð x(t)= sin(ù0 t )
Ù0
••• •••
1 3 6 8
0 2 4 5 7 9 10 n
(a)
ak
N 1
•••
7
2j •••
8 3 2
10 9 7 6 5 4 2 1 0 1 3 4 5 6 8 9 10 k
1
(â) 2j
Sq ma 5.2 (a) To s ma x(n) = sin m 2N n , ìpou N = 5, m = 3 kai (b) oi suntelestè
Fourier.
Pardeigma 5.1.2
Na breje h parstash se seir Fourier diakritoÔ qrìnou tou periodikoÔ orjog¸niou
kÔmato
x(n) = 1; jnj N1
0; N1 < jnj < N=2 (5.1.8)
me perodo sh me N.
LÔsh To periodikì orjog¸nio s ma diakritoÔ qrìnou fanetai sto Sq ma 5.3. Gia na
upologsoume tou suntelestè Fourier qrhsimopoioÔme thn exswsh anlush
NX1
= N1 = N1
XN1
2 2
k ()
x n e jk N n e jk N n (5.1.9)
n=0 n= N1
Enìthta 5.1 Parstash Periodik¸n Shmtwn - Seir Fourier DiakritoÔ Qrìnou 141
x(n)
-N -N1 0 N1 N n
Sq ma 5.3 To periodikì orjog¸nio kÔma tou Paradegmato 5.1.2.
An jèsoume m = n + N1 èqoume:
2N1
= N1
X
e jk N (m N1 )
2
k
m=0
2N1
= N1 ejk 2N N1 e
X
jk 2N m (5.1.10)
m=0
dhlad , èqoume jroisma twn 2N1 +1 pr¸twn ìrwn gewmetrik proìdou, gia thn opoa
gnwrzoume ìti
(
NX1 N; =1
n = 1 N
; 6= 1 (5.1.11)
n=0 1
àtsi, gia k 6= 0; N; 2N; ::: èqoume
jk 2 (2N1 +1)
k = N1 ejk 2N N1 1 1e e Njk 2N
h i
jk 2N (N1 + 12 ) ejk 2N (N1 + 12 ) e jk N (N1 + 2 )
2 1
1 2
= ejk N N1 e
h i
N e jk 22N ejk 22N e jk 22N
To ginìmeno twn suntelest¸n ak ep to pl jo twn deigmtwn N enai
1
k 2N N1 + 2
sin
N k=
sin k 22N ; k = 1; 2; :::N 1 k 6= 0; N; 2N; ::: (5.1.12)
en¸ ìtan k = 0; N; 2N; ::: èqoume
N k = 2N1 + 1 (5.1.13)
Sto Sq ma 5.4 èqoume thn akolouja tou ginomènou twn suntelest¸n th seir Fourier
diakritoÔ qrìnou ep to pl jo twn deigmtwn tou periodikoÔ orjog¸niou kÔmato gia
difore timè tou N.
H èkfrash twn suntelest¸n th seir Fourier diakritoÔ qrìnou, ìpw aut perigrfe-
tai apì thn (5.1.12), ma epitrèpei na jewr soume to ginìmeno twn suntelest¸n ep to
pl jo twn deigmtwn w degmata th sunrthsh
sin[(2N1 + 1)( =2)℄
sin( =2) (5.1.14)
142 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
Na0
Na1
ðåñéâÜëëïõóá
N=10
0 2ð ð 2ð
10
Na0 Na1
N=20
0 2ð ð 2ð
20
Na0 Na1
N=40
0 2ð ð 2ð
40
Sq ma 5.4 To ginìmeno twn suntelest¸n th seir Fourier diakritoÔ qrìnou ep to pl jo
twn deigmtwn tou periodikoÔ orjog¸niou kÔmato gia N1 = 2 kai N = 10; 20 kai 40.
dhlad ,
N k=
sin [(2N1 + 1)( =2)℄
sin( =2) =k(2=N )
H sunrthsh (5.1.14) enai h peribllousa twn suntelest¸n th seir Fourier diakri-
toÔ qrìnou tou periodikoÔ orjog¸niou kÔmato .
Sto Sq ma 5.5 eikonzetai to periodikì orjog¸nio kÔma diakritoÔ qrìnou ìpw
upologzetai apì to merikì jroisma
M
X
x^(n) = jk 2 n
ke N (5.1.15)
k= M
Gia M =4
parathroÔme ìti to merikì jroisma (5.1.15) dnei to s ma x n , dhlad , ()
se antjesh me th suneq perptwsh, den emfanzetai fainìmeno Gibbs. Genik den em-
fanzetai fainìmeno Gibbs sthn seir Fourier diakritoÔ qrìnou. Autì ofeletai sto
()
gegonì ìti kje periodik akolouja x n enai pl rw orismènh apì èna pepera-
smèno arijmì N tim¸n, dhlad , ton arijmì twn tim¸n th akolouja se ma perodo.
H (5.1.4) apl metasqhmatzei th seir twn N tim¸n se mia isodÔnamh seir N sunte-
lest¸n Fourier kai h (5.1.3) dnei to trìpo ankthsh twn tim¸n th akolouja x n ()
me th bo jeia ma peperasmènh seir . An N enai perittì arijmì kai jèsoume
M =(N 1) 2
= sthn (5.1.15), to jroisma apoteletai akrib¸ apì N ìrou . E-
pomènw apì thn exswsh sÔnjesh èqoume x n ^( ) = ( )
x n . En N enai rtio arijmì ,
Enìthta 5.2 Metasqhmatismì Fourier DiakritoÔ Qrìnou 143
x(n)
M=1
-18 -9 0 9 18 n
x(n)
M=2
-18 -9 0 9 18 n
x(n)
M=3
-18 -9 0 9 18 n
x(n)
M=4
-18 -9 0 9 18 n
Sq ma 5.5 To periodikì orjog¸nio kÔma diakritoÔ qrìnou, ìpw upologzetai apì to merikì
jroisma (5.1.15), ìtan N = 9 kai 2N1 + 1 = 5 gia M = 1; 2; 3 kai 4.
PM jk 2 n
tìte to jroisma x n ^( ) = k= M +1 k e N me M = 2
N= perièqei N ìrou kai
katal goume sthn exswsh sÔnjesh (5.1.3). àtsi x n xn. ^( ) = ( )
Antjeta, èna periodikì s ma suneqoÔ qrìnou kat th dirkeia mia periìdou lam-
bnei peire suneqe timè epomènw , apaitetai peiro arijmì suntelest¸n Fouri-
er
PN
gia thn anaparstas tou. Genik ìle oi peperasmènou m kou seirè xN t ()=
k= N k e ()
jk!0 t den dnoun akrib¸ ti timè tou x t kai parousizoun fainìmena
sÔgklish .
5.2 METASQHMATISMOS FOURIER DIAKRITOU QRONOU
()
Lambnoume s ma diakritoÔ qrìnou x n peperasmènh dirkeia epomènw , uprqei
akèraio N1 tètoio ¸ste x n ( )=0 jj
gia kje n > N1 . àstw N > N1 . Sqhmatzoume2
()
thn periodik epèktash tou x n , blèpe Sq ma 5.6.
1
X
x~(n) = x(n rN ) (5.2.1)
r= 1
To s ma x~(n) èqei perodo N , sumpptei me to x(n) sto disthma N=2 n N=2
144 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
x(n)
-N1 0 N1 n
x(n)
N -N1 0 N1 N n
Sq ma 5.6 (a) To s ma x(n) kai (b) to s ma x~(n), h periodik epèktash tou x(n).
kai èqei anptugma se seir Fourier diakritoÔ qrìnou
X 2
x~(n) = ak ejk N n (5.2.2)
k=hN i
Oi suntelestè th seir Fourier diakritoÔ qrìnou dnontai apì th sqèsh:
= N1
X
ak x~(n)e jk 2N n
n=hN i
= N1
XN1
x(n)e jk 2N n
n= N1
1
= N1
X
x(n)e jk 2N n (5.2.3)
n= 1
Orzoume th migadik sunrthsh X( ) th pragmatik metablht
1
X
X( )= x(n)e j n (5.2.4)
n= 1
h opoa enai periodik me perodo 2, opìte parathroÔme ìti oi suntelestè ak
mporoÔn na ekfrastoÔn w
1
ak = X (k 0 ) (5.2.5)
N
dhlad , oi suntelestè ak lambnontai apì deigmatolhya th sunrthsh X( ) me
perodo deigmatolhya 0 = 2=N .
Enìthta 5.2 Metasqhmatismì Fourier DiakritoÔ Qrìnou 145
àtsi, to s ma x ~(n), dhlad , h periodik epèktash tou x(n), dnetai apì th sqèsh
x~(n) =
X 1 X (k )ejk 0n
N 0 (5.2.6)
k=hN i
kai, epeid 0 = 2=N 1=N = 0 =2, èqoume
x~(n) =
1 X X (k 0 )ejk 0n 0
2 k=hN i (5.2.7)
ParathroÔme ìti, ìtan N ! 1, tìte x~(n) = x(n), dhlad ,
x(n) = lim x~(n) = lim
1 X X (k )ejk 0n
N !1 N !1 2
0 0
k=hN i
= 21 X ( )ej n d
Z
(5.2.8)
2
ìpou qrhsimopoi jhke to Sq ma 5.7, gia na èqoume thn teleutaa isìthta. àtsi èqoume
ti exis¸sei sÔnjesh kai anlush gia to metasqhmatismì Fourier diakritoÔ qrìnou
(discrete time Fourier transform (DTFT)).
x(n) =
1 Z
2 2 X ( )e
j nd ; Exswsh sÔnjesh (5.2.9)
1
X
X( )= x(n)e j n Exswsh anlush (5.2.10)
n= 1
X(Ù)e jÙn
X(kÙ0)e jkÙ n0
kÙ0
-2ð -ð 0 ð 2ð Ù Sq ma 5.7 H grafik ermhnea tou
P
k=hN i X (k 0 )e
Ù0 ajrosmato
jk 0 n 0 .
H exis¸sh (5.2.9) ekfrzei thn anlush tou s mato diakritoÔ qrìnou x n se ek- ()
jetik s mata ej n , ta opoa ektenontai se èna suneqè fsma kuklik¸n suqnot twn
[0 2 )
periorismèno sto disthma ; , gegonì pou ofeletai sthn periodikìthta th
sunrthsh X . ( )
H sunrthsh X ( )
h opoa orzetai apì thn (5.2.10) enai o metasqhmatismì
Fourier diakritoÔ qrìnou suqn anafèretai kai w fsma tou x n , giat perièqei thn ()
146 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
()
plhrofora pw to x n suntjetai apì ekjetik s mata diaforetik¸n suqnot twn.
To fasmatikì perieqìmeno sto apeirostì disthma suqnot twn ; d enai [ + ℄
( )
X kai h suneisfor twn suqnot twn P;
1
[
d èqei plto X + ℄ d =. ( )( 2 )
Shmei¸netai ìti to jroisma X ( )=
n= 1 x n e ()
j n uprqei ìtan
1
X 1
X
jx(n)j < 1 jx(n)j2 < 1 (5.2.11)
n= 1 n= 1
dhlad , h akolouja èqei peperasmènh enèrgeia.
O metasqhmatismì Fourier diakritoÔ qrìnou èqei dÔo diaforè apì to metasqh-
matismì Fourier suneqoÔ qrìnou, oi opoe ofelontai sto gegonì ìti ta ekjetik
s mata diakritoÔ qrìnou enai periodik me perodo . 2
1. OX ( ) ()
enai periodikì en¸ o X ! ìqi. àtsi to olokl rwma sthn exswsh
sÔnjesh (5.2.9) èqei peperasmèno disthma olokl rwsh .
2. Sthn perptwsh tou suneqoÔ qrìnou, oi qamhlè suqnìthte perigrfontai apì
diast mata mikroÔ eÔrou kentrarismèna sthn arq twn suntetagmènwn, en¸ oi
uyhlè suqnìthte enai topojethmène makri apì thn arq twn axìnwn pro ta
arister pro ta dexi tou xona suqnot twn. Sthn perptwsh tou diakritoÔ
qrìnou h periodikìthta tou metasqhmatismoÔ Fourier epibllei mia diaforetik
eikìna. Oi qamhlè suqnìthte antistoiqoÔn se diast mata gÔrw apì th jèsh
=0 , , lìgw th periodikìthta , gÔrw apì ti jèsei = 2
k. Oi uyhlè
suqnìthte topojetoÔntai kont se perioqè ìpou , = k = (2 + 1)
,
blèpe Sq ma 5.8.
Pardeigma 5.2.1
Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou tou aitiatoÔ ekjetikoÔ
s mato diakritoÔ qrìnou
x(n) = an u(n); jaj < 1 kai a 2 C (5.2.12)
LÔsh Me th bo jeia th (5.2.10) o metasqhmatismì Fourier diakritoÔ qrìnou enai
1
X X1 n
X( )= an u(n)ej n = ae j (5.2.13)
n= 1 n=0
To jroisma apotele gewmetrik seir h opoa sugklnei, epeid
ae j = jaj e j = jaj < 1
O metasqhmatismì Fourier diakritoÔ qrìnou tou aitiatoÔ ekjetikoÔ s mato enai
X( ) = 1 ae1 j (5.2.14)
Enìthta 5.2 Metasqhmatismì Fourier DiakritoÔ Qrìnou 147
x1(n) X1(Ù)
0 n -3ð -2ð -ð 0 ð 2ð 3ð Ù
(a) (â)
x2(n)
X2(Ù)
0 n -3ð -2ð -ð 0 ð 2ð 3ð Ù
(ã) (ä)
Sq ma 5.8 (a) S ma diakritoÔ qrìnou x1 (n) pou èqei (b) MF diakritoÔ qrìnou X1 ( ) me
qamhlè suqnìthte . (g) S ma diakritoÔ qrìnou x2 (n) pou èqei (d) MF diakritoÔ qrìnou X2 ( )
me uyhlè suqnìthte .
Sto Sq ma 5.9 èqoun sqediaste to mètro kai h fsh tou metasqhmatismoÔ Fourier
diakritoÔ qrìnou tou aitiatoÔ ekjetikoÔ s mato diakritoÔ qrìnou gia pragmatikè
timè tou a, me 0 < a < 1 kai 1 < a < 0.
X(Ù) 0<a <1 X(ù) -1< a<0
1 1
1 a 1 a
1 1
1 a 1 a
-2ð -ð 0 ð 2ð Ù -2ð -ð 0 ð Ù
arg X(Ù) arg X(Ù)
tan1 a tan1 a
1 a
2
1 a2
-2ð 2ð
-ð 0 ð 2ð Ù -2ð -ð 0 ð Ù
tan1 a tan1 a
1 a 2 1 a
2
Sq ma 5.9 To mètro kai h fsh tou metasqhmatismoÔ Fourier diakritoÔ qrìnou tou aitiatoÔ
ekjetikoÔ s mato x(n) = an u (n); jaj < 1; a 2 R.
148 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
Pardeigma 5.2.2
Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou tou s mato
x(n) = ajnj ; jaj < 1 kai a 2 R (5.2.15)
LÔsh O metasqhmatismì Fourier diakritoÔ qrìnou enai
1
X X1 X1
X( )= ajnj e j n = a n e j n + an e j n
n= 1 n= 1 n=0
X1 X1
= an ej n + an e j n
n=1 n=0
X1 X1
= an ej n 1 + an e j n
n=0 n=0
X1 n X1 n
= aej + ae j 1
n=0 n=0
= 1 1aej + 1 ae1 j 1
2
= 1 + a21 2aa os( ) (5.2.16)
Sto Sq ma 5.10 eikonzetai to s ma kai o metasqhmatismì Fourier diakritoÔ qrìnou
tou. ParathroÔme ìti h X( ) enai pragmatik sunrthsh tou , afoÔ a enai prag-
matikì arijmì . Genik ta rtia s mata èqoun pragmatikoÔ metasqhmatismoÔ Fourier
diakritoÔ qrìnou .
x ( n)
-20
- -15
- -10
- -5
- 0 5 10 15 20 n
X(Ù)
1 a
1 a
Sq ma 5.10 To s ma x(n) = ajnj
-2ð -ð 0 ð 2ð Ù kai to fsma tou.
Pardeigma 5.2.3
Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou tou orjog¸niou palmoÔ
x(n) = 1; jnj N1
0; jnj > N1 (5.2.17)
Enìthta 5.2 Metasqhmatismì Fourier DiakritoÔ Qrìnou 149
LÔsh O metasqhmatismì Fourier diakritoÔ qrìnou tou orjog¸niou palmoÔ diakritoÔ
qrìnou enai
N1 2N1 2N1
X m=n+N1 X
j (m N1 )
X
X( )= e j n = e = ej N1 e j m
n= N1 m=0 m=0
An efarmìsoume thn (5.1.11) gia N 1 = 2N1 N = 2N1 + 1 kai gia thn perptwsh
pou 6= 0, o metasqhmatismì Fourier diakritoÔ qrìnou apokt th morf
X( ) = ej N1
1 e j (2N1 +1)
1 ej
e (N1 + 2 ) ej (N1 + 2 ) e j (N1 + 2 )
j 1 1 1
= ej N1
e j 12 ej 12 e j 21
= sin N1 + 12
sin 12 (5.2.18)
Sto Sq ma 5.11 èqei sqediaste o orjog¸nio palmì kai to fsma tou.
X(Ù)
x(n) 2Í+1
1
2ð
2Í+1
1
-N1 0 N1 n 2ð ð 0 ð 2ð Ù
Sq ma 5.11 O orjog¸nio palmì diakritoÔ qrìnou kai to fsma tou.
Parathr sei
1. Gia th tim =0
o metasqhmatismì Fourier diakritoÔ qrìnou enai X (0) =
2 +1
N1 .
2. Oi timè pou mhdenzoun ton X ( )
enai oi suqnìthte gia ti opoe N1 sin[ ( +
1 2)℄ = 0
= , dhlad , N1 = ( + 1 2) = ) =
2N21+1 ; Z . 2
3. äso megalÔtero enai to eÔro N1 2 +1 tou palmoÔ, tìso megalÔtero enai o
( )
arijmì twn suqnot twn pou mhdenzoun ton X , tìso mikrìtero to eÔro tou
kentrikoÔ loboÔ kai tìso megalÔterh h tim tou sto mhdèn.
4. Gia N1 !1 o metasqhmatismì Fourier diakritoÔ qrìnou tenei pro th sunrth-
sh dèlta.
5. H anakataskeu tou s mato apì suqnìthte j j
W dnei to s ma:
x^(n) =
1 Z W
2 W X ( )e
j nd
150 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
6. gia W = , dhlad , ìtan qrhsimopoioÔntai ìle oi suqnìthte , enai x^(n) =
x(n). ParathroÔme ìti den èqoume emfnish fainomènwn Gibbs.
Pardeigma 5.2.4
Na upologiste to s ma diakritoÔ qrìnou x(n), tou opoou o metasqhmatismì Fourier
diakritoÔ qrìnou enai orjog¸nio periodikì kÔma (Sq ma 5.12a), dhlad ,
X( ) = 01;; W
j jW
<j j (5.2.19)
X(Ù)
1
2ð ð W 0 W ð 2ð Ù
x(n)
W
ð
ð 0 ð n
W W
Sq ma 5.12 O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato sto Pardeigma 5.2.4
kai h apokatstas tou sto qrìno.
LÔsh To s ma x(n) lambnetai apì ton X( ) mèsw tou antistrìfou metasqhma-
tismoÔ Fourier diakritoÔ qrìnou,
x(n) =
1 Z W ej nd = sin(n
W n)
2 W (5.2.20)
ParathroÔme anlogh sumperifor me aut tou Paradegmato 3.3.4.
Pardeigma 5.2.5
1. Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou tou s mato x(n) =
Æ(n) kai tou olisjhmènou monadiaou degmato .
2. Na gnei h anakataskeu tou s mato x(n) apì to fsma tou.
LÔsh
1. Epeid x(n) = 0 gia kje n 6= 0, brskoume X ( ) = x(0)ej0 = 1, dhlad , to
fsma tou monadiaou degmato ektenetai se ìle ti suqnìthte . Genikìtera to
fsma tou olisjhmènou monadiaou degmato enai
x(n) = Æ(n k) F! X ( )=e jk (5.2.21)
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 151
To mètro tou fsmato enai
jX ( )j = 1 (5.2.22)
H fsh tou fsmato enai grammik se ma perodo.
arg X ( ) = k (5.2.23)
Sto Sq ma 5.13 èqoun sqediaste to mètro kai h fsh tou MF diakritoÔ qrìnou
tou olisjhmènou kat k degmata monadiaou degmato .
X(Ù)
1
-2ð -ð 0 ð 2ð Ù
arg X(Ù)
Sq ma 5.13 To mètro kai h fsh tou MF
-2ð -ð 0 ð 2ð Ù diakritoÔ qrìnou tou monadiaou olsjh-
mènou degmato .
2. H anakataskeu tou x(n) apì to fsma tou enai
= 21
Z W
x^(n) ej nd
W
= sin( W n)
(5.2.24)
n
Sto Sq ma 5.14 uprqei to x^(n) gia diaforetikè timè tou W . ParathroÔme ìti
x^(n) = Æ(n) ìtan W = .
5.3 IDIOTHTES TOU METASQHMATISMOU FOURIER DIAKRITOU
QRONOU
O metasqhmatismì Fourier diakritoÔ qrìnou parousizei dÔo idiìthte diaforetikè
apì to metasqhmatismì Fourier suneqoÔ qrìnou, ti opoe parajètoume ston Pnaka
5.1.
H pr¸th diafor uprqei sthn idiìthta diafìrish sto pedo tou qrìnou, ìpou èna
s ma diakritoÔ qrìnou den enai diaforsimo sunart sei tou qrìnou, epeid lambnei
diakritè timè .
H deÔterh diafor brsketai sthn idiìthta th allag klmaka . Sthn perptwsh
( )
tou suneqoÔ qrìnou ìpou to s ma x at èqei pntote ènnoia kai antiproswpeÔei
1 1
sumpesh en a > kai diastol en a < . To antstoiqo s ma x dn den orzetai ( )
en o d den enai akèraio . Epsh , ìpw ja doÔme, uprqei diafor kai sthn idiìthta
th olokl rwsh .
152 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
x(n) x(n)
1 3
4 W= ð4 8 W= 38ð
x(n)
3
x(n) 4 W= 3ð
1 4
2 W= ð2
x(n)
x(n) 1
7 W= 78ð
8 W=ð
Sq ma 5.14 H prosèggish tou monadiaou degmato apì thn x^(n) = sin(W n)=n gia
difore timè th paramètrou W.
5.3.1 Apodektish sto qrìno
Ma kathgora apì sust mata apaitoÔn antiproswpeutik apoj keush kai metdosh
shmtwn me diaforetikoÔ rujmoÔ deigmatolhya .
()
àstw ìti to s ma diakritoÔ qrìnou x n prokÔptei apì èna analogikì s ma s t ()
me rujmì deigmatolhya Fs =1 ( )= ( )
=Ts , dhlad , x n s nTs . An o rujmì elattwje
~ =1 ~
se Fs =Ts , tìte to yhfiakì s ma enai
!
T~
s(nT~s ) = s n s Ts = s(nMTs) = x(nM ) = xM (n) (5.3.1)
Ts
ìpou o akèraio M orzetai w o lìgo twn rujm¸n deigmatolhya M Ts =Ts =~ =
~ 1 ()
Fs =Fs > . ParathroÔme ìti to s ma xM n lambnetai me deigmatolhya tou
()
x n gia kje M degmata. H elttwsh tou rujmoÔ deigmatolhya antistoiqe se
apodektish sthn anaparstash diakritoÔ qrìnou. Sto Sq ma 5.15 fanetai o trìpo
()
me ton opoo prokÔptei h apodekatismènh morf x2 n tou s mato x n . Gia na ka- ()
jorsoume ta apotelèsmata th apodektish sto pedo suqnot twn orzoume to s ma
() ()
z n to opoo sumpptei me to x n gia kje tim tou n pou enai pollaplsio tou M
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 153
x(n)
-8 -6 -4 -2 0 2 4 6 8 n
x2(n)
-8 -6 -4 -2 0 2 4 6 8 n
z(n)
-8 -6 -4 -2 0 2 4 6 8 n
Sq ma 5.15 Apodektish sto qrìno (a) to s ma x(n), (b) h apodekatismènh morf x2 (n)
kai (g) to bohjhtikì s ma z (n).
kai enai mhdèn opoud pote alloÔ, dhlad ,
z (n) = x(n); an n = 0modM
0; alli¸
(5.3.2)
O metasqhmatismì Fourier diakritoÔ qrìnou XM ( ) tou s mato xM (n) enai
1
X
XM ( ) = xM (n)e j n
n= 1
1
X
= x(Mn)e j n
n= 1
m=Mn X
= x(m)e
m
j M
m=0modM
Enai ìmw
1
X
Z
M
= z (m)e jMm
m= 1
1
X
= x(m)e jMm
m=0modM
154 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
ètsi
XM ( )=Z (5.3.3)
M
Ja ekfrsoume to fsma tou apodekatismènou s mato se sqèsh me to arqikì. Enai
gnwstì ìti
1 X1
M
2
1; an n = 0modM
ej M kn = 0; (5.3.4)
M k=0 alli¸
àtsi to s ma z (n) mpore na grafe w
1 X1
M
2
z (n) = x(n) ej M kn
M k=0
kai o metasqhmatismì Fourier diakritoÔ qrìnou enai:
1
X 1
X 1 X1
M
2
Z( )= z (n)e j n = x(n) ej M kne j n
n= 1 n= 1 M k=0
X1 X
1
= M1
M
x(n)e j ( M )
2 k n
k=0 n= 1
X1 2 k
= M1
M
X (5.3.5)
k=0
M
Sunduzonta thn teleutaa exswsh me thn XM ( ) = Z M èqoume:
1 X1
M
2 k
XM ( ) = X (5.3.6)
M M k=0
M
To apodekatismèno fsma lambnetai me dieÔrunsh tou fsmato X kat M , ( )
2 (2
metatìpish kat =M , =M , ..., =M M )2 (2 )(
kai upèrjesh. H diadikasa 1)
apeikonzetai sto Sq ma 5.16 gia M . =2
5.3.2 Parembol
H mèjodo th parembol pragmatopoie aÔxhsh tou rujmoÔ deigmatolhya . àstw
() ~( )
ta s mata x n kai x n ta opoa prokÔptoun apì to analogikì s ma s t me diafore- ()
tikoÔ rujmoÔ deigmatolhya , dhlad ,
x(n) = s(nTs)
x~(n) = s(nT~s) (5.3.7)
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 155
X(Ù)
-3ð -2ð -ð 0 ð 2ð 3ð Ù
(á)
X2(Ù)
2(
×( Ù × ( Ù-2ð
2 (
1 1
2 2
-3ð -2ð -ð 0 ð 2ð 3ð Ù
(â)
Sq ma 5.16 (a) To arqikì fsma X( ) kai (b) to fsma tou apodekatismènou s mato
XM ( ) gia M = 2.
ìpou Fs =1 ~ =1 ~ ~
=Ts kai Fs =Ts me Fs < Fs Ts > Ts kai èqoun lìgo Fs =Fs L > .~ ~ = 1
H aÔxhsh tou rujmoÔ deigmatolhya kat èna pargonta L apaite upologismì tou
()
x n sti timè n=L h opoa enai efikt mìno en to n enai pollaplsio tou L. Oi
upìloipe timè ja prèpei na paremblhjoÔn. àtsi orzoume to s ma
x n = 0modL
xL (n) = L ; an n
0; alli¸
(5.3.8)
()
Sto Sq ma 5.17 pargoume to s ma x2 n pargetai apì to s ma x n parembllon- ()
()
ta èna mhdenikì anmesa se diadoqikè timè tou x n . Me anlogo trìpo pargetai
()
kai to s ma x3 n .
To fsma tou s mato xL n enai ()
1
X 1
X
XL ( )= xL (n)e j n = xL (kL)e j kL
n= 1 k= 1
1
X
kL
= x
L
e j kL
k= 1
1
X
= x(k)e j (L )k
k= 1
= X (L ) (5.3.9)
ParathroÔme ìti to fsma XL ( ) lambnetai apì to arqikì fsma X ( ) me allag
klmaka suqnot twn kat L.
156 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
X(Ù)
x(n) 5
2ð
5
0 n 2ð ð 0 ð 2ð Ù
(á)
X2(Ù)=×(2Ù)
x2(n) 5
0 n Ù
2ð ð 0 ð 2ð
(â)
X3(Ù)=×(3Ù)
x3(n) 5
0 n Ù
2ð 4ð 2ð 0 2ð 4ð 2ð
(ã) 3 3 3 3
Sq ma 5.17 (a) To s ma x(n) kai to fsma tou. To s ma xL (n) pou pargetai apì to
x(n) parambllonta L 1 mhdenik anmesa se diadoqikè timè tou x(n) kai to fsma tou
XL( ) gia (b) L = 2 kai (g) L = 3.
5.3.3 jroisma
An x t( ) F! X (!), h idiìthta th olokl rwsh tou metasqhmatismoÔ Fourier suneqoÔ
qrìnou enai
Z t
x( ) d F!
1 X (!) + X (0)Æ(!)
1 j!
()
Me th bo jeia tou s mato x n orzoume to s ma y n ( ) = Pn
m= 1 x m kai parath- ( )
roÔme ìti y n() yn ( 1) = ( )
x n . Efarmìzoume metasqhmatismì Fourier diakritoÔ
qrìnou kai sta dÔo mèlh th teleutaa exswsh kai, lìgw th idiìthta th gram-
mikìthta kai th qronik metatìpish , èqoume:
F [y(n) y(n 1)℄ = F [x(n)℄ Y ( ) e j Y ( ) = X ( )
An 6= 0 èqoume
Y( ) = 1 1e j X( )
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 157
ApodeiknÔetaiy ìti h pl rh sqèsh h opoa ekfrzei thn idiìthta th jroish enai:
n
X 1 1
X
x(m) F! X( ) + X (0) Æ( 2k)
m= 1 1 e j
k= 1
(5.3.10)
5.3.4 Idiìthta th Diamìrfwsh
() ()
Me th bo jeia twn shmtwn x1 n kai x2 n , pou èqoun metasqhmatismoÔ Fourier
diakritoÔ qrìnou X1 kai X2 ( ) ( )
antstoiqa, sqhmatzoume to s ma y n x1 n ( ) = ( )
()
x2 n . O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato y n ja enai: ()
1
X 1
X
Y( )= y(n)e j n = x1 (n) x2 (n)e j n
n= 1 n= 1
1
X 1 Z
= x2 (n)
2 2 X1()e d e
jn j n
n= 1 " #
1
= 21 X1 ()
Z X
x2 (n) ej ( )n d
2 n= 1
1 Z
= 2 X1 ()X2 ( ) d (5.3.11)
2
H teleutaa exswsh apotele thn twn X1 ( ) kai X2 ( ). H di-
periodik sunèlixh
amìrfwsh s mato diakritoÔ qrìnou me th bo jeia th idiìthta aut epexhgetai
sto pardeigma pou akolouje.
Pardeigma 5.3.1
àstw x1 (n) h periodik akolouja, me perodo 2
x1 (n) = ejn = ( 1)n (5.3.12)
kai to s ma x2 (n); tou opoou o metasqhmatismì Fourier diakritoÔ qrìnou X2 ( )
fanetai sto Sq ma 5.18b. Na prosdioriste grafik o metasqhmatismì Fourier di-
akritoÔ qrìnou tou s mato y(n) = x1 (n) x2 (n).
LÔsh O MF diakritoÔ qrìnou th periodik akolouja x1 (n) enai
1
X
X1 ( ) = 2 Æ( (2r + 1)) (5.3.13)
r= 1
H grafik parstash tou X1 ( ) enai sto Sq ma 5.18a. Sto Sq ma 5.18g èqoume
sqedisei ta X1 () kai X2 ( ). ParathroÔme ìti
X1 () X2 ( ) = 2X2 ( )Æ( ) gia 0 < < 2
y Anafor 5.4 kai 5.5 th proteinìmenh bibliografa
158 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
X1(Ù)
2ð
(á)
-3ð -2ð -ð 0 ð 2ð 3ð Ù
X2(Ù)
1
(â)
-3ð -2ð -ð 0 ð 2ð 3ð Ù
X1(è)
2ð
-3ð -2ð -ð 0 ð 2ð 3ð è
X2(Ù-è) (ã)
1
-3ð -ð ð 3ð
-2ð 0 Ù 2ð è
ðåñéï÷Þ
ïëïêëÞñùóçò
Y(Ù)
1
(ä)
-3ð -2ð -ð 0 ð 2ð 3ð Ù
Sq ma 5.18 H idiìthta th diamìrfwsh diakritoÔ qrìnou. (a) O DTFT tou s mato
x1 (n) = ( 1)n, (b) o DTFT tou s mato x2 (n), (g) oi posìthte oi opoe qreizontai gia ton
prosdiorismì tou periodikoÔ sugkerasmoÔ kai (d) o DTFT tou s mato y(n) = x1 (n)x2 (n) =
( 1)nx2(n)
ètsi èqoume
Z 2
Y( )= X2 ( )Æ( ) = X2 ( ) (5.3.14)
0
O Y( ) èqei sqediaste sto Sq ma 5.18d.
Ja mporoÔsame na broÔme thn teleutaa sqèsh me thn bo jeia th idiìthta th
olsjhsh fsh tou metasqhmatismoÔ Fourier diakritoÔ qrìnou
ejn x(n) = ( 1)n x(n) F! X ( )
ParathroÔme ìti o pollaplasiasmì enì s mato me ( 1)n èqei w apotèlesma thn al-
lag tou pros mou stou perittoÔ ìrou th akolouja . Sto de q¸ro twn suqnot twn
èqei w apotèlesma thn olsjhsh tou periodikoÔ fsmato X2 ( ) kat mis perodo
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 159
PINAKAS 5.4 Idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou
Idiìthta Pedo qrìnou Pedo suqnìthta
Suzuga sto qrìno x? (n) X?( )
Suzuga sth suqnìthta x? ( n) X?()
Anklash x( n) X( )
Grammikìthta ax1 (n)+bx2 (n) aX1 ( )+bX2 ( )
rtio mèro s mato xe (n)= 12 [x(n)+x? ( n)℄ <e[X ( )℄=R( )
Pragmatikì mèro fsmato
Perittì mèro s mato xo (n)= 12 [x(n) x? ( n)℄ j =m[X ( )℄=jI ( )
Fantastikì mèro fsmato
Qronik metatìpish x(n n0 ) e j n0 X ( )
Olsjhsh suqnìthta ej 0 n x(n) X( 0)
X ( )=X ? ( )
<e[X ( )℄=<e[X ( )℄
Pragmatikì s ma x(n)=x? (n) =m[X ( )℄= =m[X ( )℄
jX ( )j=jX ( )j
arg X ( )= arg X ( )
Pn P1
m= 1 x(m) 1+e j X ( )+X (0) k= 1 Æ( 2k)
jroisma 1
x(n)y(n) 1 R
Diamìrfwsh 2 2 X ( )Y () d
Sunèlixh x(n)?y(n) X ( )Y ( )
Apodektish xM (n)=x(Mn) XM ( )= M1 M
P 1
k=0 X M M
2k ( )
Diafìrish sto ( j )k nk x(n) dk X ( )
d k
pedo suqnot twn
Diafor x(n) x(n 1) (1 e j X( ) )
Parembol xM (n)=x Mn( ) X (M )
Je¸rhma Parseval Ex =P1
n 1 jx(n)j
2 Ex = 21 R2 jX ( )j2 d
(dhlad kat p).
Lìgw th periodikìthta thn opoa parousizoun ta fsmata twn
diakrit¸n shmtwn, autì èqei w apotèlesma thn enallag twn uyhl¸n kai qamhl¸n
suqnot twn.
160 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
5.3.5 O metasqhmatismì Fourier diakritoÔ qrìnou gia periodik s mata
Ja prosdiorsoume to s ma x (n) tou opoou to fsma enai h periodik epèktash th
sunrthsh dèlta, dhlad ,
1
X
X( )= Æ( 2k) (5.3.15)
k= 1
Me th bo jeia tou antstrofou metasqhmatismoÔ Fourier diakritoÔ qrìnou èqoume
x(n) =
1 Z
2 X ( )e d
j n
1 Z X 1
= 2 Æ( 2k)ej nd (5.3.16)
k= 1
2
Epeid kje disthma me m ko perièqei ma mìno sunrthsh dèlta apì ton kroustikì
surmì tou ajrosmato , (dhlad , sto disthma ( )
; uprqei ma sunrthsh dèlta
sth jèsh =0), èqoume:
x(n) =
1 Z
= 21 ej0n = 21
2 Æ( )e
j nd
àtsi èqoume to zeÔgo metasqhmatismoÔ Fourier:
1
X
x(n) = 1 F! X ( ) = 2 Æ( 2k) (5.3.17)
k= 1
Lìgw th idiìthta th olsjhsh sto pedo twn suqnot twn èqoume:
1
X
x(n) = ej 0 n F! X ( ) = 2 Æ( 2k)
0 (5.3.18)
k= 1
Sto Sq ma 5.19 èqei sqediaste o metasqhmatismì Fourier diakritoÔ qrìnou tou s -
mato x n( )= ej 0 n .
X(Ù)
2ð
Ù0-4ð Ù0-2ð 0 Ù0 Ù0+2ð Ù0+4ð Ù
Sq ma 5.19 O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato x(n) = ej 0 n .
Enìthta 5.3 Idiìthte tou MetasqhmatismoÔ Fourier DiakritoÔ Qrìnou 161
ParathroÔme ìti, epeid to s ma suneqoÔ qrìnou x t ej!0 t èqei metasqhma- ()=
tismì Fourier ma sunrthsh dèlta sth suqnìthta ! !0 , to s ma diakritoÔ qrìnou =
( )=
xn j n
e , lìgw th periodikìthta e
0 j 0 n e +2r)n , èqei metasqhmatismì
j ( 0 =
Fourier diakritoÔ qrìnou èna kroustikì surmì ston opoo ta kroustik s mata enai
topojethmèna sti suqnìthte 0 ; 0 ; 0 ; ::: 2 4
Gnwrzoume ìti kje periodikì s ma diakritoÔ qrìnou me perodo N anaptÔssetai
se seir Fourier diakritoÔ qrìnou
NX1
2
x(n) = am ejm N n (5.3.19)
m=0
x(n) = a0 + a1 ej N n + a2 ej 2 N n + ::: 1 ej (N 1) N n
2 2 2
+ aN (5.3.20)
kai o metasqhmatismì Fourier diakritoÔ qrìnou enai:
1
X
X( ) = a0 2Æ( 2k)
k= 1
1
X
2 2k
+a1 2Æ N
k= 1
..
.
1
X
2
+aN 1 2Æ (N 1) N 2k
k= 1
Efarmog twn parapnw sqèsewn gnetai sto Sq ma 5.20 gia N . Lìgw th peri- =4
odikìthta twn suntelest¸n a0 ; a1 ; :::; aN 1 , dhlad , al aNk+l a Nk+l , 2 =2 =2
= 0 1 2
k ; ; ; ::: kai l ; ; :::; N =0 1 1
apì thn teleutaa sqèsh èqoume
NX1 1
am
2
ejm N n F! 2 X
al Æ l
2
(5.3.21)
m=0 l= 1 N
Pardeigma 5.3.2
Oi suntelestè Fourier th periodik epèktash tou monadiaou degmato periìdou N
(Sq ma 5.21a)
1
X
x(n) = Æ(n kN ); k = 0; 1; 2; ::: (5.3.22)
k= 1
162 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
∞
2ðá0 Ó ä(Ù-2ðk)
k=-∞
2ðá-4=2ðá0 2ðá0 2ðá4=2ðá0
-2ð 0 2ð Ù
∞
2ðá1 Ó ä(Ù- 2ð
k=-∞ Í -2ðk
(
2ðá-3=2ðá1 2ðá1 2ðá5=2ðá1
2ð 2ð 2ð Ù
(-N+1) Í (N+1) Í
Í
∞
2ðá2 Ó ä( Ù-2 2ð
k=-∞ Í -2ðk
(
2ðá-6=2ðá2 2ðá-2=2ðá2 2ðá2 2ðá6=2ðá2
2ð 2ð 2ð 2ð Ù
(-2N+2) Í (-N+2) Í 2Í (N+2) Í
2ðá3 Ó ä( Ù-3 Í -2ðk (
∞ 2ð
k=-∞
2ðá-5=2ðá3 2ðá-1=2ðá3 2ðá3 2ðá7=2ðá3
2ð 2ð 2ð 2ð Ù
(-2N+3) Í (-N+3) Í 3Í (N+3) Í
N-1
2ð Ó ál ä(Ù-l 2ð
Í(
l=0
2ðá0
2ðá1 2ðá 2ðá3
2
-2ð 0 2ð 2ð 2ð 2ð Ù
Í 2Í 3Í
x(n) =
PN 1 jm 2 n
Sq ma 5.20 O DTFT enì periodikoÔ s mato diakritoÔ qrìnou m=0 am e N
ìpou N = 4.
enai
= N1
X 2
ak x(n)e jk N n
n=hN i
NX1 X 1
= N1 2
Æ(n kN )e jk N n
n=0 k=1
= 1 N
(5.3.23)
Enìthta 5.4 Deigmatolhpthmèna S mata sto Pedo Suqnot twn 163
Epomènw , h periodik epèktash tou monadiaou degmato anaptÔssetai se seir Fouri-
er diakritoÔ qrìnou w
1 1
X
x(n) = ejk(2=N )n (5.3.24)
N k= 1
O metasqhmatismì Fourier diakritoÔ qrìnou th periodik epèktash tou monadiaou
degmato lìgw th (5.3.21) enai
1
2k
) = 2N
X
X( Æ (5.3.25)
k= 1 N
Sto Sq ma 5.21b èqei sqediaste o metasqhmatismì Fourier diakritoÔ qrìnou tou s -
mato x(n).
x(n)
1
-N 0 N n
(a)
X(Ù)
2ð
Í
4ð 2ð 0 2ð 4ð Ù
Í Í Í Í
(â)
Sq ma 5.21 (a) H periodik epèktash tou monadiaou degmato kai (b) to fsma th .
Pardeigma 5.3.3
Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou th monadiaa bhmatik
akolouja .
LÔsh Gnwrzoume ìti x(n) = Æ(n) F! X ( ) = 1. Me th bo jeia th idiìthta tou
ajrosmato o metasqhmatismì Fourier diakritoÔ qrìnou th bhmatik akolouja
u(n) enai
n
X 1 1
X
Æ(m) = u(n) F! + Æ( 2k)
m= 1 1 e j k= 1
(5.3.26)
Ston Pnaka 5.2 parousizontai merik zeÔgh metasqhmatism¸n Fourier diakritoÔ
qrìnou.
5.4 SHMATA APO DEIGMATOLHYIA STO PEDIO SUQNOTHTWN
()
Dnetai to analogikì s ma xa t to opoo èqei metasqhmatismì Fourier X ! . An ()
()
lboume degmata tou xa t me perodo Ts , dhlad , an metr soume ti timè tou s -
164 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
PINAKAS 5.5 DTFT basik¸n sunart sewn diakritoÔ qrìnou
A/A Pedo qrìnou Pedo suqnìthta
1
P
k=<N> ak
( )
2
ejk N n
P1
2 k= 1 ak Æ 2k
N
2 ej 0 n 2 P1l= 1 Æ ( 0 2l)
3 os( 0n) P
1l= 1 [Æ( 0 2l)+Æ( + 0 2l) ℄
4 sin( 0n) P
1
j l= 1 [Æ(
P1
0 2l) Æ( + 0 2l) ℄
5 x(n) = 1 2 k= 1 Æ( 2k)
8
< 1; jnjN1 2k
6 x(n+N )=x(n)=:
0; N1 <jnjN=2
2 P1k= 1 ak Æ N
P1 2 P1 Æ 2k
7 k= 1 Æ (n kN ) N k= 1 N
an u(n); jaj < 1 1 j
8
1 ae
x(n) = 10;; jjnnj N1 sin[ (N1 + 12 )℄
9
j>N1 sin( 2 )
8
sin(W n) = W sin Wn ; < 1; 0j jW
10 n 0<W < X ( +2k)=X ( )=:
0; W <j j
11 Æ(n) 1
u(n) 1j + P1
12 1 e k= 1 Æ( 2k)
13 Æ(n n0 ) e j n0
14 (n + 1)an u(n); jaj < 1 1
(1 ae j )2
(n+r+1)! an u(n); jaj < 1 1
15 n!(r 1)! (1 ae j )r
mato suneqoÔ qrìnou se diakritè qronikè stigmè pou enai pollaplsia th Ts ,
parnoume to s ma diakritoÔ qrìnou
xs (n) = xa (nTs ) (5.4.1)
To qronikì disthma Ts enai gnwstì w perodo deigmatolhya kai fs 1 =
Ts enai
h suqnìthta deigmatolhya . H epilog th Ts ja prèpei na gnetai ètsi, ¸ste na
mh qaje plhrofora pou perièqetai sto analogikì s ma, (dhlad , na enai dunat h
anakataskeu tou apì ta degmat tou), all oÔte na auxhje qwr lìgo h apaitoÔmh
mn mh.
Ja prosdiorsoume th sqèsh anmesa sto metasqhmatismì Fourier diakritoÔ qrìnou
( ) ()
Xs tou s mato xs n , pou èqei proèljei apì deigmatolhya, kai tou antistoqou
Enìthta 5.4 Deigmatolhpthmèna S mata sto Pedo Suqnot twn 165
tou suneqoÔ qrìnou Xa (!). O metasqhmatismì Fourier diakritoÔ qrìnou tou s ma-
()
to xs n enai
1
X
Xs ( )= xs (n)e j n (5.4.2)
n= 1
H exswsh sÔnjesh tou xs(n) enai
xs (n) =
1 Z
2 Xs( )e d
j n (5.4.3)
H exswsh sÔnjesh tou xa (t) enai
xa (t) =
1 Z 1
2 1 Xa (!)e d!
j!t (5.4.4)
Efarmìzoume thn (5.4.4) gia t = nTs
xa (nTs ) =
1 Z 1
2 1 Xa (!)e d!
j!nTs (5.4.5)
H sÔgkrish twn (5.4.5) kai (5.4.3) ma kajodhge sto metasqhmatismì !Ts , pou =
enai h gnwst sqèsh metaxÔ analogik kai yhfiak kuklik suqnìthta (1.4.11).
àtsi h (5.4.5) dnei
xa (nTs) =
1 Z 1
j nd
2Ts 1 Xa Ts e (5.4.6)
H (5.4.6) diafèrei apì thn (5.4.3) w pro ta ìria tou oloklhr¸mato . Qwrzoume to
olokl rwma se jroisma oloklhrwmtwn se diast mata m kou , dhlad , 2
1 X1 Z (2k+1)
xa (nTs ) = j nd
2Ts k= 1 (2k 1) Xa Ts e (5.4.7)
Allag th metablht = 2k odhge sthn
1 Z X1
+ 2
k j
xa (nTs) = nd
2Ts k= 1 Xa Ts e (5.4.8)
H sÔgkrish th (5.4.3) me thn (5.4.8) dnei thn
1 1
X
+ 2k
Xs ( ) = Xa (5.4.9)
Ts k= 1 Ts
166 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
, w pro thn analogik kuklik suqnìthta,
1
xs (n) = xa (nTs ) F! X (!T ) = 1 X X ! + 2k (5.4.10)
s s
Ts k = 1 a Ts
O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato pou èqei proèljei apì
deigmatolhya prokÔptei apì to fsma tou analogikoÔ s mato me ti ex diadikase :
(blèpe Sq ma 5.22)
xa(t) Xá(ù) Õ(Ù)= 1 Xá Tù ((
Ts s
1
1 Ts
0 t ù 0 ù ù ù 0 ù Ù
2 Ts 2 Ts
0 0 0 0
2 2
(a1) (a2) (a3)
Xs(Ù)
xs(n)
1
Ts
0 n -2ð -ð ù 0 ù ð 2ð Ù
2 Ts 2 Ts
0 0
(â1) (â2)
Xs(Ù)
xs(n)
1
Ts
0 n -4ð -2ð ù 0 ù 2ð 4ð Ù
2 Ts 2 Ts
0 0
(ã1) (ã2)
Sq ma 5.22 ( 1) Analogikì s ma, ( 1)
kai ( 1 ) s mata apì deigmatolhya me diafore-
tikì rujmì deigmatolhya . Ta fsmata ( 2 ) tou analogikoÔ s mato , ( 3 ) met thn allag
klmaka , ( 2) olsjhsh kai upèrjesh qwr epikluyh kai ( 2 ) olsjhsh kai upèrjesh me
epikluyh fasmtwn.
- Allag klmaka Xs ( ) ! Y ( ) = Xs( =Ts )
- Olisj sei Y ( ) ! Y ( + 2k)
- Upèrjesh twn olisjhmènwn fasmtwn kai diabjmish me 1=Ts
Enìthta 5.4 Deigmatolhpthmèna S mata sto Pedo Suqnot twn 167
()
Diapist¸noume ìti, an to analogikì s ma xa t èqei periorismèno eÔro suqnot twn,
dhlad , Xa ! ( )=0 j j 2
gia ! > !0 = , kai an gnei deigmatolhya me rujmì deigmato-
lhya megalÔtero apì to eÔro z¸nh tou s mato !0 , to fsma Xa ! diathretai ()
anallowto mèsa sto fsma Xs ( )
twn deigmtwn tou. Ktw apì ti propojèsei
autè , anamènoume ìti to analogikì s ma mpore na anakataskeuaste apì ta degmat
tou. Prgmati,
1 1
X
2 k
Xs (!Ts ) = Xa !+ (5.4.11)
Ts k= 1 Ts
apì thn opoa èqoume gia =Ts < ! =Ts
Xs (!Ts ) =
1 Xa (!) (5.4.12)
Ts
àtsi èqoume gia to analogikì s ma xa (t)
xa (t) =
1 Z 1 Z
Ts =Ts
2 1 Xa (!)e d! = 2 =Ts Xs(!Ts )e d!
j!t j!t (5.4.13)
Lìgw th (5.4.2)
Ts
Z =Ts 1
X
xa (t) = xs (n)e j!Ts n ej!t d!
2 =Ts n= 1
1
X T
Z =Ts
= xa (nTs ) s ej!(t Ts n) d!
n= 1 2 =Ts
=
1
X
xa (nTs )
sin Ts (t nTs)
Ts (t nTs )
n= 1
1
X
t nTs
= xa (nTs )sin
Ts
(5.4.14)
n= 1
Apì th (5.4.14) parathroÔme ìti to anakataskeuasmèno s ma sumpptei me to xa t ()
sti stigmè deigmatolhya (blèpe Sq ma 5.23). Shmei¸netai ìti to jroisma sumpptei
me to arqikì s ma gia ìle ti endimese qronikè stigmè .
5.4.1 Je¸rhma deigmatolhya
An xa (t) analogikì s ma periorismènou eÔrou suqnot twn, dhlad ,
!
Xa (!) = 0 gia j!j > 0
2 (5.4.15)
168 Seir - Metasqhmatismì Fourier DiakritoÔ Qrìnou Keflaio 5
kai o rujmì deigmatolhya ikanopoie to krit rio Nyquist
!0
2 (5.4.16)
Ts
()
tìte to s ma xa t anakataskeuzetai apì ta degmat tou sÔmfwna me thn (5.4.14).
2
H suqnìthta =Ts onomzetai suqnìthta Nyquist.
xa(t)
0 t
(á)
xs(n)
0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts t
(â)
x(t)
x (Ts( sinc t-Ts
( ( x (2Ts ( sinc t-2Ts
( ( x (3Ts ( sinc t-3Ts
( (
Ts Ts Ts
t
0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts
( ã)
Sq ma 5.23 H anakataskeu tou analogikoÔ s mato apì ta degmat tou. (a) To analogikì
s ma xa (t), (b) to s ma diakritoÔ qrìnou xs (n) kai (g) h anakataskeu tou analogikoÔ
s mato apì ta degmat tou sÔmfwna me thn exswsh (5.4.14) gia !0 = 2=Ts.
5.4.2 Oi Suntelestè Fourier w degmata se ma perodo tou metasqhmatismoÔ
Fourier
àstw to periodikì s ma x ~(n) me perodo N kai to s ma x(n), pou antistoiqe se ma
~( )
perodo tou x n , dhlad ,
x(n) = 0x~;(n); M nM +N 1
alli¸
, ìpou M pragmatikì akèraio (5.4.17)
Gnwrzoume (5.2.5)
Nak = X k
2
(5.4.18)
n
Enìthta 5.4 Deigmatolhpthmèna S mata sto Pedo Suqnot twn 169
ìpou ak enai oi suntelestè th seir Fourier diakritoÔ qrìnou tou x n , kai X ~( ) ( )
()
enai o metasqhmatismì Fourier diakritoÔ qrìnou tou x n . Me th bo jeia tou Pa-
radegmato 5.4.1 pou akolouje, ja dexoume ìti o X ( )
exarttai apì thn tim tou
(2 )
M , en¸ oi timè tou sti suqnìthte deigmatolhya k =N den exart¸ntai apì thn
tim tou M .
Pardeigma 5.4.1
An orsoume to s ma x1 (n) (Sq ma 5.24b), to opoo antistoiqe se mia perodo th
x(n)
1
-N 0 N 2N n
(a)
x1(n)=ä(n)
1
-N 0 N 2N n
(â)
x2(n)=ä(n-N)
1
-N 0 N 2N n
(ã)
Sq ma 5.24 (a) H periodik epèktash tou monadiaou degmato kai (b), (g) dÔo mh periodikè
akolouje , h kje mia apì ti opoe enai sh me to x(n) sth dirkeia mia periìdou.
periodik epèktash tou monadiaou degmato periìdou N x(n) (Sq ma 5.24a) w :
x1 (n) = x(n); 0nN 1 x1 (n) = Æ(n)
0; alli¸
, dhlad , (5.4.19)
apì thn exswsh anlush ) = P1n= 1 x1(n)e j n upologzoume to metasqh-
X1 (
matismì Fourier diakritoÔ qrìnou tou x1 (n) w
X1 ( ) = 1 (5.4.20)
en¸, an orsoume to s ma x2 (n) (Sq ma 5.24g),
x2 (n) = x0;(n); M n M + N 1 ìpou 0 < M < N
alli¸
(5.4.21)
170 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
dhlad , x2 (n) = Æ(n N ), o metasqhmatismì tou x2 (n) enai
X2 ( )=e j N (5.4.22)
ParathroÔme ìti X1 ( ) 6= X2( ) all gia ti suqnìthte = k(2=N ) enai
X1 k
2 2
= X2 k = 1 (5.4.23)
N N
5.5 DIAKRITOS METASQHMATISMOS FOURIER
O metasqhmatismì Fourier diakritoÔ qrìnou enai suneq periodik sunrthsh me
2
perodo . Gia na epexergastoÔme to metasqhmatismì Fourier me yhfiak mèsa a-
paitetai h metatrop tou se akolouja arijm¸n peperasmènh akrbeia . Ja prèpei,
loipìn na gnei katllhlh deigmatolhya tou metasqhmatismoÔ Fourier ètsi, ¸ste na
enai dunat h anakataskeu tou apì ta degmat tou.
()
Dnetai h peperasmènou m kou N akolouja x n , dhlad , h x n gia n N. ( )=0
O metasqhmatismì Fourier diakritoÔ qrìnou th akolouja x n , ìpw enai gnwstì,()
enai
X1
N
X( )= x(n)e j n; 0 < 2 (5.5.1)
n=0
En gnei deigmatolhya th suneqoÔ sunrthsh X ( ) se M diakritè kuklikè
suqnìthte pou enai pollaplsie th s sto disthma 0 < 2, parnoume ta
degmata:
NX1
XM (k) = X ( )j =k s = x(n)ejk sn; k = 0; 1; : : : ; M 1 (5.5.2)
n=0
O arijmì twn deigmtwn pou ja lhfjoÔn ja prèpei na enai katllhlo ètsi ¸ste
afenì na enai dunat h ankthsh tou metasqhmatismoÔ Fourier diakritoÔ qrìnou
gia kje tim th kuklik suqnìthta , afetèrou na mhn auxhjoÔn h apaitoÔmenh
mn mh kai h taqÔthta epexergasa .
To je¸rhma deigmatolhya sto pedo tou qrìnou anafèrei ìti gia èna analogikì
()
s ma xa t me periorismèno eÔro z¸nh qamhl¸n suqnot twn W , dhlad , X ! ( )=
0 j j
gia ! W enai dunat h anakataskeu tou arqikoÔ s mato xa t apì thn ()
f (
akolouja twn deigmtwn tou xa nTs 1 )g
n= 1 , ìtan h perodo deigmatolhya Ts
plhro to krit rio tou Nyquist, dhlad , Ts 1
2W .
Me anlogo trìpo to je¸rhma deigmatolhya sto pedo suqnot twn anafèrei
ìti o metasqhmatismì Fourier diakritoÔ qrìnou mpore na anakthje apì ta degmat
()
tou XM k ; k =01
; ; :::; M 1
efìson to s ma diakritoÔ qrìnou x n enai ()
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 171
peperasmènh dirkeia N kai isqÔei M N sthn perptwsh aut isqÔei h sunj kh
Nyquist, dhlad ,
s 2N (5.5.3)
Gia thn oriak perptwsh ìpou s =2 , dhlad , ìtan gnetai deigmatolhya tou
N
( )
X sti suqnìthte k k s = = k 2N ; k = 0; 1; : : : ; N 1, h (5.5.2) grfetai
XN (k) = X ( )j = X k
2
=k 2N N
NX1
2
= x(n)ejk N n ; k = 0; 1; : : : ; N 1 (5.5.4)
n=0
Ta degmata XN k () ()
apl X k tou metasqhmatismoÔ Fourier diakritoÔ qrìnou X ( )
apoteloÔn to diakritì metasqhmatismì Fourier (Disctete Fourier Transform, DFT) th
akolouja x n . ()
ApodeiknÔetaiz ìti mporoÔme na anakataskeusoume thn akolouja x n apì ta ()
()
degmata XN k tou metasqhmatismoÔ Fourier diakritoÔ qrìnou me thn
x(n) =
1 NX1 X (k)e jk 2N n ; n = 0; 1; : : : ; N 1 (5.5.5)
N
N k=0
H (5.5.5) apotele ton antstrofo diakritì metasqhmatismì Foureir (inverse DFT, IDFT).
Oi exis¸sei (5.5.4) kai (5.5.5) apoteloÔn tou zeÔgo diakritoÔ metasqhmatismoÔ
FourierN -shmewn kai ja to sumbolzoume w x(n) DFT!N XN (k).
Oi akolouje x(n) kai XN (k ) èqoun dio m ko N kai enai periodikè me pero-
do N .
Pardeigma 5.5.1
Dnetai h 4-shmewn akolouja x(n)
x(n) = 1; 0 n 3
0; alli¸ (5.5.6)
1. Na breje o metasqhmatismì Fourier diakritoÔ qrìnou X ( ) kai na gnei h grafik
parstash tou mètrou tou se sunrthsh me thn kuklik suqnìthta .
2. Na breje o diakritì metasqhmatismì Fourier 4-shmewn th akolouja x(n).
z Anafor 5.4 kai 5.5 th proteinìmenh bibliografa
172 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
LÔsh
1. O metasqhmatismì Fourier diakritoÔ qrìnou th akolouja x(n) enai
3
X
X( ) = x(n)e j n
n=0
= 1 + e j + e j2 + e j3
j4
= 11 ee j
sin(2 ) e j3 =2
= sin( =2)
Sto Sq ma 5.25 èqei gnei h grafik parstash tou mètrou tou metasqhmatismoÔ
Fourier diakritoÔ qrìnou jX ( )j se sunrthsh me thn .
2. Gia to diakritì metasqhmatismì Fourier 4-shmewn th akolouja x(n) èqoume
3
X 2
X4 (k) = x(n)ejk N n ; k = 0; 1; 2; 3:
n=0
Gia k = 0 èqoume
3
X 3
X
x(n)ej0 N n =
2
X4 (0) = x(n) = x(0) + x(1) + x(2) + x(3) = 4
n=0 n=0
kai gia k = 1; 2; kai 3 èqoume
3
X 3
X
x(n)ej1 N n =
2
X4 (1) = x(n)( j )n = 0
n=0 n=0
3
X 3
X
x(n)ej2 N n = x(n)( j )2n = 0
2
X4 (2) =
n=0 n=0
3
X 3
X
x(n)ej2 N n = x(n)( j )3n = 0
3
X4 (3) =
n=0 n=0
O diakritì metasqhmatismì Fourier 4-shmewn th akolouja x(n) enai, loipìn
X4 (k) = [ 4; 0; 0; 0℄ (5.5.7)
"
O diakritì metasqhmatismì Fourier 4-shmewn th akolouja x(n) brsketai
kai en gnei deigmatolhya tou metasqhmatismoÔ Fourier diakritoÔ qrìnou X ( )
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 173
se 4 isapèqouse kuklikè suqnìthte pou apèqoun an dÔo kat = 2 . àqou-
me, loipìn, ta degmata
X4 (k ) = X ( )j =k 2
= sin(2 k 2 ) j3k 4
sin(k 4 ) e
= [ 4; 0; 0; 0 ℄ (5.5.8)
"
Sto Sq ma 5.25 èqoume kai grafik parstash tou diakritoÔ metasqhmatismoÔ
Fourier 4-shmewn th akolouja x(n).
X(Ù)
4
0 ð 2ð Ù
X4(k)
4
Sq ma 5.25 H grafik parstash tou
MF diakritoÔ qrìnou tou s mato x(n)
sto Pardeigma 5.5.1 kai o diakritì MF
0 1 2 3 4 k 4-shmewn tou.
Shmei¸netai ìti to degma gia mhdenik kuklik suqnìthta XN (0) enai pntote so
me to jroisma twn stoiqewn th akolouja x n . ()
5.5.1 Kuklik anklash akolouja
()
H anklash mia akolouja N -shmewn, x n , dnei thn akolouja x n , h opoa ( )
den enai akolouja N -shmewn, kai ètsi den enai dunatì na upologiste o diakritì
metasqhmatismì Fourier. H kuklik anklash mia akolouja mpore na parastaje
me th bo jeia twn upolopwn (modulo) w x (( ))
n N , ìpou o sumbolismì m N (( ))
diabzetai w m modulo N kai shmanei to upìloipo th diaresh tou m dia tou N
kai enai
x(0);
x(( n))N = n=0
x(N n); 1 n N 1 (5.5.9)
Sto Sq ma 5.26 fanetai h akolouja 11-shmewn x(n) = n ìpou 0 n 10 kai
0 < < 1 h anklas th h opoa den enai akolouja 11-shmewn kai h kuklik
anklas th h opoa enai akolouja 11-shmewn.
174 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
x(n)=an 0 ≤ n ≤ 10
0<a<1
-10 -5 0 5 10 15 n
(a)
x(-n)
-10 -5 0 5 10 15 n
(â)
x((-n))11
Sq ma 5.26 KÔklik anklash akolouj-
a (a) h akolouja N -shmewn x(n), (b) h
-10 -5 0 5 10 15 n anklash th akolouja kai (g) h kuklik
(ã) anklash th akolouja .
5.5.2 Kuklik olsjhsh akolouja
H periodik epèktash an N degmata th peperasmènou m kou akolouja x(n) pou
èqei N degmata sto disthma ; ; : : : ; N 01 1
enai h periodik akolouja
1
X
x~(n) = x(n kN ) (5.5.10)
k= 1
H olsjhsh (metatìpish) th periodik akolouja x~(n) kat m degmata pro ta
dexi dnei thn epsh periodik akolouja
1
X
x~(n m) = x(n m + kN ) (5.5.11)
k= 1
H peperasmènou m kou akolouja
x~(n m)RN (n) = x~(n m); 0nN 1
0; alli¸
(5.5.12)
ìpou RN (n) enai to orjog¸nio parjuro m N , dhlad , kou
RN (n) = 10;; 0alli¸
nN 1 (5.5.13)
apotele thn kuklik olsjhsh M -shmewn th akolouja x(n). ParathroÔme ìti h
kuklik olsjhsh m shmewn mia akolouja N shmewn proèrqetai apì thn para-
jÔrwshx th grammik olisjhmènh kat m shmea periodik epèktash th akolou-
x O pollaplasiasmì mia sunrthsh me ma llh, me skopì to mhdenidmì th pr¸th èxw apì èna disthma,
enai gnwstì w parajÔrwsh
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 175
ja . H periodik epèktash mia akolouja mpore na parastaje me th bo jeia twn
~
x(n)=an 0 ≤ n ≤ 10 x(n-3)= x((n-3))11
0<a<1
-5 0 5 10 15 n -5 0 5 10 15 20 n
(a) (ã)
~
x(n)= x((n))11 x((n-3))11R11(n)
x(n)
-5 0 5 10 15 n -5 0 5 10 15 20 n
(â) (ä)
Sq ma 5.27 Kuklik olsjhsh akolouja (a) arqik akolouja x(n), (b) periodik epèktash
th x(n) (g) grammik olsjhsh kat tra degmata th periodik epèktash , kai d) kuklik
olisjhmènh akolouja kat tra degmata.
upolopwn w
x~(n m) = x((n m))N (5.5.14)
opìte h kuklik olsjhsh ekfrzetai kai w
x~(n m)RN (n) = x((n m))N RN (n) (5.5.15)
Sto Sq ma 5.27 fanetai h akolouja 11-shmewn x n n (ìpou n( )= kai 0 10
0 1
< < ), h periodik epèktash th akolouja kat 11 degmata, h grammik
olsjhsh th periodik epèktash kat tra degmata pro ta dexi kai h kuklik
olsjhsh kat tra degmata pro ta dexi th akolouja x n , h opoa enai epsh ()
akolouja 11-shmewn.
5.5.3 Kuklik sunèlixh akolouji¸n
H kuklik sunèlixh dÔo akolouji¸n x1 (n) kai x2 (n), n = 0; 1; : : : ; N 1 dhl¸netai
x1 (n) x2 (n) kai orzetai apì th sqèsh
NX1
y(n) = x1 (n) x2 (n) = x1 (m) x2 ((n m))N (5.5.16)
m=0
176 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
()
H akolouja y n èqei m ko N , ìso, dhlad , kai to m ko kajemi apì ti arqikè
akolouje , kai ìqi m ko N 2 1
, ìpw sumbanei sthn perptwsh th grammik
sunèlixh twn dÔo aut¸n akolouji¸n.
Ta b mata gia ton upologismì th kuklik sunèlixh dÔo akolouji¸n enai:
1. kuklik anklash (katoptrismì ) th mia akolouja ,
2. kuklik olsjhsh (metatìpish) th katoptrik akolouja ,
3. pollaplasiasmì th metatopismènh katoptrik akolouja me th llh akolou-
ja shmeo pro shmeo, kai
4. jroish twn ginomènwn.
Ta b mata aut epanalambnontai.
Pardeigma 5.5.2
Na upologiste h kuklik sunèlixh 4-shmewn twn akolouji¸n x1 (n) = [ 3; 2; 1 ℄ kai
x2 (n) = [ 1; 2; 3; 4℄
LÔsh H kuklik sunèlixh 4-shmewn dnetai apì th
3
X
x1 (n) 4 x2 (n) = x1 (m)x2 ((n m))4 (5.5.17)
m=0
gia n = 0 èqoume
P3 P3
m=0 x1 (m)x2 ((0 m))4 = m=0 [f3; 2; 1; 0gf1; 4; 3; 2g℄ = P3m=0f3; 8; 3; 0g = 14;
gia n = 1 èqoume
P3 P3
m=0 x1 (m)x2 ((1 m))4 = m=0 [f3; 2; 1; 0gf2; 1; 4; 3g℄ = P3m=0f6; 2; 4; 0g = 12;
gia n = 2 èqoume
P3 P3
m=0 x1 (m)x2 ((2 m))4 = m=0 [f3; 2; 1; 0gf3; 21; 4g℄ = P3m=0f9; 4; 1; 0g = 14;
gia n = 3 èqoume
P3 P3
m=0 x1 (m)x2 ((3 m))4 = m=0 [f3; 2; 1; 0gf4; 3; 2; 1g℄ = P3m=0f12; 6; 2; 0g = 20;
epomènw h kuklik sunèlixh enai
x1 (n) 4 x2 (n) = [14; 12; 14; 20℄ (5.5.18)
Pardeigma 5.5.3
Me th bo jeia th idiìthta th kuklik sunèlixh na upologiste h kuklik sunèlixh
4-shmewn twn akolouji¸n x1 (n) kai x2 (n) tou Paradegmato 5.5.2
X (k) = 1 x(n)e j 2N kn
PN
LÔsh Me th bo jeia th exswsh anlush n=0 pros-
diorzetai o diakritì metasqhmatismì Fourier twn shmtwn x1 (n) kai x2 (n)
h p p i
X1 (k) = 6; 2 2e j 4 ; 2; 2 2 ej 4 = [6; 2 j 2; 2; 2 + j 2℄
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 177
h p p i
X2 (k) = 10; 2 2 ej 34 ; 2; 2 2 e j 4 = [10; 2 + j 2; 2; 2 j 2℄
To ginìmeno twn diakrit¸n metasqhmatism¸n Fourier enai
X1 (k) X2 (k) =60; 8 ej 2 ; 4ej ; 4e j 2 = [60; j 8; 4; j 8℄ (5.5.19)
Me th bo jeia th exswsh sÔnjesh x(n) =
1 PN 1
N k=0 X (k )e N prosdiorzetai to
j 2 kn
s ma x(n), dhlad , h kuklik sunèlixh twn shmtwn x1 (n) kai x2 (n)
x1 (n) 4 x2 (n) = [14; 12; 14; 20℄
h opoa enai dia me thn kuklik sunèlixh pou upologsthke sto Pardeigma 5.5.2, sto
opoo melet same to prìblhma sto pedo tou qrìnou.
5.5.4 Idiìthte tou diakritoÔ metasqhmatismoÔ Fourier
Sthn enìthta aut ja parousiasjoÔn oi basikè idiìthte pou èqei o diakritì metasqh-
matismì Fourier.
Merikè idiìthte tou diakritoÔ metasqhmatismoÔ Fourier enai anloge me ti an-
tstoiqe idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou. Uprqoun ìmw kai
diaforè , oi opoe ofelontai sto peperasmèno m ko tìso twn diwn twn akolouji¸n,
ìso kai tou diakritoÔ metasqhmatismoÔ Fourier tou . Ston Pnaka 5.3 parousizontai
oi idiìthte tou diakritoÔ metasqhmatismoÔ Fourier.
5.5.5 H grammik sunèlixh me th bo jeia tou diakritoÔ metasqhmatismoÔ Fourier
Gnwrzoume ìti, ìtan èna grammikì qronik anallowto sÔsthma diakritoÔ qrìnou me
() ()
kroustik apìkrish h1 n diegerje apì thn akolouja x1 n , h èxodì tou y n enai ()
()
h grammik sunèlixh twn x1 n kai h1 n , dhlad , ()
1
X
y(n) = h1 (n) ? x1 (n) = x1 (k)h1 (k n)
k= 1
An h akolouja eisìdou enai akolouja N1 -shmewn, kai h kroustik apìkrish enai
akolouja N2 -shmewn, tìte h èxodo tou sust mato enai akolouja N1 N2 - ( + 1)
shmewn.
Apì ti idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou gnwrzoume ìti
y(n) = h1 (t) ? x1 (n) F! H1 ( ) X1 ( ) (5.5.20)
ParathroÔme ìti, gia na anakataskeusoume thn akolouja exìdou apì ta deg-
mata tou Y ( )
, dhlad , apì to diakritì metasqhmatismì Fourier Y k , ja prèpei na ()
gnei deigmatolhya th Y ( )
se toulqiston N1 N2 + 1
shmea sth diakrit kuklik
178 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
PINAKAS 5.6 Idiìthte tou diakritoÔ metasqhmatismoÔ Fourier
Idiìthta Pedo qrìnou Pedo suqnìthta
x1 (n) X1 (k)
x2 (n) X2 (k)
Grammikìthta ax1 (n)+bx2 (n) aX1 (k)+bX2 (k)
Anklash sto qrìno x(( n))N X (( k))N
Suzug akolouja x? (n) X ? (( k))
<e[X (k)℄=<e[X (( k))N ℄
Summetrikè idiìthte x(n)=x? (n) =m[X (k)℄= =m[X ((N k))N ℄
gia pragmatikè akolouje jX (k)j=jX (( k))N j
arg X (k)= arg X (( k))N
2
KÔklik olsjhsh sto qrìno x((n n0 ))N e jk N n0 X ( k)
2
KÔklik olsjhsh sth suqnìthta ejk0 N n x(n) X ((k k0 ))N
KÔklik sunèlixh x1 (n) x2 (n) X1 (k)X2 (k)
Pollaplasiasmì x1 (n)x2 (n) 1 X1 (k) N X2 (k)
N
Je¸rhma tou Parseval Ex =PNn=01 jx(n)j2 Ex = N1 PNk=01 jX (k)j2
suqnìthta. àpomènw , o diakritì metasqhmatismì Fourier ja prèpei na èqei m ko
N N1 N2 . + 1
() ()
Oi akolouje x1 n kai h1 n èqoun m ko mikrìtero tou N prèpei, loipìn, na
prostejoÔn stoiqea mhdenik tim se kje ma apì autè ètsi, ¸ste to m ko tou na
() ()
gnei so me N sqhmatzonta ti akolouje x n kai h n . H prìsjesh mhdenik¸n se
kje ma apì ti akolouje autè den ephrezei to metasqhmatismì Fourier diakritoÔ
qrìnou, all èqei w apotèlesma na auxhjoÔn ta shmea deigmatolhya pèra apì to
elqisto m ko N1 kai N2 antstoiqa, pou enai o elqisto arijmì .
Pollaplasizonta tou diakritoÔ metasqhmatismoÔ Fourier N -shmewn twn
() ()
akolouji¸n x1 n kai h1 n brsketai o epsh N shmewn diakritì metasqhma-
()
tismì Fourier Y k . Sth sunèqeia me antstrofo diakritì metasqhmatismì Fourier
N -shmewn brsketai h akolouja exìdou tou sust mato .
H kuklik sunèlixh twn akolouji¸n x(n) kai h(n) enai isodÔnamh me th grammik
sunèlixh twn akolouji¸n x1 (n) kai h1 (n). Me lla lìgia o diakritì
metasqhmatismì
Fourier mpore na qrhsimopoihje gia ton upologismì th grammiksunèlixh , an oi
akolouje èqoun katllhla epimhkunje me thn prìsjesh mhdenik¸n stoiqewn sth
kje ma apì autè .
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 179
Pardeigma 5.5.4
H kroustik apìkrish enì GQA sust mato enai h1 (n) = [ 3; 2; 1 ℄: Me th bo jeia
tou diakritoÔ metasqhmatismoÔ Fourier na upologsete thn èxodo tou sust mato , ìtan
h esodo x1 (n) = [ 1; 2; 3; 4 ℄.
enai to s ma
LÔsh H èxodo tou sust mato y (n) enai akolouja N1 + N2 1 = 3 + 4 1 = 6-
shmewn. Sti akolouje h1 (n) kai x1 (n) ja prèpei na prostejoÔn tra kai dÔo mh-
denik antstoiqa ¸ste na gnoun akolouje 6-shmewn. Oi diakrito metasqhmatismo
Fourier twn akolouji¸n h(n) = [ 3; 2; 1; 0; 0; 0 ℄ kai x(n) = [ 1; 2; 3; 4; 0; 0 ℄ enai
5
X
H (k ) = 2
h(n) ejk 6 n = h(0) + h(1) ejk 6
2
+ h(2) ejk 26 2
n=0
kai
5
X
X (k ) = 2
x(n) ejk 6 n = x(0) + x(1) ejk 6
2
+ x(2) ejk 26 2 + x(3) ejk 26 3
n=0
antstoiqa. O diakritì metasqhmatismì Fourier th akolouja exìdou brsketai me
pollaplasismì twn H (k) kai X (n)
Y (k )
= h(0) x(0)
+ [h(1)x(0) + h(0)x(1)℄ ejk 26 1
+ [h(2)x(0) + h(1)x(1) + h(0)x(2)℄ ejk 26 2
+ [h(2)x(1) + h(1)x(2) + h(0)x(3)℄ ejk 36 3
+ [h(2)x(2) + h(1)x(3)℄ ejk 26 4
+ [h(2)x(3)℄ ejk 26 5
Y (k) = 3 + 8 ejk 6 1 + 14 ejk 6 2 + 20 ejk 6 3 + 11 ejk 6 4 + 4 ejk 6 5
2 2 3 2 2
(5.5.21)
h akolouja exìdou tou sust mato brsketai me antstrofo diakritì metasqhmatismì
Fourier 6-shmewn kai enai
y(n) = [ 3; 8; 14; 20; 11; 4 ℄ (5.5.22)
Sto Prìblhma 2.12 h èxodo tou sust mato brèjhke me th bo jeia tou ajrosma-
to th sunèlixh . An prosdiorsoume thn èxodo tou sust mato qrhsimopoi¸nta
kuklik sunèlixh 5-shmewn, tìte prosdiorzetai h akolouja ; ; ; ; , èn- [7 8 14 20 11℄
w, an prosdiorsoume thn èxodo tou sust mato qrhsimopoi¸nta kuklik sunèlixh
4-shmewn tìte prosdiorzetai h akolouja [14 12 14 20℄
; ; ; , h opoa enai sh me thn
kuklik sunèlixh pou upologsthke sta Pardeigma 5.5.2 kai 5.5.3. ParathroÔme
ìti h akolouja [14 12 14 20℄
; ; ; èqei proèljei apì thn y n ( ) = [3 8 14 20 11 4℄
; ; ; ; ;
me anadplwsh twn stoiqewn 11
kai prgmati, 4; ; ; [14 12 14 20℄ = [3 + 11 8 +
;
4 14 20℄
; ; .
180 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
5.5.6 O diakritì metasqhmatismì Fourier se morf pinkwn
An efarmìsoume thn exswsh anlush tou diakritoÔ metasqhmatismoÔ Fourier
NX1
XN (k ) = x(n)e jk 2N n ; k = 0; 1; : : : ; N 1 (5.5.23)
n=0
gia k = 0; 1; 2; : : : ; N 1, èqoume ti exis¸sei :
XN (0) =e0 x(0) +e0 x(1) +e0 x(2) : : : +e0 x(N 1)
XN (1) =e0 x(0) +e j 2N x(1) +e j 2N 2 x(2) : : : +e j 2N (N 1) x(N 1)
XN (2) =e0 x(0) +e j2 2N x(1) +e j2 2N 2 x(2) : : : +e j2 2N (N 1) x(N 1)
.. .. .. .. .. ..
. . . . . .
XN (N ) =e0 x(0) +e j (N 1) 2N x(1) +e j (N 1) 2N 2 x(2) : : : +e j (N 1) 2N (N 1) x(N 1)
An x enai to dinusma twn N stoiqewn th akolouja x(n), dhlad ,
x = [x(0); x(1); x(2); : : : ; x(N 1)℄T (5.5.24)
ìpou o ekjèth T dhl¸nei ton anstrofo pnaka, X enai to dinusma twn N sunte-
()
lest¸n X k dhlad ,
X = [XN (0); XN (1); XN (2); : : : ; XN (N 1)℄T (5.5.25)
kai W o N N DFT pnaka
2
1 1 1 ::: 1 3
6 1 WN WN2 ::: WNN 1 7
W=6 6
. .. .. .. ..
7
7 (5.5.26)
4 .. . . . . 5
1 WNN 1 WN2(N 1) : : : WN(N 1)(N 1)
2
ìpou WN =
e j N enai h Nost rza th monda . Me th bo jeia twn orism¸n aut¸n
oi exis¸sei pou dnoun to diakritì metasqhmatismì Fourier ekfrzontai se morf
pinkwn w
X W x = (5.5.27)
En o antstrofo tou W uprqei kai enai o W 1 , èqoume apì thn (5.5.27)
x=W 1X (5.5.28)
Oi sqèsei (5.5.5) ekfrzetai se morf pinkwn w
x=
1 W? X (5.5.29)
N
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 181
ìpou W? enai o suzug migadikì tou pnaka W. SÔgkrish twn dÔo teleutawn
exis¸sewn odhge sto sumpèrasma
W 1=
1 W? (5.5.30)
N
apì thn opoa èqoume
W W? = N I (5.5.31)
ìpou I enai o monadiao pnaka diastsewn N N . ParathroÔme ìti o pnaka W
enai summetrikì kai orjog¸nio pnaka .
5.5.7 TaqÔ metasqhmatismì Fourier
O diakritì metasqhmatismì Fourier mia akolouja N -shmewn x(n); n = 0; 1; : : : ;
N 1
, orzetai w h akolouja N ìrwn
X1
N
X (k) = x(n)WNnk ; k = 0; 1; 2; : : : ; N 1 kai WN = e j 2N (5.5.32)
n=0
Gia na upologisje kje ìro th akolouja tou diakritoÔ metasqhmatismoÔ Foureir,
apaitoÔntai N pollaplasiasmo kai N 1
prosjèsei . Gia na upologiste, epomè-
nw , olìklhrh h akolouja X k , qreizontai N 2 pollaplasiasmo kai N N
() ( 1)
prosjèsei . Gia pardeigma, o upologismì tou diakritoÔ metasqhmatismoÔ Fourier
mia akolouja me m ko N apaite N 2
= 512 = 262144
pollaplasiasmoÔ kai
NN ( 1) = 261632
prosjèsei . O arijmì twn prxewn auxnetai lìgw tou gegonìto
ìti uprqoun kai prxei metaxÔ migadik¸n arijm¸n.
O pnaka W, o opoo qrhsimopoietai kat ton upologismì tou diakritoÔ metasqh-
matismoÔ Fourier, enai summetrikì . Axiopoi¸nta th summetra kai thn periodikìthta
twn tim¸n tou pnaka katal goume se mejìdou upologismoÔ tou diakritoÔ metasqh-
matismoÔ Foureir me arket ligìtere prxei .
àqoun anaptuqje èna pl jo apì diaforetikoÔ algìrijmou pou epitugqnoun
to skopì autì. Oi diaforè tou brskontai sto pl jo kai to edo twn prxewn
kaj¸ kai sto mègejo th apaitoÔmenh mn mh . Ja anafèroume ton algìrijmo twn
Cooley-Tukey, o opoo protjhke to 1965. O algìrijmo autì mpore na efarmoste
se akolouje N =2
n -shmewn. Me to pardeigma pou akolouje ja parousiaste
h dunatìthta periorismoÔ twn apaitoÔmenwn prxewn lìgw twn idiot twn th sum-
metra kai th periodikìthta pou parousizei o pnaka W.
Pardeigma 5.5.5
Na breje o diakritì metasqhmatismì Fourier 4-shmewn th akolouja
[ x(0); x(1); x(2); x(3) ℄
182 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
LÔsh An efarmìsoume thn exswsh anlush tou diakritoÔ metasqhmatismoÔ Fourier
NX1
2
XN (k) = x(n)W4nk ; 0 k 3; W4 = ej 4 = j (5.5.33)
n=0
gia k = 0; 1; 2; 3 kai ekfrsoume ti exis¸sei se morf pinkwn, èqoume
2 3 2 3 2 3
X4 (0) W40 W40 W40 W40 x(0)
6 7 6 W0
X4 (1) W41 W42 W43 7 6 x(1) 7
6 7=6 4 76 7
4 5 4 W40
X4 (2) W42 W44 W46 5 4 x(2) 5 (5.5.34)
X4 (3) W40 W43 W46 W49 x(3)
Epeid W40 = W44 = 1, W41 = W49 = j , W42 = W46 = 1 kai W43 = j , èqoume
2 3 2
X4 (0) 1 1 1 1 3 2 x(0)
3
6 X4 (1) 7 6 1
7=6 j 1 j 7 6 x(1) 7
1 1 1 54
6 7 6 7
4 X4 (2) 5 4 1 x(2) 5 (5.5.35)
X4 (3) 1 j 1 j x(3)
Ekmetalleuìmenoi th summetra èqoume
X4 (0) = x(0) + x(1) + x(2) + x(3) = [x| (0) {z+ x(2)}℄ + [|x(1) {z+ x(3)℄}
g1 g2
X4 (1) = x(0) jx(1) x(2) + jx(3) = [|x(0) {z x(2)℄} j [|x(1) {z x(3)℄}
h1 h2
X4 (2) = x(0) x(1) + x(2) x(3) = [|x(0) {z
+ x(2)℄} [|x(1) {z+ x(3)℄}
g1 g2
X4 (3) = x(0) + jx(1) x(2) jx(3) = [|x(0) {z x(2)℄} +j [|x(1) {z x(3)℄}
h1 h2
Oi sqèsei autè odhgoÔn se ènan apotelesmatikì algìrijmo pou èqei dÔo b mata
B ma I B ma II
g1 = x(0) + x(2) XN (0) = g1 + g2
g2 = x(1) + x(3) XN (1) = h1 jh2 (5.5.36)
h1 = x(0) x(2) XN (2) = g1 g2
h2 = x(1) x(3) XN (1) = h1 + jh2
O algìrijmo autì qreizetai mìno dÔo migadikoÔ pollaplasiasmoÔ . Sto Sq ma 5.28
dnetai to digramma ro tou algìrijmou.
O algìrijmo (5.5.36) mpore na ulopoihje me diaforetikì trìpo. Arqik h akolouja
4-shmewn x(n) diairetai se dÔo akolouje 2-shmewn, oi opoe dieujetoÔntai se dÔo
dianÔsmata st lh w
x(0) ; x(1) = x(0) x(2)
x(2) x(3) x(1) x(3)
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 183
x(0) X(0)
g1
x(1) X(1)
-1 h1 -j
x(2) -1 X(2)
g2
x(3) X(3)
-1 h2 j
Sq ma 5.28 Digramma ro sto Pardeigma 5.5.5.
Sth sunèqeia brsketai o mikrìtero 2-shmewn diakritì metasqhmatismì Fourier
W2 x(0) x(1)
x(2) x(3)
1
= 1 1 1) x(0) x(1)
x(2) x(3)
= xx(0) + x(2)
(0) x(2)
x(1) + x(3)
x(1) x(3)
= g1 g2
h1 h2
Katìpin, kje stoiqeo tou pnaka pou prokÔptei pollaplasizetai me fW4pq g, ìpou p
enai o dekth gramm kai q enai o dekth st lh . Dhlad , ekteletai to eswterikì
ginìmeno
1 1 ? g1 g2
=
g1 g2
1 j h1 h2 h1 jh2
g1
h1
g2
jh2 W2 = g1 g2
h1 jh2 1 j
1 1
= g1 + g2 g1 g2
h1 jh2 h1 + jh2
= X4 (0) X4 (2)
X4 (1) X4 (3) (5.5.37)
An kai o diaforetikì autì trìpo ulopohsh apaite perissìterou pollaplasias-
moÔ apì ton apotelesmatikì algìrijmo (5.5.36), upodeiknÔei ma susthmatik prosèg-
gish prosdiorismoÔ enì diakritoÔ metasqhmatismoÔ Foureir meglh txh me th bo -
jeia diakrit¸n metasqhmatism¸n Foureir mikrìterh txh .
Sth sunèqeia ja genikeÔsoume ta sumpersmata tou paradegmato dhlad , ja
dexoume ìti, gia rtio N , o diakritì metasqhmatismì Fourier m kou N upologzetai
me katllhlo sunduasmì dÔo akolouji¸n diakrit¸n metasqhmatism¸n Foureir m kou
2 2
N= . An kai o N= enai rtio , tìte to dio mpore na gnei gia kje ma apì ti
dÔo akolouje dhlad , na upologisjoÔn me katllhlo sunduasmì dÔo diakrit¸n
4
metasqhmatism¸n Foureir m kou N= . An o N enai dÔnamh tou 2 (N p ), h =2
184 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
diadikasa aut suneqzetai mèqri na ftsoume se diakritì metasqhmatismì Foureir
2-shmewn, poÔ enai eÔkolo na upologiste.
()
Arqik, h akolouja twn N ìrwn x n qwrzetai se dÔo akolouje m kou N= 2
h kje ma, ti g1 n ( ) = (2 )
x n kai g2 n x n ( ) = (2 + 1)
, gia n ; ; : : : ; N2 , oi =0 1 1
opoe apoteloÔntai apì tou ìrou me rtiou kai perittoÔ dekte antstoiqa. H
(5.5.32) grfetai
X1
N
X (k) = x(n)WNnk
n=0
2 1 2 1
N N
X X
= x(2n)WN2nk + x(2n + 1)WN(2n+1)k
n=0 n=0
2 1 2 1
N N
X X
= x(2n)WN2nk + WNk x(2n + 1)WN2nk (5.5.38)
n=0 n=0
j 2N 2nk 2 nk
àpeid WN2nk = e =e j N=2 = WN=
nk h (5.5.38) grfetai
2
2 1 2 1
N N
X X
X (k ) = x(2n) nk
WN=2 +WNk x(2n + 1)WN=
nk
2
n=0 n=0
| {z } | {z }
G1 (k) G2 (k)
X (k) = G1 (k) + WNk G2 (k); k = 0; 1; 2; : : : ; N 1 (5.5.39)
Epiplèon, epeid
WNk+ 2 = e j 2N (k+ N2 ) = e N
N
j e j 2N k = WNk ; k = 0; 1; : : : ;
2
h (5.5.39) an k = k + N
2 dnei
N N
X (k) = X k + = G1 (k) + WNk G2 (k); k = 0; 1; 2; : : : ;
2 2 1 (5.5.40)
ParathroÔme ìti o upologismì tou X (k ) èqei ekfraste me th bo jeia dÔo diakrit¸n
metasqhmatism¸n Fourier me pl jo shmewn N=2 o kajèna .
H diadikasa anlush pou akolouj jhke prohgoumènw mpore na suneqiste
kai gia ton upologismì twn dÔo nèwn diakrit¸n metasqhmatism¸n Fourier G1 (k ) kai
G2 (k). H diadikasa aut suneqzetai mèqri na ftsoume se diakritì metasqhmatismì
Fourier 2-shmewn pou enai eÔkolo na upologiste.
Enìthta 5.5 Diakritì Metasqhmatismì Fourier 185
x(0) X(0)
0
WN
0
WN
0
WN
x(4) 4 X(1)
WN WN
2
WN
1
x(2) 4 X(2)
0 WN WN
2
W N
x(8) 4 6 X(3)
WN WN WN
3
x(1) 4 X(4)
0 0 WN
WN WN
x(5) 4 5 X(5)
WN 2 WN
WN
x(3) 4 6 X(6)
0 WN WN
WN
x(7) 4 6 7 X(7)
WN WN WN
Sq ma 5.29 Digramma ro diakritoÔ metasqhmatismoÔ Fourier okt¸ shmewn.
Sto Sq ma 5.29 fanetai to digramma ro tou diakritoÔ metasqhmatismoÔ Fourier
okt¸ shmewn.
H ditaxh twn deigmtwn tou diakritoÔ metasqhmatismoÔ Fourier sthn èxodo e-
nai kanonik dhlad , X (0) (1) (7)
; X ; : : : ; X . Antjeta, h ditaxh twn deigmtwn
(0) (4) (2) (6) (1) (5) (3) (7)
eisìdou enai mh kanonik : x ; x ; x ; x ; x ; x ; x ; x . H ditaxh
aut prokÔptei apì thn kanonik ditaxh twn deigmtwn me antistrof th seir
twn duadik¸n yhfwn sth duadik anaparstash twn deikt¸n bit reversal.
x(0); x(1); x(2); x(3); x(4); x(5); x(6); x(7); !
x(000); x(001); x(010); x(011); x(100); x(101); x(110); x(111); !
x(000); x(100); x(010); x(110); x(001); x(101); x(011); x(111); !
x(0); x(4); x(2); x(6); x(1); x(5); x(3); x(7):
Apì to sq ma parathroÔme ìti se kje stdio oi èxodoi mporoÔn na apojhkeÔontai
sti die jèsei mn mh , sti opoe tan apojhkeumène oi antstoiqe esodoi tou
stadou.
Shmei¸netai ìti o taqÔ metasqhmatismì Fourier den apotele nèo metasqhma-
tismì Fourier, all apotele ma apodotik algorijmik mèjodo, me thn ènnoia ìti
elatt¸nei thn upologistik poluplokìthta, dhlad , to sunolikì pl jo prxewn
(pollaplasiasm¸n kai prosjèsewn). Prgmati, h upologistik poluplokìthta tou
taqèo metasqhmatismoÔ Fourier enai th txew N 2 N , kai ìqi N 2 tou diakritoÔ
log
metasqhmatismoÔ Fourier.
186 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
5.6 EFARMOGES TOU METASQHMATISMOU FOURIER DIAKRI-
TOU QRONOU
äpw kai sthn perptwsh twn susthmtwn suneqoÔ qrìnou, me th bo jeia th idiìth-
ta th sunèlixh mporoÔme na upologsoume thn èxodo, y n enì GQA sust mato ()
()
diakritoÔ qrìnou to opoo èqei kroustik apìkrish h n , ìtan gnwrzoume thn esodì
()
tou x n .
Pardeigma 5.6.1
Dnetai to grammikì qronik anallowto sÔsthma to opoo èqei kroustik apìkrish
h(n) = Æ(n n0 ) (5.6.1)
Na upologiste h sqèsh metaxÔ th akolouja eisìdou-exìdou tou sust mato .
LÔsh H apìkrish suqnìthta tou sust mato enai
1
X
H( )= Æ(n n0 )e j n = e j n0 (5.6.2)
n= 1
An h esodo tou sust mato enai to s ma x(n), to opoo èqei MF diakritoÔ qrìnou
X( ), o MF diakritoÔ qrìnou th exìdou ja enai
Y ( ) = H ( ) X ( ) = e j n0 X ( ) (5.6.3)
Me th bo jeia th idiìthta th qronik metatìpish parathroÔme ìti h èxodo tou
sust mato enai sh me thn esodo tou sust mato metatopismènh qronik kat n0 ,
dhlad ,
y(n) = x(n n0 ) (5.6.4)
Pardeigma 5.6.2
Dnetai to grammikì qronik anallowto sÔsthma me kroustik apìkrish
h(n) = nu(n) (5.6.5)
An h esodo tou sust mato enai to s ma:
x(n) = n u(n) (5.6.6)
na prosdioriste h èxodo tou sust mato .
LÔsh Oi MF diakritoÔ qrìnou th kroustik apìkrish kai tou s mato eisìdou
tou sust mato enai
H( ) = 1 1e j kai X( ) = 1 1e j (5.6.7)
Me th bo jeia th idiìthta th sunèlixh prosdiorzetai o MF diakritoÔ qrìnou th
exìdou tou sust mato
Y( ) = H ( ) X ( ) = (1 1
e j ) (1 e j ) (5.6.8)
Enìthta 5.6 Efarmogè tou DiakritoÔ MetasqhmatismoÔ Fourier 187
An 6= , h anlush th Y( ) se apl klsmata dnei
C1 C2
Y( )= 1 +1 (5.6.9)
e j e j
Oi timè twn stajer¸n C1 kai C2 enai
C1 = kai C2 = (5.6.10)
Me antstrofo MF diakritoÔ qrìnou prosdiorzetai h èxodo tou sust mato
y(n) = nu (n) nu (n)
= 1 n+1 n+1 u(n) (5.6.11)
An = , o MF diakritoÔ qrìnou th exìdou enai
2
Y( ) = 1 1e j (5.6.12)
Me th bo jeia tou zeÔgou 14 MF diakritoÔ qrìnou ston Pnaka 5.2 prosdiorzetai to
s ma exìdou tou sust mato
y(n) = (n + 1) n u(n + 1) (5.6.13)
H èxodo tou sust mato mpore na grafe kai w
y(n) = (n + 1) n u(n) (5.6.14)
kaj¸ oi dÔo ekfrsei dnoun thn dia akolouja :::; y( 1) = 0; y(0) = 1; y(1) =
2 ; y(2) = 3 2 ; :::.
5.6.1 H apìkrish suqnìthta gia sust mata ta opoa qarakthrzontai
apì grammikè exis¸sei diafor¸n me stajeroÔ suntelestè
Ma meglh kathgora apì grammik qronik anallowta (GQA) sust mata diakritoÔ
qrìnou enai aut sta opoa h esodo kai h èxodo ikanopoioÔn ma grammik exswsh
diafor¸n me stajeroÔ suntelestè th morf
N
X M
X
ak y(n k) = bk x(n k) (5.6.15)
k=0 k=0
Efarmìzoume MF diakritoÔ qrìnou kai sta dÔo mèlh th exswsh
" N # "M #
X X
F ak y(n k) =F bk x(n k) (5.6.16)
k=0 k=0
188 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
Lìgw th idiìthta th grammikìthta pou èqei o MF diakritoÔ qrìnou èqoume
N
X M
X
ak F [y(n k)℄ = bk F [x(n k)℄ (5.6.17)
k=0 k=0
kai, lìgw th idiìthta th qronik metatìpish pou èqei o MF diakritoÔ qrìnou,
èqoume thn exswsh
N
X M
X
Y( ) ak e jk = X( ) bk e jk (5.6.18)
k=0 k=0
Qrhsimopoi¸nta thn idiìthta th sunèlixh èqoume
PM
Y( )=P k=0 bk e
jk
H( )= Y( ) N (5.6.19)
jk
k=0 ak e
ParathroÔme ìti h apìkrish suqnìthta enì GQA sust mato enai rht sunrthsh
dhlad , mpore na ekfraste w lìgo dÔo poluwnÔmwn th metablht e j .
Pardeigma 5.6.3 (SÔsthma pr¸th txh ).
Dnetai to GQA sÔsthma diakritoÔ qrìnou, to opoo arqik brsketai se hrema, kai
qarakthrzetai apì thn exswsh diafor¸n
y(n) ay(n 1) = x(n) me jaj < 1 (5.6.20)
Na brejoÔn h apìkrish suqnìthta , h kroustik apìkrish tou sust mato kai h apì-
krish tou sust mato sto monadiao b ma.
LÔsh Efarmìzonta MF diakritoÔ qrìnou kai sta dÔo mèlh th exswsh èqoume,
lìgw twn idiot twn th grammikìthta kai th qronik metatìpish ,
F [y(n) ay(n 1)℄ = F [x(n)℄
F [y(n)℄ aF [y(n 1)℄ = F [x(n)℄
Y( ) ae j Y ( ) = X( )
H( ) =
1
1 ae j (5.6.21)
H kroustik apìkrish tou sust mato enai
h(n) = an u(n) (5.6.22)
Sto Sq ma 5.30 èqei sqediaste h kroustik apìkrish tou sust mato pr¸th txh gia
difore timè th stajer a. ParathroÔme ìti h(n) sugklnei sthn telik th tim
me rujmì o opoo exarttai apì to rujmì me ton opoo h jajn sugklnei sto mhdèn. H
Enìthta 5.6 Efarmogè tou DiakritoÔ MetasqhmatismoÔ Fourier 189
h(n) h(n)
a 1 a 1
4 4
0 n 0 n
h(n) h(n)
1 1
a 2 a 2
0 n 0 n
h(n) h(n)
a 3 a 3
4 4
0 n 0 n
h(n) h(n)
a 7 a 7
8 8
0 n 0 n
Sq ma 5.30 H kroustik apìkrish tou sust mato pr¸th txh , gia difore timè th
stajer a.
stajer a èqei parìmoio rìlo me th stajer qrìnou tou sust mato pr¸th txh
suneqoÔ qrìnou.
Sto Sq ma 5.31 èqei sqediaste h apìkrish pltou tou sust mato pr¸th txh gia
difore timè th stajer a. ätan h stajer a > 0, to sÔsthma prokale exasjènhsh
sti uyhlè suqnìthte
dhlad , to jH ( )j èqei mikrè timè , ìtan to lambnei timè
sthn perioq tou se sÔgkrish me th timè pou èqei, ìtan to lambnei timè sthn
perioq tou 0. To antjeto sumbanei, ìtan a < 0.
ParathroÔme epsh ìti gia mikrè timè th stajer jaj h mègisth tim tou mètrou
jH ( )j pou enai 1=(1 + a) kai h elqisth tim tou 1=(1 a) èqoun mikr diafor gia
a < 0, me apotèlesma to mètro jH ( )j na enai sqetik stajerì, se antjesh me thn
perptwsh sthn opoa to jaj èqei megle timè .
190 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
20 log 10 H(Ù)
a 7
8
3 20
a 4
a 1
2 10
a 1
4
-ð ð
-2ð 0 2ð Ù
20 log 10 H(Ù)
a 7
3 20 8
a 4
a 1
a 1 10 2
4
-2ð 0 2ð
-ð ð Ù
Sq ma 5.31 H apìkrish pltou tou sust mato pr¸th txh , gia difore timè th sta-
jer a.
H apìkrish tou sust mato pr¸th txh sto monadiao b ma enai
1 an+1
y(n) = h(n) ? u(n) = u(n)
1 a
(5.6.23)
Pardeigma 5.6.4
Dnetai to GQA sÔsthma diakritoÔ qrìnou, to opoo arqik brsketai se hrema, kai
qarakthrzetai apì thn exswsh diafor¸n
y(n)
3 y(n 1) + 1 y(n 2) = 2x(n)
4 8 (5.6.24)
Na brejoÔn h apìkrish suqnìthta kai h kroustik apìkrish tou sust mato .
An h esodo tou sust mato enai
n
x(n) =
1 u(n)
4 (5.6.25)
na breje to s ma exìdou tou sust mato .
LÔsh H apìkrish suqnìthta tou sust mato enai
H( )= 1 2
3 j + 18 e j2 (5.6.26)
4e
Enìthta 5.6 Efarmogè tou DiakritoÔ MetasqhmatismoÔ Fourier 191
AnalÔoume ton paranomast se ginìmeno poluwnÔmwn pr¸tou deutèrou bajmoÔ w
pro e j ètsi èqoume
H( )= 1 2
1 j 1 1e j (5.6.27)
2e 4
h anlush se apl klsmata dnei
H( ) = 1 14e j 1 1
2
j (5.6.28)
2 4e
Me th bo jeia antistrìfou MF diakritoÔ qrìnou prosdiorzetai h kroustik apìkrish
tou sust mato
n n
h(n) = 4
1 u(n) 2 14 u(n)
2 (5.6.29)
ma x(n) =
1 n u(n), an qrhsimopoihje to
ätan h esodo tou sust mato enai to s 4
zeugri MF diakritoÔ qrìnou
n
x(n) =
1 u(n) F! X ( ) = 1 11e
4 4 j
o metasqhmatismì Fourier diakritoÔ qrìnou th exìdou tou sust mato ja enai
) = H ( ) X ( ) = 1 1 e j 2 1 1 e j 1 11e
Y( j
2 4 4
H anlush se apl klsmata tou Y ( ) èqei th morf
Y( )=
4 2 + 8
1 14 e j 1 4 e j 2 1 12 e j
1 (5.6.30)
Me th bo jeia antistrìfou MF diakritoÔ qrìnou an qrhsimopoihjoÔn ta zeugria MF
diakritoÔ qrìnou 8 kai 14, prosdiorzetai h èxodo tou sust mato
n n n
y(n) = 4 41 u(n) 2(n + 1) 14 u(n) + 8 12 u(n) (5.6.31)
Pardeigma 5.6.5
Dnetai sÔsthma diakritoÔ qrìnou tou opoou h sqèsh metaxÔ twn shmtwn eisìdou
exìdou perigrfetai apì thn exswsh diafor¸n
y(n) =
1 (x(n) + x(n 1))
2 (5.6.32)
Na breje h kroustik apìkrish, h apìkrish suqnìthta tou sust mato kai na gnei
h grafik parstash th apìkrish pltou .
192 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
LÔsh H kroustik apìkrish tou sust mato enai
1
h(n) = SfÆ(n)g = Æ(n) + Æ(n
1 1)
2 2 (5.6.33)
H apìkrish suqnìthta tou sust mato enai o MF diakritoÔ qrìnou th kroustik
apìkrish
ètsi h (5.6.33) dnei
H( ) = 12 + 12 e j (5.6.34)
an qrhsimopoi je to zeugri 11 MF diakritoÔ qrìnou kai h idiìthta th qronik
metatìpish . H kroustik apìkrish tou sut mato mpore na grafe w
H( )=e j2 ej 2 +e j2
=e j2 os 2
2 (5.6.35)
apì thn opoa parathroÔme ìti h apìkrish pltou enai
jH ( )j = os 2 (5.6.36)
kai h apìkrish fsh enai
argfH ( )g = 2 (5.6.37)
Sto Sq ma 5.32 èqei gnei h grafik parstash th apìkrish pltou se sunrthsh
me th . ParathroÔme ìti to sÔsthma enai èna qamhloperatì fltro.
H(Ù)
1
Sq ma 5.32 H grafik parstash th
apìkrish pltou se sunrthsh me th
-ð 0 ð Ù tou sust mato sto Pardeigma 5.6.5.
Pardeigma 5.6.6
H sqèsh metaxÔ twn shmtwn eisìdou x(t) kai exìdou y(t) se èna thlepikoinwniakì
kanli sto opoo parousizetai to fainìmeno twn pollapl¸n diadrom¸n perigrfetai
apì thn exswsh
NX1
y(t) = ak x(t tk ) (5.6.38)
k=0
ìpou ak enai o pargonta exasjènhsh o sqetikì me thn k-sth diadrom didosh ,
kai tk enai h antstoiqh qronik kajustèrhsh didosh .
Na breje h kroustik apìkrish kai h apìkrish pltou thlepikoinwniakoÔ kanalioÔ
sto opoo parousizontai dÔo diadìsei , dhlad , perigrfetai apì thn exswsh di-
afor¸n,
y(n) = x(n) + ax(n 1) (5.6.39)
Enìthta 5.6 Efarmogè tou DiakritoÔ MetasqhmatismoÔ Fourier 193
LÔsh H kroustik apìkrish tou sust mato enai
h(n) = SfÆ(n)g = Æ(n) + aÆ(n 1) (5.6.40)
H apìkrish suqnìthta tou sust mato enai o MF diakritoÔ qrìnou th kroustik
apìkrish
ètsi h (5.6.40) dnei
H( ) = 1 + ae j (5.6.41)
ìpou a = jajej argfag . H apìkrish suqnìthta tou sut mato mpore na grafe w
H( ) = 1 + jaje j( argfag) (5.6.42)
Qrhsimopoi¸nta thn tautìthta Euler èqoume
H( ) = 1 + jaj os( argfag) j jaj sin( argfag) (5.6.43)
H apìkrish pltou enai
jH ( )j = (1 + jaj os( argfag))2 + jaj2 sin2 ( argfag)1=2
= (1 + jaj2 + 2jaj os( argfag))1=2 (5.6.44)
lìgw th trigonwmetrik tautìthta os2 + sin2 = 1.
Sto Sq ma 5.33 èqoun gnei oi grafikè parastsei th apìkrish pltou gia ti
peript¸sei ìpou a) a = 0; 5ej=3 , dhlad , ìtan sto dèkth ftnei ektì apì to s ma
aupeujea didosh kai èna s ma me exasjènhsh sh me 0,5 kai qronik kajustèrhsh
sh me t = T=6 kai b) a = 0; 9ej2=3.
H(Ù) H(Ù)
2 2
1,5 1,5
1 1
0,5 0,5
-ð 0 ð Ù -ð 0 ð Ù
(a) (â)
Sq ma 5.33 H grafik parstash th apìkrish pltou se sunrthsh me th tou sust -
mato sto Pardeigma 5.6.5. a) ìtan a = 0; 5 ej=3 kai b) a = 0; 9 ej2=3 .
Se pollè efarmogè pragmatikoÔ qrìnou h akolouja eisìdou enì FIR fltrou
èqei meglo m ko paradegmato qrin, h akolouja pou proèrqetai apì s ma omila
enì mikrof¸nou, h opoa mpore na jewrhje w ma akolouja aperou m kou . Upo-
logzoume thn èxodo tou fltrou me th bo jeia grammik sunèlixh qrhsimopoi¸nta
194 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
taqÔ metasqhmatismì Fourier, o opoo ja èqei, fusik, meglo m ko . Epiplèon den
enai dunatì o upologismì th exìdou, prin epexergastoÔme ìla ta degmata th
eisìdou, kai autì dhmiourge meglh kajustèrhsh.
Sti peript¸sei autè me th bo jeia taqÔ metasqhmatismoÔ Fourier pou t¸ra èqei
mikrì m ko upologzontai oi epimèrou èxodoi tou sust mato , ìtan enai gnwstì
èna tm ma (mplok) th akolouja eisìdou. Sth sunèqeia upologzetai h èxodo tou
fltrou me th bo jeia twn epimèrou exìdwn tou fltrou. Ta parapnw epexhgoÔntai
sto pardeigma pou akolouje.
Pardeigma 5.6.7
Dnetai to GQA sÔsthma diakritoÔ qrìnou pou èqei kroustik apìkrish
h(n) = [ 1; 0; 1℄
"
An h esodo tou sust mato enai h akolouja x(n) = n + 1; 0 n 9, na breje h
èxodo tou sust mato me th bo jeia kuklik sunèlixh 6-shmewn.
LÔsh H kroustik apìkrish tou fltrou enai akolouja N2 = 3-shmewn. An h
akolouja eisìdou katatmhje se akolouje N1 = 6-shmewn, tìte enai gnwstì ìti h
grammik sunèlixh kje upoakolouja me thn kroustik apìkrish ja enai akolouja
N1 + N2 1 = 8-shmewn. An qrhsimopoihje kuklik sunèlixh N = 6-shmewn, tìte
ta pr¸ta N1 + N2 + 1 N = 2 stoiqea kje akolouja ja ena esfalmèna lìgw tou
fainomènou th epikluyh .
H akolouja eisìdou x(n) = [ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 ℄ enai akolouja 10-shmewn.
Sthn akolouja aut prostjentai sthn arq dÔo mhdenik, kai sqhmatzontai oi upoa-
kolouje
x1 (n) = [ 0; 0; 1; 2; 3; 4 ℄
x2 (n) = [ 3; 4; 5; 6; 7; 8 ℄
x3 (n) = [ 7; 8; 9; 10; 0; 0 ℄
Kje upoakolouja epikalÔptetai apì thn prohgoÔmen th stou dÔo pr¸tou ìrou .
Sthn teleutaa upoakolouja èqoun prosteje mhdenik, ¸ste na gnei akolouja 6-
shmewn.
H kuklik sunèlixh 6-shmewn kje upoakolouja xk (n); k = 1; 2; 3 me thn kroustik
apìkrish tou sust mato dnei ti akolouje
y1 (n) = x1 (n) 4 h(n) = [ 3; 4; 1; 2; 2; 2 ℄
y2 (n) = x2 (n) 4 h(n) = [ 4; 4; 2; 2; 2; 2 ℄
y3 (n) = x3 (n) 4 h(n) = [ 7; 8; 2; 2; 9; 10 ℄
Apì ti akolouje yk (n); k = 1; 2; 3 diagrfoume tou dÔo pr¸tou ìrou , oi opooi
lìgw th epikluyh enai esfalmènoi, kai sqhmatzetai h akolouja
y(n) = [ 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 9; 10 ℄ (5.6.45)
Enìthta 5.6 Probl mata 195
H akolouja aut enai sh me thn grammik sunèlixh
x(n) ? h(n) = [ 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 9; 10 ℄ (5.6.46)
SÔnoyh Kefalaou
Sto keflaio autì perigryame to anptugma se seir Fourier diakritoÔ qrìnou
periodik¸n akolouji¸n, me th bo jeia tou opoou analÔoume èna periodikì s ma di-
akritoÔ qrìnou se seir apì armonik migadik ekjetik s mata diakritoÔ qrìnou,
dhlad , se s mata apl suqnìthta . Perigryame th mèjodo prosdiorismoÔ twn
suntelest¸n tou anaptÔgmato kai d¸same th fusik tou shmasa. DieurÔname ta
parapnw apotelèsmata kai ètsi perigryame to MF diakritoÔ qrìnou enì s mato
diakritoÔ qrìnou. Parathr same, ìti, ìpw to anptugma se seir Fourier twn peri-
odik¸n shmtwn diakritoÔ qrìnou, ètsi kai o MF diakritoÔ qrìnou twn mh periodik¸n
shmtwn diakritoÔ qrìnou anaparist mh periodik s mata me ekjetik s mata kai
me ton trìpo autì apokalÔptei to fasmatikì tou perieqìmeno.
Perigryame ti basikè idiìthte sti opoe diafèroun o MF diakritoÔ qrìnou
apì ton MF suneqoÔ . Parousisame leitourge , ìpw h diamìrfwsh kai to je¸rhma
th sunèlixh , me th bo jeia tou opoou h upologistik polÔplokh sqèsh th sunèli-
xh metasqhmatizìmenh kat Fourier katal gei s' èna aplì ginìmeno sunart sewn.
Me th bo jeia tou jewr mato tou Parseval edame ìti mporoÔme na upologsoume thn
enèrgeia enì s mato ete sto pedo tou qrìnou ete sto pedo twn suqnot twn.
Gia na epexergastoÔme to MF diakritoÔ qrìnou me yhfiak mèsa prob kame se
katllhlh deigmatolhya tou MF kai sqhmatsame to diakritì MF. Parousisjhkan
oi idiìthte tou diakritoÔ MF. Sth sunèqeia perigrfhke o taqÔ MF, me ton opoo
epiteÔqjhke shmantik upologistik elttwsh.
Sto kefalao parousizontai trei pnake . Ston pr¸to uprqoun oi idiìthte
tou MF diakritoÔ qrìnou, en¸ ston deÔtero oi MF diakritoÔ qrìnou merik¸n basik¸n
akolouji¸n kai ston trto pnaka oi idiìthte tou diakritoÔ MF. Ja prèpei, telei¸non-
ta to dibasma tou kefalaou, na gnwrzete kal ti idiìthte kai na mporete, ba-
sizìmenoi sta paradegmata tou kefalaou kai sti idiìthte , na brskete tou MF
twn basik¸n akolouji¸n pou uprqoun sto deÔtero pnaka.
PROBLHMATA
5.1 Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou gia ta s mata
x(n) = 1; 0 n 3
1.
0; alli¸
2. x(n) = 3n u( n)
3. x(n) = 31 n u(n)
196 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
x(n) = 1 n
4.
2 os( 0 n)u(n)
x(n) = 1 n [u(n + 2) u(n 3)℄
5.
3
x(n) = n 13 jnj
6.
x(n) = n 12 jnj os( 0 n)
7.
8. x(n) = os 125 n + sin(3n)
5.2 Na upologistoÔn oi akolouje twn opown o metasqhmatismì Fourier diakritoÔ
qrìnou enai
1. X( ) = 10;; W <j j
0j jW
2. X( ) = 1 4e j3 + 2e j2 + 5e j6
3. X( ) = P1m= 1( 1)m Æ m
2
4. X( ) = sin2
5. X( ) = ; 0 j jj j < 0
6. X( ) = 6+e 6je j e j2
5.3 Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo èqei kroustik apìkrish
h(n) =
sin(n=6)
n
Na upologiste h èxodo tou sust mato , ìtan h esodì tou enai to s ma di-
akritoÔ qrìnou n
n
x(n) = sin 2 4
8
5.4 Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo qarakthrzetai apì thn exswsh
diafor¸n
1
y(n) + y(n 1) = x(n)
2
1. Na upologiste h apìkrish suqnìthta tou sust mato .
2. An h esodo tou sust mato enai to s ma
n
x(n) =
1 u(n)
2
na upologiste h èxodo tou sust mato .
Enìthta 5.6 Probl mata 197
5.5 Dnontai dÔo GQA sust mata diakritoÔ qrìnou ta opoa èqoun apìkrish suqnìth-
ta
) = 11+ 1ee j 1
j
H1 ( H2 ( )= 1 1
2
kai
2e j + 14 e j2
antstoiqa. Ta dÔo sust mata sundèontai se seir. Na upologiste h exswsh
diafor¸n h opoa qarakthrzei to sunolikì sÔsthma.
5.6 Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo qarakthrzetai apì thn exswsh
diafor¸n
y(n)
1
9 y(n 1) = x(n)
1. Na upologiste h apìkrish suqnìthta tou sust mato .
2. An h esodo tou sust mato enai to s ma
n
x(n) = (n + 1)
1 u(n)
3
na upologiste h èxodo tou sust mato .
5.7 Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo èqei kroustik apìkrish
n
h(n) =
1 u(n) +
1 1 n u(n)
2 2 4
Na upologiste h exswsh diafor¸n h opoa sundèei thn esodo kai thn èxodo
tou sust mato .
5.8 Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik apìkrish
h(n) = [ 1; 2; 1℄
"
1. Na gnoun oi grafikè parastsei tou mètrou kai th fsh th apìkrish
suqnìthta tou sust mato se sunrthsh me th kuklik suqnìthta.
2. Na breje h èxodo tou sust mato sth mìnimh katstash, an to s ma
eisìdou enai
x(n) = 1 + 2 os 3 n 6
5.9 Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik apìkrish
h(n) = [ 1; 0; 1℄
"
H esodo tou sust mato enai to s ma diakritoÔ qrìnou
x(n) = 2(n 1); 0 n 3
Qrhsimopoi¸nta kuklik sunèlixh na prosdiorsete thn èxodo tou sust mato .
198 Anptugma - Metasqhmatismì Fourier Diakrit¸n Shmtwn Keflaio 5
x(n) = 1; 0 n 4
5.10 Dnetai to s ma
0; alli¸
1. Na apodeiqje ìti o metasqhmatismì Fourier diakritoÔ qrìnou X( ) enai
X(
sin(2 ) e
) = sin( j 32
=2)
2. An gnei omoiìmorfh deigmatolhya tou metasqhmatismoÔ Fourier diakri-
toÔ qrìnou se suqnìthte pou apèqoun metaxÔ tou kat 2 , na =
N
sqedisete to anakataskeuasmèno s maapì ta degmata tou metasqhma-
tismoÔ Fourier diakritoÔ qrìnou X k 2N gia N kai N . =4 =8
5.11 Na upologiste kai na sqediaste h apìkrish pltou tou sust mato pou peri-
grfetai apì thn exswsh diafor¸n
y(n) =
1 [x(n + 1) + x(n) + x(n 1)℄
3
5.12 Dnetai to analogikì s ma
x(t) = os(200t) + 0; 6 os(624t)
Gnetai deigmatolhya tou s mato me suqnìthta 512 Hz. Me th gnwst sqèsh
1
X
t nTs
xa (t) = xa (nT s)sin
n= 1 Ts
()
anakataskeuzetai to analogikì s ma xa t . Na sugkrnete ta arqikì analogikì
() ()
s ma x t kai to anakataskeuasmèno s ma xa t . Poie enai oi parathr sei
sa kai pw autè dikaiologoÔntai;
Bibliografa
5.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
5.2 N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”, Daulo , Aj na, 1994.
5.3 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
5.4 J. G. Proakis, D. G. Manolakis, “Introduction to Digital Signal Processing”,
MacMillan Publishing Company, 1994.
5.5 A. V. Oppenheim, R. W. Schafer, “Digital Signal Processing”, Prentice - Hall Inc.,
N. Y., 1975.
5.6 A. V. Oppenheim, R. W. Schafer, J. R.Buck “Discrete-Time Signal Processing”,
2nd ed. Prentice - Hall Inc., N. Y., 1999.
ÊÅÖÁËÁÉÏ 6
ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ LAPLACE
Skopì tou kefalaou enai na orsei ton amfpleuro metasqhmatismì Laplace
, apl¸ , metasqhmatismì Laplace (ML) kai to monìpleuro metasqhmatismì Laplace
(MML), na perigryei ti basikè tou idiìthte kai na upologsei tou antstoiqou
metasqhmatismoÔ stoiqeiwd¸n shmtwn, pou antimetwpzoume sth melèth grammik¸n
susthmtwn. Epsh , sto keflaio autì ja parousisoume th dunatìthta pou èqei
o MML na epilÔei diaforikè exis¸sei , oi opoe èqoun mh mhdenikè arqikè sun-
j ke kai sth sunèqeia ja ekmetalleutoÔme th dunatìthta aut gia th melèth GQA
susthmtwn. Tèlo , skopì tou kefalaou enai na anadexei th sqèsh pou uprqei
metaxÔ th aitiìthta , th eustjeia enì GQA sust mato , tou pedou sÔgklish
th sunrthsh metafor tou kai th jèsh twn pìlwn aut sto migadikì eppedo,
ìpou orzetai o metasqhmatismì Laplace.
EISAGWGH
Sto Keflaio 2, edame ìti h esodo kai h èxodo enì analogikoÔ GQA sust -
mato sundèontai me ma diaforik exswsh me stajeroÔ suntelestè . àtsi, gia na
prosdiorsoume thn èxodo enì sust mato an gnwrzoume thn esodì tou, prèpei na
epilÔoume thn antstoiqh diaforik exswsh. Sto dio Keflaio parathr same ìti
mporoÔme na upologsoume thn èxodo enì sust mato an gnwrzoume thn esodì tou,
me th bo jeia tou oloklhr¸mato th sunèlixh . Sto Keflaio 3 orsame to MF,
o opoo parèqei th dunatìthta metbash apì to pedo tou qrìnou sto pedo th
suqnìthta . H idiìthta th sunèlixh tou MF metatrèpei to olokl rwma th sunèli-
xh se èna aplì ginìmeno twn antistoqwn metasqhmatism¸n, me th bo jeia tou opoou
upologzetai o MF th exìdou kai sth sunèqeia me èna antstrofo MF prosdiorzetai
h èxodo tou sust mato sto pedo tou qrìnou. O MF, loipìn, èdwse ma eÔkolh lÔsh
sto prìblhma eÔresh th exìdou enì sust mato , sthn perptwsh pou gnwrzoume
thn esodì tou kai thn kroustik tou apìkrish. Dustuq¸ , ìmw , uprqoun poll
s mata, ta opoa suqn sunantme sthn prxh, gia ta opoa den uprqei o MF.
Sto keflaio autì ja perigryoume to Metasqhmatismì Laplace, o opoo meta-
trèpei èna s ma suneqoÔ qrìnou se ma analutik sunrthsh migadik metablht .
äpw ja doÔme, poll apì ta s mata me praktik spoudaiìthta, gia ta opoa den
200 METASQHMATISMOS LAPLACE Keflaio 6
uprqei o MF, uprqei o ML kai ètsi dieurÔnetai to sÔnolo twn shmtwn gia ta opoa
mpore na epiteuqje metbash apì to pedo tou qrìnou sto pedo suqnìthta .
Sto Keflaio 4, me th bo jeia tou MF upologsame thn èxodo enì GQA sust -
mato to opoo brsketai arqik se katstash hrema . Sto keflaio autì ja doÔme
ìti ìtan to sÔsthma de brsketai se katstash hrema , o MML ma epitrèpei na
sumperilboume ti arqikè sunj ke sth diaforik exswsh pou sundèei to s ma
eisìdou kai exìdou tou sust mato kai na prosdiorsoume thn èxodo tou sust mato .
Tèlo , sto keflaio autì ja doÔme ìti h qr sh tou migadikoÔ pedou suqnìthta
kai h jèsh twn pìlwn se autì ma epitrèpei na exgoume basikè idiìthte twn susth-
mtwn, ìpw h aitiìthta kai h eustjeia. Gia ìlou tou parapnw lìgou , o ML
apotele èna akìma basikì majhmatikì ergaleo gia th melèth GQA susthmtwn.
6.1 ORISMOI
Sthn Enìthta 2.5.1 èqoume dei ìti an h esodo enì grammikoÔ qronik anallowtou
sust mato enai to s ma x t ()=
Aest , tìte to s ma exìdou enai
y(t) = H (s) Aest (6.1.1)
ìpou Z 1
H (s) = h(t)e st dt (6.1.2)
1
enai o metasqhmatismì Laplace th kroustik apìkrish tou sust mato kai enai
h sunrthsh metafor tou sust mato .
O metasqhmatismì Laplace antistoiqe sto s ma suneqoÔ qrìnou x t th sunrth- ()
sh Z 1
L[x(t)℄ = X (s) x(t)e st dt (6.1.3)
1
H X (s) enai migadik sunrthsh th migadik metablht + j! kai onomzetai
Metasqhmatismì ()
Laplace (ML) tou s mato x t . Merikè forè anafèretai kai w
amfpleuro metasqhmatismì Laplace gia na toniste h diafor tou apì to monìpleuro
metasqhmatismì Laplace pou ja orsoume sthn Enìthta 6.3. To sÔnolo twn migadik¸n
arijm¸n + ()
j!, gia to opoo uprqei h X s , dhlad to antstoiqo olokl rwma
orismoÔ th sugklnei, onomzetai perioq sÔgklish (PS) th X s . Gia eukola, o ()
() [ ( )℄
ML tou s mato x t merikè forè sumbolzetai w L x t kai h sqèsh metaxÔ tou
()
x t kai tou ML upodeiknÔetai w
x(t) ! X (s)
L
(6.1.4)
h de perioq sÔgklish dhl¸netai w R.
Enìthta 6.1 Orismo 201
Parathr sei
1. An o ML uprqei kai gia timè me
R , dhlad s j!, tìte X j!
1 x t e j!t dt pou den enai tpote llo apì to MF th sunrthsh x
=0 = ( )=
1 () (t),
dhlad
X (s)js=j! = F [x(t)℄ (6.1.5)
2. O ML sqetzetai me to MF kai sthn perptwsh ìpou h metablht s den enai
fantastikì arijmì ( ). Prgmati, 6= 0
Z 1 Z 1 t e j!t dt
X ( + j!) = x(t)e (+j!)t dt = x(t)e (6.1.6)
1 1
()
O ML th x t mpore na ermhneuje kai w o MF th sunrthsh x t () =
()
x t e t . Epomènw , gia na uprqei o metasqhmatismì Laplace tou s mato
()
x t prèpei na uprqei o metasqhmatismì Fourier tou s mato x t e t , dhlad ()
()
to s ma x t e t na enai apolÔtw oloklhr¸simo
Z 1
x(t)e t dt < 1
1
H parousa tou ìrou e t parèqei th dunatìthta sÔgklish tou oloklhr¸ma-
to kai kat sunèpeia thn Ôparxh tou ML akìma kai an den uprqei o MF th
()
x t . Gia pardeigma, h ekjetik aÔxousa sunrthsh (s ma) x t eat u t () = ()
gia a jetik pragmatik stajer den enai apolÔtw oloklhr¸simh kai w
ek toÔtou den uprqei o metasqhmatismì Fourier. An epilege > a, tìte
h sunrthsh x t e t e(a )t u t enai apolÔtw oloklhr¸simh, epomè-
() = ()
nw uprqei o metasqhmatismì Laplace. Sto Sq ma 6.1 uprqoun oi grafikè
()
parastsei twn shmtwn x t , e t kai x t e t se sunrthsh me to qrìno. ()
x(t) e- ó t x(t) e -ó t
1 ó>á
e atu(t) 1 1 ó>á
0 t 0 t 0 t
(á) ( â) (ã)
Sq ma 6.1 x(t) = eat u(t) gia to opoo den uprqei o MF (b) o pargonta exas-
(a) To s ma
jènish e t kai (g) to s ma x(t)e t = e(a )t u(t) to opoo enai apolÔtw oloklhr¸simo.
202 METASQHMATISMOS LAPLACE Keflaio 6
6.1.1 Metasqhmatismì Laplace stoiqeiwd¸n shmtwn
Sthn pargrafo aut ja upologsoume tou ML orismènwn stoiqeiwd¸n shmtwn.
Pardeigma 6.1.1 (Migadikì aitiatì ekjetikì s ma)
Na upologiste o ML tou s mato x(t) = e at u(t), ìpou a migadikì arijmì .
LÔsh Apì ton orismì tou ML èqoume
Z 1 Z T
X (s) = e at e st dt = Tlim e (a+s)t dt
0 !1 0
= Tlim 1 he (a+s)T 1i
!1 a + s
(6.1.7)
All limT !1 e
(a+s)T = 0, en <e[a + s℄ > 0, sunep¸ parnoume
x(t) = e atu(t) L! X (s) =
1 me perioq sÔgklish <e[s℄ > <e[a℄
s+a
(6.1.8)
ParathroÔme ìti h perioq sÔgklish R tou migadikoÔ aitiatoÔ ekjetikoÔ s mato enai
to dexiì hmieppedo me sÔnoro th gramm pou enai kjeth ston pragmatikì xona sth
jèsh <e[a℄, (blèpe Sq ma 6.2).
x(t) ℑm
1
ℜe a ℜe
0 (á) t
( â)
Sq ma 6.2 (a) To s ma x(t) = e at u(t) kai (b) h perioq sÔgklish tou ML.
Parathr sei
1. An a = 0, tìte x(t) enai h sunrthsh monadiaou b mato , x(t) = u(t) kai o
ML enai
X (s) = L[u(t)℄ =
1 me perioq sÔgklish <e[s℄ > 0 (6.1.9)
s
2. An <[℄ 0
e a < , mporoÔme na upologsoume to X (s) gia = 0, dhlad uprqei
kai o MF kai enai
X (0 + j!) =
1
j! + a
(6.1.10)
3. An <e[a℄ > 0, o MF den uprqei, en¸ profan¸ uprqei o ML.
Enìthta 6.1 Orismo 203
Pardeigma 6.1.2 (Austhr mh aitiatì ekjetikì s ma)
Na upologiste o ML tou s mato x(t) = e atu( t), ìpou a migadikì arijmì
LÔsh O ML tou s mato enai
Z 0 Z 0
X (s) = e lim e (a+s)t dt
at e st dt
T !1 T
=
1
= s +1 a 1 Tlim
h i
e(a+s)T (6.1.11)
!1
Enai limT !1 e
(a+s)T = 0 an <e[s + a℄ < 0. Sunep¸
X (s) =
1 me perioq sÔgklish <e[s℄ < <e[a℄
s+a
(6.1.12)
ParathroÔme ìti h perioq sÔgklish R tou austhr mh aitiatoÔ ekjetikoÔ s mato
enai to aristerì hmieppedo me sÔnoro th gramm pou enai kjeth ston pragmatikì
xona sth jèsh <e[a℄ (blèpe Sq ma 6.3).
x(t) ℑm
0
t
ℜe a ℜe
-1
(á) ( â)
Sq ma 6.3 (a) To s ma x(t) = e at u( t) kai (b) h perioq sÔgklish tou ML.
ParathroÔme ìti ta s mata x t () = ()
e at u t (Pardeigma 6.1.1) kai x t () =
at ( )
e u t , (Pardeigma 6.1.2) èqoun thn dia sunrthsh w ML all diaforetik
perioq sÔgklish . Gia to lìgo autì, pnta ektì apì thn X s ja prèpei na dnetai ()
kai h antstoiqh perioq sÔgklish ¸ste na prosdiorzetai monos manta to s ma x t . ()
Pardeigma 6.1.3
Na upologiste o ML tou s mato x(t) = e t u(t) + e 2t u(t).
LÔsh O ML tou s mato enai
Z 1
Z 1 Z 1
X (s) = e tu (t) + e 2tu(t) e st dt = e t e st dt + e 2t e st dt
1 0 0
(6.1.13)
Kje èna apì ta oloklhr¸mata sthn (6.1.13) èqoun thn dia morf me to olokl rwma
sthn (6.1.7) ètsi, an qrhsimopoi soume to apotèlesma tou Paradegmato 6.1.1 èqoume
X (s) =
1 + 1 = 2s + 3
s+1 s + 2 s2 + 3s + 2
(6.1.14)
204 METASQHMATISMOS LAPLACE Keflaio 6
To s ma x(t) enai jroisma dÔo pragmatik¸n ekjetik¸n shmtwn kai apì thn (6.1.14)
parathroÔme ìti o X (s) enai so me to jroisma twn ML twn epimèrou shmtwn.
O pr¸to ìro enai o ML tou e u(t) me PS <e[s℄ > 1 kai o deÔtero enai o ML
t
tou e
2 t u(t) me PS <e[s℄ > 2. Oi koinè timè tou s gia ti opoe kai oi dÔo ML
sugklnoun enai autè gia ti opoe <e[s℄ > 1. àqoume, epomènw ,
e t u(t) + e 2t u(t) L! 2
2s + 3 ; <e[s℄ > 1
s + 3s + 2
me PS (6.1.15)
Se kje èna apì ta tra parapnw paradegmata o ML enai rht sunrthsh, dhlad
enai lìgo dÔo poluwnÔmwn th migadik metablht s, ètsi
N (s)
X (s) =
D(s)
(6.1.16)
()
Ma sunrthsh X s onomzetai analutik sthn perioq R tou migadikoÔ epipèdou-s,
en (a) enai monìtimh sunrthsh sthn R kai (b) enai paragwgsimh se kje shmeo
()
th R. An h X s den enai analutik se èna shmeo s0 , tìte to shmeo autì lègetai
()
shmeo anwmala . Oi rze tou arijmht N s onomzontai mhdenik th X s kai ()
Æ
paristnontai me “ ” sto migadikì eppedo. Sta shmea aut h X s mhdenzetai. Oi ()
() ()
rze tou paronomast D s , ìpou h X s den orzetai, onomzontai pìloi th X s ()
kai paristnontai me “ ” sto migadikì eppedo. Sto Sq ma 6.4 fanetai h perioq
sÔgklish , oi pìloi kai to mhdenikì tou ML tou s mato sto Pardeigma 6.1.3.
ℑm
Sq ma 6.4 H perioq sÔgklish , oi
-2 -1 ℜe
pìloi kai to mhdenikì tou ML tou s -
mato x(t) sto Pardeigma 6.1.3.
Pardeigma 6.1.4
Na upologiste o ML th sunrthsh Æ(t).
LÔsh
Z 1
L[Æ(t)℄ = Æ(t)e st dt = 1 me perioq sÔgklish <e[s℄ > 1 (6.1.17)
1
ìpou qrhsimopoi jhke h (1.4.19).
Pardeigma 6.1.5
Dnetai to s ma x(t) = e bjtj (blèpe Sq ma 6.5a). Na upologiste o ML.
Enìthta 6.1 Orismo 205
x(t) x(t)
1
1
0 t 0 t
(á) ( â)
Sq ma 6.5 H grafik parstash tou s mato x(t) = e bjtj gia (a) b > 0 kai (b) b < 0.
LÔsh To s ma grfetai
x(t) = e bt u(t) + ebt u( t) (6.1.18)
Gnwrzoume ìti
1 ; me PS <e[s℄ > b (Pardeigma 6.1.1)
e bt u(t) L!
s+b
ebt u( t) L!
1 ; me PS <e[s℄ < b (Pardeigma 6.1.2)
s b
ParathroÔme ìti, an b < 0, oi dÔo epimèrou ìroi den èqoun koin perioq sÔgklish
kai to s ma x(t) den èqei ML. An b > 0, èqoume
e bjtj L!
1 1 = 2b me PS b < <e[s℄ < b
s+b s b s2 b2
(6.1.19)
Sto Sq ma 6.6 fanontai h perioq sÔgklish kai oi pìloi tou ML tou s mato x(t).
ℑm
ℜe Sq ma 6.6 H perioq sÔgklish tou ML tou s mato
x(t) = e bjtj
-b b
sto Pardeigma 6.1.5 kai oi pìloi tou gia
b>0.
Pardeigma 6.1.6 (Poluwnumikì ekjetikì s ma).
Na upologiste o ML tou ekjetikoÔ poluwnumikoÔ s mato txh m, pou orzetai w
tm at
x(t) = e u(t)
m!
(6.1.20)
LÔsh Sto Pardeigma 6.1.1 èqoume dexei
Z 1 1
e at e st dt = <e[s℄ > <e[a℄
s+a
gia (6.1.21)
0
206 METASQHMATISMOS LAPLACE Keflaio 6
Paragwgzonta w a kai ta dÔo mèlh th (6.1.21) èqoume
pro
d
Z 1 1 Z 1 te ate st dt = 1
e at e st dt =
da 0 (s + a)2 0 (s + a)2 (6.1.22)
H teleutaa isìthta dhl¸nei ìti to s ma x(t) = te
at u(t) èqei ML
x(t) = te at u(t) L! X (s) =
1
(s + a)2 me <e[s℄ > <e[a℄ (6.1.23)
An a = 0, èqoume
L [tu(t)℄ = L [r(t)℄ = 2
1 me <e[s℄ > 0 (6.1.24)
s
ìpou r(t) enai h sunrthsh klsh . Nèa parag¸gish th (6.1.22) w pro a dnei
Z 1
t2 e at e st dt =
2
0 (s + a)3
t2 at 1
opìte
e u(t) L!
2 (s + a)3 me PS <e[s℄ > <e[a℄ (6.1.25)
Genik mpore na deiqje epagwgik ìti
tm at
e u(t) L!
1 <e[s℄ > <e[a℄
m! (s + a)m+1 me PS (6.1.26)
6.1.2 Idiìthte th perioq sÔgklish - Ìparxh metasqhmatismoÔ Laplace
Apì ta prohgoÔmena paradegmata parathr same ìti o metasqhmatismì Laplace den
prosdiorzei monos manta to s ma ektì an èqei orisje h perioq sÔgklish . Epsh ,
parathr same ìti h morf th perioq sÔgklish tou metasqhmatismoÔ Laplace
exarttai apì ta qarakthristik tou s mato . Sthn enìthta aut ja broÔme ton
trìpo me to opoo sundèetai h perioq sÔgklish me ta qarakthristik tou s ma-
()
to x t . Ja parousisoume ti idiìthte qrhsimopoi¸nta diaisjhtik epiqeir mata
par austhrè majhmatikè apodexei . Gnwrzonta ti idiìthte enai efiktì o pros-
diorismì th perioq sÔgklish apì to metasqhmatismì Laplace X s kai èqonta ()
periorismènh gn¸sh twn qarakthristik¸n tou s mato x t . ()
àna pr¸to sumpèrasma enai ìti h perioq sÔgklish tou metasqhmatismoÔ Laplace
pou enai rht sunrthsh th metablht s den perièqei pìlou .
äpw parathr same sthn prohgoÔmenh enìthta, gia na uprqei o metasqhmatismì
Laplace tou s mato ()
x t prèpei
Z 1
I () = jx(t)j e t dt < 1 (6.1.27)
1
Enìthta 6.1 Orismo 207
Oi timè th pragmatik metablht pou ikanopoioÔn thn parapnw anisìthta or-
zoun thn perioq sÔgklish tou metasqhmatismoÔ. H posìthta enai to pragmatikì
mèro tou migadikoÔ arijmoÔ s s ( = + )
j! , epomènw h perioq sÔgklish exarttai
apì to pragmatikì mèro , en¸ to fantastikì mèro den ephrezei th sÔgklish. Gia
to lìgo autì h perioq sÔgklish enai z¸ne parllhle sto fantastikì xona tou
epipèdou-s.
()
Gia èna peperasmèno s ma x t (uprqei jetikì arijmì M gia ton opoo enai
j ( )j
xt M ), to opoo enai peperasmènh dirkeia (x t gia t < T1 kai t > T2 ), ( )=0
tìte
Z 1 Z T2 W T2 T1 ; 6= 0
I () = jx(t)j e t dt Me t dt = e e
1 T1 M (T2 T1 ); =0
()
Sthn perptwsh aut to olokl rwma I enai peperasmèno gia ìle ti peperasmène
timè th metablht . Sumperanoume, loipìn, ìti:
H perioq sÔgklish enì peperasmènou s mato kai peperasmènh dirkeia
sumperilambnei olìklhro to eppedo-s.
Sth sunèqeia ja exetsoume th genik perptwsh kat thn opoa to s ma x t ()
den enai periorismènh dirkeia kai enai mh peperasmèno. To s ma autì onomzetai
amfpleuro s ma. Sthn perptwsh aut diaqwrzoume to I se dÔo tm mata. Sto ()
()
pr¸to tm ma I ta ìria olokl rwsh enai kai 1 0
Z 0
I () = jx(t)je t dt
1
Sto deÔtero tm ma I+ () ta ìria olokl rwsh enai 0 kai 1
Z 1
I+ () = jx(t)je t dt
0
dhlad ,
Z 0 Z 1
I () = jx(t)j e t dt + jx(t)j e t dt = I () + I+()
1 0
()
Gia na enai to I peperasmèno prèpei kai ta dÔo epimèrou oloklhr¸mata na enai
j ( )j
peperasmèna. Autì sunepgetai ìti to x t prèpei na enai fragmèno kai gia ti
jetikè kai gia ti arnhtikè timè tou qrìnou.
A upojèsoume ìti mporoÔme na frxoume to x t gia ti jetikè kai gia ti j ( )j
arnhtikè timè tou qrìnou brskonta ti elqiste stajerè M > kai # tètoie 0
¸ste
xt j ( )j
Me# t ; t > ; 0
208 METASQHMATISMOS LAPLACE Keflaio 6
kai th mègisth stajer tètoia ¸ste
jx(t)j Me t; t < 0;
()
To s ma x t to opoo ikanopoie ta frgmata aut qarakthrzetai w s ma ekjetik
j ( )j
txh . Ta frgmata upodhl¸noun ìti to x t den auxnetai taqÔtera apì to ekjetikì
s ma e# t gia ti jetikè timè tou qrìnou kai e t gia ti arnhtikè timè tou qrìnou.
Shmei¸netai ìti uprqoun s mata ta opoa den enai ekjetik txh , gia pardeigma
ta s mata et kai t3t . Ta s mata aut den emfanzontai se fusikè efarmogè kai ètsi
2
den ma dhmiourgoÔn probl mata.
Upojètonta ìti to s ma x(t) enai ekjetik txh èqoume gia to olokl rwma
I ()
Z 0 Z 0
I () = jx(t)j e t dt M e( )t dt
1 1
M 0
= e( )t (6.1.28)
1
kai gia to olokl rwma I+ ()
Z 1 Z 1
I+ () = jx(t)j e t dt M e(# )t dt
0 0
M h 1i
= e(# )t (6.1.29)
# 0
()
ParathroÔme ìti to I enai peperasmèno ìtan < kai to I+ enai peperas- ()
()
mèno ìtan > # . To olokl rwma I sugklnei gia ti timè tou gia ti opoe kai
() ()
ta dÔo oloklhr¸mata I kai I+ sugklnoun. ra, o metasqhmatismì Laplace
uprqei gia ti timè tou oi opoe ikanopoioÔn th # < < .
H perioq sÔgklish enì amfpleurou s mato enai ma z¸nh sto migadikì eppedo
me ìria ti eujee =
kai # . =
To s ma x t ()=ebjtj , tou opoou o metasqhmatismì Laplace brèjhke sto Pardeigma
6.1.5, enai èna amfpleuro s ma.
Shmei¸netai ìti sthn perptwsh ìpou # > , den uprqoun timè tou gia ti
opoe o metasqhmatismì Laplace sugklnei.
Sth sunèqeia ja exetsoume thn perptwsh kat thn opoa to s ma x t ( ) = 0 gia
t > T2 . àna s ma pou ikanopoie thn idiìthta aut onomzetai aristerìpleuro s ma.
Enìthta 6.1 Orismo 209
Sthn perptwsh to I () èqoume
Z 0 Z T2
I () = jx(t)je dt + jx(t)jet dt
t
1 0 ( h i
0 0 ; 6= 0
t jT2
M h i W e
e ( ) t + (6.1.30)
1 M (T2 0); = 0
Apì thn parapnw parathroÔme ìti h perioq sÔgklish enì aristerìpleurou s -
mato apoteletai apì ti timè th metablht s gia ti opoe to pragmatikì mèro
ikanopoie th < , dhlad
H perioq sÔgklish enì aristerìpleurou s mato enai to aristerì hmieppedo
me ìrio thn eujea . =
To s ma x t ()=e at u ( t), to opoo melet same sto Pardeigma 6.1.2, enai
èna aristerìpleuro s ma.
Tèlo , ja exetsoume thn perptwsh kat thn opoa to s ma x t gia t < T2 .( )=0
àna s ma pou ikanopoie thn idiìthta aut onomzetai dexiìpleuro s ma. Me ìmoio
trìpo parathroÔme ìti h perioq sÔgklish enì dexiìpleurou s mato apoteletai
apì ti timè th metablht s gia ti opoe to pragmatikì mèro ikanopoie th > # .
H perioq sÔgklish enì dexiìpleurou s mato enai to dexiì hmieppedo me ìrio
thn eujea =
# .
To s ma x(t) = e (t), to opoo melet
at u same sto Pardeigma 6.1.1, enai èna
dexiìpleuro s ma.
6.1.3 Idiìthte tou metasqhmatismoÔ Laplace
Sthn pargrafo aut ja parousisoume merikè idiìthte tou ML. Oi idiìthte autè
ja ma bohj soun ston upologismì tou ML shmtwn, qwr na qreiaste na upo-
logsoume to olokl rwma orismoÔ. Arketè apì ti idiìthte jumzoun ti idiìthte
tou MF. Gia ti apodexei twn idiot twn, ìpou autè den enai profane , o endiafe-
rìmeno anagn¸sth parapèmpetai sto [1℄.
(1) Grammikìthta
An x1 t ( ) L! X1 (s) me PS R1 kai x2(t) L! X2 (s) me PS R2, tìte gia opoies-
d pote stajerè a kai b enai
ax1 (t) + bx2 (t) L
! aX1 (s) + bX2(s) me PS R = R1 \ R2
dhlad h perioq sÔgklish tou grammikoÔ sunduasmoÔ enai h tom twn epimèrou
() ()
perioq¸n sÔgklish twn X1 s kai X2 s . Se orismène peript¸sei enai dunatìn h
210 METASQHMATISMOS LAPLACE Keflaio 6
perioq sÔgklish na enai megalÔterh, ìtan kpoia mhdenik th ma sunrthsh
akur¸noun kpoiou pìlou th llh .
(2) Metatìpish sto qrìno
An x(t) ! X (s) me PS R tìte gia opoiad
L
pote qronik tim t0 isqÔei
x(t t0 ) L
!e st0 X (s) me thn dia PS R
(3) Metatìpish sth migadik suqnìthta
An x(t) ! X (s) me PS R, tìte
L
es0 t x(t) ! X (s s0) me PS R + <e[s0℄
L
ìpou h stajer s0 , sth genik perptwsh, enai migadik posìthta. H PS tou X (s s0)
()
enai h PS tou X s metatopismènh kat e s0 . <[ ℄
(4) Klimkwsh sto qrìno kai sth suqnìthta
An x(t) ! X (s) me PS 1 < <e[s℄ < 2, tìte gia opoiad
L
pote stajer a
! ja1j X as
1
x(at) L
me PS < <e[s℄ < 2
a a
(5) Parag¸gish sth suqnìthta
An x(t) ! X (s) me PS R, tìte
L
( t)nx(t) L! d dsXn(s) me PS R
n
(6) Olokl rwsh sth suqnìthta
An x(t) ! X (s) me PS R, tìte
L
x(t)
Z 1
L
! X ( ) d me PS R
t s
(7) Metasqhmatismì Laplace parag¸gou
An x(t) ! X (s) me PS R, tìte
L
dx(t)
dt
! sX (s) me thn dia PS R
L
Enìthta 6.1 Antstrofo Metasqhmatismì Laplace 211
()
H PS tou sX s mpore na enai megalÔterh apì thn R, an h X s èqei w aplì pìlo ()
ton s =0o opoo akur¸netai me ton pollaplasiasmì me s. Epagwgik mporoÔme na
genikeÔsoume thn parapnw idiìthta
dn x(t)
dtn
! snX (s) me thn dia PS R
L
(8) Metasqhmatismì Laplace oloklhr¸mato
An x(t) ! X (s) me PS R, tìte
L
! 1s X (s) me PS thn R \ f<e[s℄ > 0g
Z t
x( ) d L
1
(1 ) ( )
H PS tou =s X s mpore na enai megalÔterh apì thn R \f<e[s℄ > 0g, an o pìlo
sto mhdèn akur¸netai me antstoiqo mhdenikì th X s . ()
(9) Je¸rhma th sunèlixh sto qrìno
An x1 (t) L
! X1 (s) me PS R1 kai x2(t) L! X2 (s) me PS R2 , tìte
y(t) = x1 (t) ? x2 (t) L
! Y (s) = X1 (s) X2(s)
\
me perioq sÔgklish thn R1 R2 , dhlad h perioq sÔgklish tou ginomènou X1 s ( )
()
X2 s enai h tom twn epimèrou perioq¸n sÔgklish twn X1 s kai X2 s . Enai () ()
dunatìn na orzetai kai megalÔterh perioq sÔgklish , an kpoia mhdenik th mia
sunrthsh akur¸noun kpoiou pìlou th llh . ParathroÔme, dhlad , ìti ìpw
kai sthn perptwsh tou MF, h sunèlixh metasqhmatzetai se ginìmeno.
Pèra apì ta stoiqei¸dh s mata, ta opoa melet jhkan sta Paradegmata 6.1.1 -
6.1.6, uprqoun kai arket lla pou epsh emfanzontai w sustatik mèrh llwn
shmtwn, pou sunantme sth melèth grammik¸n susthmtwn. Oi ML twn shmtwn
aut¸n upologzontai me th bo jeia tou orismoÔ kai twn idiot twn tou metasqhmatismoÔ
Laplace. Ston Pnaka 6.1 uprqoun oi idiìthte tou ML, en¸ ston Pnaka 6.2 uprqoun
oi ML kai oi antstoiqe perioqè sÔgklish gia ti plèon sunhjismène kai qr sime
peript¸sei .
6.2 ANTISTROFOS METASQHMATISMOS LAPLACE
An enai èna pragmatikì arijmì , èqoume parathr sei ìti o ML X s tou s mato ()
() ()= ()
x t sumpptei me to MF tou s mato x t x t e t se ìla ta shmea tou migadikoÔ
212 METASQHMATISMOS LAPLACE Keflaio 6
PINAKAS 6.7 Oi idiìthte tou MetasqhmatismoÔ Laplace
Idiìthta S ma ML Pedo sÔgklish
x(t) X (s) R=fs:1 <<e[s℄<2 g
x1 (t) X1 (s) R1
x2 (t) X2 (s) R2
Grammikìthta ax1 (t) + bx2 (t) aX1 (s) + bX2 (s) R1 \ R2
Metatìpish sto qrìno x(t t0 ) e st0 X (s) R
Metatìpish sth es0 t x(t) X (s s0 ) R + <e[s0 ℄
migadik suqnìthta
x(at); a > 0 1 s R
Klimkwsh sto qrìno
aX a a
kai sth suqnìthta
Parag¸gish sth ( t)nx(t) dn
dsn X (s) R
suqnìthta
x(t) R1
X ( ) d R
Olokl rwsh sth
t s
suqnìthta
dn x(t) sn X (s) R
ML parag¸gou dtn
Rt 1 X (s)
ML oloklhr¸mato 1 x( ) d s R
H idiìthta th y(t)=x1 (t)?x2 (t) Y (s)=X1 (s)X2 (s) R1 \ R2
sunèlixh
Periodik s mata x(t)=x(t+T )
R
X (s)= 1 e1 sT 0T x(t)e st dt <e[s℄ > 0
epipèdou-s pou an koun sthn eujea <e[s℄ = . Prgmati,
Z 1
X (s) = x(t)e st dt,
Z
1
1
X ( + j!) = x(t)e (+j!)t dt
Z
1
1
= x (t)e j!t dt (6.2.1)
1
àtsi, an qrhsimopoi soume ton tÔpo antistrof tou MF, parnoume
= F 1 [X ( + j!)℄ = 21
Z 1
x(t)e t X ( + j!)ej!t d! (6.2.2)
1
pollaplasizonta kai ta dÔo mèlh me et èqoume
x(t) =
1 Z 1
(+j!)t d!
2 1 X ( + j!)e (6.2.3)
Enìthta 6.1 Antstrofo Metasqhmatismì Laplace 213
PINAKAS 6.8 Metasqhmatismo Laplace merik¸n basik¸n shmtwn
S ma Metasqhmatismì Laplace Perioq sÔgklish
1 Æ(t) 1 Gia kje s
2 u(t) 1=s <e[s℄ > 0
3 u( t) 1=s <e[s℄ < 0
e at u(t) 1 <e[s℄ > <e[a℄
4 s+a
e at u( t) 1 <e[s℄ < <e[a℄
5 s+a
tm e at u(t) 1 <e[s℄ > <e[a℄
6 m! (s+a)m+1
tm e at u( t) 1 <e[s℄ < <e[a℄
7 m! (s+a)m+1
8 Æ(t T ); T 0 e sT Gia kje s
9 [ os(!0t)℄u(t) s
s2 +!02 <e[s℄ > 0
10 [sin(!0t)℄u(t) !0
s2 +!02 <e[s℄ > 0
11 [e at os(!0t)℄u(t) s+a <e[s℄ > <e[a℄
(s+a)2 +!02
11 [e at sin(!0t)℄u(t) !0
(s+a)2 +!02 <e[s℄ > <e[a℄
un (t) = d dtÆn(t)
n
13 sn Gia kje s
+
me allag metablht apì j! se s odhgoÔmaste sthn exswsh antistrof tou
=
ML (enai ds jd! afoÔ h enai stajer)
Z +j 1
x(t) =
1 X (s)est ds
2j j1
(6.2.4)
To olokl rwma èqei thn ènnoia ìti h olokl rwsh ekteletai pnw sthn eujea <e[s℄ =
, h opoa prèpei na perièqetai sto pedo sÔgklish tou X s . ()
6.2.1 Upologismì tou Antstrofou MetasqhmatismoÔ Laplace
O apeujea upologismì tou antstrofou ML mèsw th eplush tou oloklhr¸ma-
to th (6.2.4) apaite efarmog teqnik¸n olokl rwsh migadik¸n sunart sewn. H
mèjodo aut mpore na apodeiqje epponh diadikasa kai gia to lìgo autì sun jw
akoloujoÔntai èmmesoi trìpoi upologismoÔ tou antstrofou ML.
()
An h morf th sunrthsh X s enai apl kai mpore eÔkola na ekfraste w
jroisma epimèrou stoiqeiwd¸n ìrwn, tìte me th qr sh twn gnwst¸n ML (Pnaka
214 METASQHMATISMOS LAPLACE Keflaio 6
6.2) kai twn idiot twn tou ML mporoÔme apeujea na upologsoume ton L 1 X s [ ( )℄ =
()
x t . äpw èqoume parathr sei kai sta antstoiqa paradegmata, sta perissìtera
probl mata pou antimetwpzoume sth jewra twn susthmtwn, o ML èqei th morf
rht sunrthsh . Sti peript¸sei autè o ML mpore na ekfraste w jroisma
apl¸n klasmtwn, gia kajèna apì ta opoa upologzoume ton antstrofo ML, me th
bo jeia tou Pnaka 6.2. Sto Parrthma B perigrfontai oi trìpoi anlush rht¸n
sunart sewn se apl klsmata. Sta paradegmata pou akoloujoÔn efarmìzoume th
mèjodo aut .
Pardeigma 6.2.1 (Oi rze tou paronomast enai aplè kai pragmatikè )
Na upologiste o antstrofo ML th sunrthsh X (s), ìpou
X (s) = 2
3s + 7 ; <e[s℄ > 1
s + 4s + 3
me PS (6.2.5)
LÔsh Oi rze tou paronomast enai 1 = 1 kai 2 = 3. H X (s) mpore na
ekfraste w jroisma apl¸n klasmtwn
X (s) = 2
3s + 7 = sC+1 1 + sC+2 3
s + 4s + 3
(6.2.6)
kai upologzoume ti stajerè C1 kai C2 w ex :
C1 = (s + 1)X (s)js= 1 =
3s + 7 =2
s + 3 s= 1
kai
C2 = (s + 3)X (s)js= 3 =
3s + 7 =1
s + 1 s= 3
ra
X (s) =
2 + 1
s+1 s+3
(6.2.7)
O L 1 [X (s)℄ enai so me to jroisma twn antstrofwn ML twn apl¸n klasmtwn
oi opooi brskontai eÔkola me th bo jeia tou zeÔgou (4) tou Pnaka 6.2. Telik o
zhtoÔmeno antstrofo ML enai
x(t) = 2e t + e 3t u(t) (6.2.8)
Pardeigma 6.2.2 (Ìparxh pollapl pragmatik rza ston paronomast )
Na upologiste o antstrofo ML th sunrthsh X (s), ìpou
s2 3s + 1
X (s) =
(s 1)2(s 2) ; me PS <e[s℄ > 2 (6.2.9)
Enìthta 6.1 Antstrofo Metasqhmatismì Laplace 215
LÔsh O paronomast èqei ma dipl pragmatik rza thn 1 = 1 kai ma apl thn
2 = 2. H X (s) mpore na ekfraste w jroisma apl¸n klasmtwn
C11
X (s) = + C12
s 1 (s 1)2
+ sC212 (6.2.10)
kai upologzoume ti stajerè C11 , C12 kai C21
d s2 3s + 1
C11 =
1 d
(s 1)2 X (s) = =2
(2 1)! ds s=1 ds s 2 s=1
s2
kai
C12 = (s 1)2X (s) s=1 = 3s + 1 = 1
s 2 s=1
2
C21 = (s 2)X (s)js=2 = s (s 3s1)+2 1 = 1
s=2
ra
X (s) =
2 + 1 1
s 1 (s 1)2 s 2 (6.2.11)
Me th bo jeia twn zeug¸n ML (4) kai (6) tou Pnaka 6.2, o L 1 [X (s)℄ prokÔptei
x(t) = tet + 2et e2t u(t) (6.2.12)
Pardeigma 6.2.3 (Ìparxh migadik¸n riz¸n ston paronomast )
Na upologiste o antstrofo ML th sunrthsh X (s), ìpou
s+2
X (s) = 2 ; <e[s℄ > 2
s + 4s + 13
me PS (6.2.13)
LÔsh Oi rze tou paronomast enai 1 = 2+3j kai 2 = 2 3j . H X (s) mpore
na ekfraste w jroisma apl¸n klasmtwn
C1
X (s) =
s + 2 3j
+ s + C2 2+ 3j (6.2.14)
Upologzoume ti stajerè C1 kai C2
s+2 1
C1 = (s + 2 3j )X (s)js= 2+3j = s + 2 + 3j =
s= 2+3j 2
= s +s 2+ 2 3j = 12
kai
C2 = (s + 2 + 3j )X (s)js= 2 3j
s= 2 3j
216 METASQHMATISMOS LAPLACE Keflaio 6
ra
X (s) =
1 1 +1 1
2 s + 2 + 3j 2 s + 2 3j (6.2.15)
O antstrofo ML lìgw th (4) tou Pnaka 6.2 enai
x(t) = 1 he (2+3j)t + e (2 3j)t i u(t)
2
= 1 e 2t e 3jt + e3jt u(t)
2
= e 2t os(3t)u(t) (6.2.16)
Sthn perptwsh pou èqoume migadikè rze , mporoÔme na akolouj soume ènan enal-
laktikì trìpo, o opoo baszetai sta zeÔgh ML (9), (10), (11) kai (12) tou Pnaka 6.2.
H X (s) grfetai
s+2
X (s) = 2
s + 4s + 13
= (s +s2)+22+ 32 (6.2.17)
Me th bo jeia tou zeÔgou ML (11) sto Pnaka 6.2 parathroÔme ìti
x(t) = L 1 [X (s)℄ = e 2t os(3t)u(t) (6.2.18)
Sto Sq ma 6.7 fanontai oi suzuge migadiko pìloi, oi opooi brskontai sto arnhtikì
hmieppedo, to mhdenikì kai h perioq sÔgklish tou X (s), h opoa perièqei to fan-
tastikì xona. ParathroÔme ìti to s ma x(t) enai aitiatì afoÔ to pedo sÔgklish
enai to dexiì hmieppedo kai enai èna fjnon sunhmitonoeidè s ma.
ℑm x(t) = e-2t cos(3t)u(t)
3j 1
e-2t
-2 ℜe 0 t
-2t
e
-3j
-1
(á) (â)
Sq ma 6.7 (a) H perioq sÔgklish , oi pìloi kai to mhdenikì tou ML (b) tou s mato x(t)
sto Pardeigma 6.2.3.
6.3 O MONOPLEUROS METASQHMATISMOS LAPLACE
Sthn Pargrafo 6.1 orsame ton ML. Sthn pargrafo aut ja orsoume to Monì-
()
pleuro Metasqhmatismì Laplace (MML) tou s mato x t . Ja estisoume sta basik
shmea tou MML kai kurw se aut pou ton diaforopoioÔn apì to ML.
Enìthta 6.2 O monìpleuro Metasqhmatismì Laplace 217
H diafor metaxÔ twn dÔo metasqhmatism¸n entopzetai sta ìria olokl rwsh
tou orismoÔ. An to ktw ìrio sto olokl rwma sth sqèsh (6.1.3) enai to mhdèn, tìte
orzetai o monìpleuro metasqhmatismì Laplace
Z 1
L [x(t)℄ = X (s) = X +(s) x(t)e st dt (6.3.1)
0
To sÔnolo twn migadik¸n arijm¸n s = +
j! pnw sto opoo uprqei kai orzetai h
X( )
s , ìpou dhlad to antstoiqo olokl rwma orismoÔ sugklnei, onomzetai perioq
sÔgklish (PS) th s. X( )
Profan¸ , an dÔo s mata enai diaforetik gia t < kai sa gia t , tìte èqoun 0 0
ton dio MML kai diaforetikì ML. Gia aitiat s mata, x t gia t < , o ML kai o ( )=0 0
MML sumpptoun. Me lla lìgia o monìpleuro metasqhmatismì Laplace tou s ma-
()
to x t tautzetai me ton amfplero metasqhmatismì Laplace tou s mato x t u t . () ()
() ()
Efìson to s ma x t u t enai aitiatì s ma, h perioq sÔgklish tou monìpleurou
metasqhmatismoÔ Laplace enai pnta to mègisto dexiì hmieppedo pou den perièqei
pìlou tou sust mato . H diafor metaxÔ twn dÔo orism¸n enai ousiastik , kai
ìpw ja doÔme, parèqei sto MML th dunatìthta eplush diaforik¸n exis¸sewn, oi
opoe èqoun mh mhdenikè arqikè sunj ke . ätan to s ma perièqei sunart sei Æ t , ()
o orismì tou orou sto mhdèn apaite prosoq , diìti to apotèlesma ja exarttai
en proseggzoume to mhdèn apì arister apì dexi. Sthn perptws ma jew-
roÔme to ìrio apì arister t ( !0 )
kai epomènw h sunrthsh Æ t emperièqetai ()
()
sto olokl rwma. En den uprqoun sunart sei Æ t , to parapnw sqìlio enai neu
shmasa .
O monìpleurou metasqhmatismì Laplace èqei parìmoie idiìthte me to metasqh-
matismì Laplace ti opoe parajètoume ston Pnaka 6.3. Ma diafor uprqei sthn
idiìthta parag¸gish sto qrìno.
(1) Parag¸gish sto pedo tou qrìnou
An x t ( ) L! X ( )
s me PS R kai h sunrthsh (s ma) x t enai paragwgsimh gia ()
t0 , tìte o metasqhmatismì Laplace th parag¸gou th enai
dx(t) L
dt
! sX (s) x(0 ) me thn dia PS R
Apìdeixh
O monìpleuro metasqhmatismì Laplace th parag¸gou enai
dx(t) 1 dx(t)
Z
L dt
= dt
e st dt
0 Z 1
= [x(t)e st ℄1+
0 sx(t)e st dt
0 Z 1
= tlim
!1
[x(t)e ℄ tlim
!0
[x(t)e ℄ + s
st st x(t)e st dt
0
218 METASQHMATISMOS LAPLACE Keflaio 6
ìpou qrhsimopoi jhke h mèjodo olokl rwsh kat pargonte . Dedomènou ìti h
x(t) enai ekjetiktxh ja uprqei M > kai t0 gia ta opoa 0
= jx(t)j e t < Meat e t = Me( a)t
x(t)e st
gia kje t
R1t0 . àtsi, limt!1 [x(t)e st ℄ = 0 ìtan <e[s℄ > a. Epsh , enai limt!0 [x(t)e st ℄ =
x(0 ) kai 0 x(t)e st dt = X (s). Epomènw , èqoume
dx(t) L
! sX (s) x(0 ); <e[s℄ > a
dt
ParathroÔme ìti, epeid to ktw ìrio tou oloklhr¸mato orismoÔ tou monìpleurou
metasqhmatismoÔ Laplace enai to mhdèn, sto monìpleuro metasqhmatismì Laplace th
()
parag¸gou tou x t uprqei h arqik sunj kh x . (0 )
O monìpleuro metasqhmatismì Laplace th parag¸gou txh n enai
dn x(t) L n dx(t) n 1
dtn
! s X (s) sn 1x(0 ) sn 2
dt t=0
d dtnx(1t)
t=0
Ma deÔterh diafor uprqei sthn idiìthta th olokl rwsh sto qrìno.
(2) Olokl rwsh sto pedo tou qrìnou
An x(t) L! X (s) me PS R, tìte
y(t) =
Z t
x( ) d L!
1 X (s) + 1 Z 0 x( ) d = X (s) + y(0 )
1 s s 1 s s
Apìdeixh
ParathroÔme ìti dt
dy(t) = () ()
x t . H y t enai paragwgsimh, an h x t enai suneq . ()
Epsh enai ekjetik txh . Qrhsimopoi¸nta thn idiìthta th parag¸gish sto
pedo tou qrìnou èqoume
dy(t)
L dt
= L[x(t)℄ ) sY (s) y(0 ) = X (s)
Epomènw , èqoume
Y (s) = X s(s) + y(0s )
ParathroÔme ìti sto monìpleuro metasqhmatismì Laplace tou oloklhr¸mato tou
()
x t uprqei h arqik sunj kh y . (0 )
Tèlo , o monìpleuro metasqhmatismì Laplace parèqei th dunatìthta na prosdio-
risje h arqik tim x + kai to (0 ) lim ()
t!1 x t me to je¸rhma th arqik kai telik
tim kai ìqi mèsw tou idou tou s mato x t . ()
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 219
(3) Je¸rhma arqik tim
()
àstw to s ma x t , to opoo den perièqei kroustikè sunart sei sto t = 0, me
MML X( ) <[℄
s kai perioq sÔgklish e s > 0 . Tìte isqÔei
x(0+ ) = slim
!1 sX (s) (Arqik tim )
ìpou x + enai h tim tou s mato
(0 ) x(t) ìtan h metablht t plhsizei to mhdèn apì
jetikè timè .
(4) Je¸rhma telik tim
()
àstw to s ma x t , me MML X( ) <[℄
s kai perioq sÔgklish e s > 0 . An h s s X( )
enai analutik sunrthsh sto fantastikì xona kai sto dexiì migadikì hmieppedo,
tìte isqÔei
xt lim ( ) = slim
t!1
X( )
s s (Telik tim )
!0
To je¸rhma th telik tim qrhsimopoietai sth melèth grammik¸n susthmtwn
gia ton prosdiorismì twn tim¸n isorropa kai th mìnimh katstash tou .
Oi idiìthte autè apoteloÔn th dÔnamh tou monìpleurou metasqhmatismoÔ Laplace
giat èqoume th dunatìthta na epilÔoume grammikè diaforikè exis¸sei me stajeroÔ
suntelestè kai na analÔoume GQA sust mata ta opoa den brskontai se hrema.
6.4 EFARMOGES TWN METASQHMATISMWN LAPLACE
Sthn enìthta aut ja anaptÔxoume ti efarmogè twn metasqhmatism¸n Laplace. Ei-
dikìtera ja axiopoi soume th dunatìthta pou parèqei o MML gia thn eplush di-
aforik¸n exis¸sewn oi opoe èqoun mh mhdenikè arqikè sunj ke kai ja thn efar-
mìsoume sth melèth GQA susthmtwn. Telei¸nonta , ja exetsoume th sqèsh pou
uprqei metaxÔ th jèsh twn pìlwn th sunrthsh metafor sto migadikì eppedo
me ti idiìthte th aitiìthta kai th eustjeia enì GQA sust mato .
6.4.1 Eplush grammik diaforik exswsh me th bo jeia MML
Lìgw th idiìthta tou MML pou anafèretai sthn pargwgo kai to olokl rwma
mia sunrthsh , èqoume th dunatìthta na epilÔoume grammikè diaforikè exis¸sei
me stajeroÔ suntelestè . H genik morf mia grammik diaforik exswsh me
stajeroÔ suntelestè enai
dn x(t) dn 1 x(t)
an
dtn
+ a n 1
dtn 1
+ ::: + a1 dxdt(t) + a0 x(t) = g(t) (6.4.1)
me arqikè sunj ke
dx(t) dn 1 x(t)
x(t)jt=0 = b0 ; ; = b1 ; ::: ; =b
dtn 1 t=0 n 1
(6.4.2)
dt t=0
220 METASQHMATISMOS LAPLACE Keflaio 6
PINAKAS 6.9 Oi idiìthte tou Monìpleurou MetasqhmatismoÔ Laplace
Idiìthta S ma Monìpleuro ML
x(t) X (s)
x1 (t) X1(s)
x2 (t) X2(s)
Grammikìthta ax1 (t) + bx2 (t) aX1 (s) + bX2 (s)
Metatìpish sth suqnìthta es0 t x(t) X (s s0)
x(at); a > 0 1 s
Klimkwsh sto qrìno aX a
Sunèlixh
x1 (t) = x2 (t) = 0 gia t < 0 x1 (t) ? x2 (t) X1(s) X2 (s)
dt x(t) sX (s) x(0 )
Parag¸gish sto qrìno? d
Parag¸gish sth suqnìthta tx(t) ds X (s)
d
Rt X (s) + y(0 )
Olokl rwsh sto qrìno? 1 x( ) d s s
Arqik tim x(0+ ) = lims!1 sX (s)
Telik tim limt!1 x(t) = lims!0 sX (s)
? ätan oi arqikè sunj ke enai mhdèn, oi idiìthte th parag¸gish kai ti olo-
kl rwsh tou MML enai oi die me ti antstoiqe tou ML.
Ta b mata pou akoloujoÔme gia thn eplush th enai:
1. Parnoume to MML kai sta dÔo mèlh th exswsh . Lìgw th grammikìthta ,
o MML tou aristeroÔ mèrou isoÔtai me to jroisma twn MML twn epimèrou
ìrwn.
2. LÔnoume thn exswsh pou prokÔptei w pro ton MML X (s) th sunrthsh
()
xt.
3. Brskoume ton L 1 [X (s)℄, dhlad th lÔsh x(t).
Efarmìzoume ta parapnw sto pardeigma pou akolouje.
Pardeigma 6.4.1
Na epiluje h diaforik exswsh
dx(t)
Z t
dt
+ 3 x(t) + 2 x( ) d = u(t) (6.4.3)
1
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 221
me arqikè sunj ke x(0) = 2 kai R 01 x() d = 0.
LÔsh Efarmìzonta MML kai sta dÔo mèrh th (6.4.3) kai qrhsimopoi¸nta ti
idiìthte pou anafèrontai sthn pargwgo, to olokl rwma mia sunrthsh kai ti
arqikè sunj ke èqoume
2 ( s) 2 0 1
Z
sX (s) x(0 ) + 3X (s) +
X +s x( ) d =
s s 1
sX (s) 2 + 3X (s) + 2Xs(s) = 1s
X (s) = s2 2+s 3+s 1+ 2 = s +1 1 + s +3 2
kai telik
(6.4.4)
Efìson x(t) = 0, gia t < 0, oi X (s) kai X (s) tautzontai. ra, o antstrofo MML
th X (s) dnei th lÔsh th diaforik exswsh pou enai
x(t) = L 1 [X (s)℄ = e t + 3e 2t u(t) (6.4.5)
6.4.2 H qr sh tou metasqhmatismoÔ Laplace sthn anlush GQA susthmtwn
Sthn pargrafo aut ja estisoume se efarmogè tou ML sth melèth GQA susth-
mtwn basismènoi sth gn¸sh twn antstoiqwn shmtwn eisìdou kai exìdou. Sto Ke-
()
flaio 2, edame ìti h èxodo y t enì GQA sust mato sundèetai me thn esodì tou
()
x t me to olokl rwma th sunèlixh
Z 1 Z 1
y(t) = x(t) ? h(t) = h( )x(t ) d = h(t )x( ) d (6.4.6)
1 1
Lìgw th idiìthta th sunèlixh tou ML èqoume
Y (s) = H (s) X (s) me PS toulqiston thn RH \ RX (6.4.7)
()
ìpou H s enai h sunrthsh metafor tou sust mato (Enìthta 2.5).
()
ParathroÔme ìti h H s dnetai w phlko twn ML th exìdou tou sust mato
pro ton ML th eisìdou tou sust mato , dhlad H s Y s =X s . ( )= ( ) ( )
Sto Keflaio 2, epsh , èqoume dei ìti an ekmetalleujoÔme ti fusikè sqèsei pou
uprqoun metaxÔ twn stoiqewn enì sust mato GQA, katal goume se mia grammik
diaforik exswsh me stajeroÔ suntelestè , h opoa èqei th genik morf
N
X dk y(t) M
X dk x(t)
ak
dtk
= bk
dtk
(6.4.8)
k=0 k=0
222 METASQHMATISMOS LAPLACE Keflaio 6
ìpou ak ; k =012
; ; ; :::; N kai bk ; k =012
; ; ; :::; M pragmatikè stajerè , oi
opoe perigrfoun to sÔsthma. Efarmìzonta to ML kai sta dÔo mèlh th (6.4.8),
katal goume sth sqèsh
PM
Y (s) k
H (s) =
X (s)
= PNk=0 bk sk (6.4.9)
k=0 ak s
Apì thn (6.4.9) upologzoume th sunrthsh metafor tou sust mato me th bo jeia
twn suntelest¸n ak ; k =0 1 2
; ; ; :::; N kai bk ; k ; ; ; :::; M . =0 1 2
Parat rhsh: Tìso h (6.4.7) ìso kai h (6.4.9), propojètoun ìti gnwrzoume ti
emplekìmene sunart sei gia t > 1
, me lla lìgia gia mhdenikè arqikè sunj ke .
En oi emplekìmene sunart sei enai aitiatè kai oi arqikè sunj ke enai mhdèn,
ja ftsoume sti (6.4.7) kai (6.4.9) kai me ton MML, pou se aut n thn perptwsh
tautzetai me ton ML. Dhlad , h sunrthsh metafor H s èqei nìhma mìno ktw ()
apì mhdenikè arqikè sunj ke .
()
Tonzetai ìti, epeid h sunrthsh H s qarakthrzei to sÔsthma, ja prèpei loipìn
na mhn exarttai apì ti arqikè sunj ke sti opoe brsketai to sÔsthma.
Pardeigma 6.4.2
Na upologiste h sunrthsh metafor kai h kroustik apìkrish tou kukl¸mato tou
Sq mato 6.8.
L
Ä
i(t)
õin(t)=V R õR(t)
Sq ma 6.8 To kÔklwma tou
Paradegmato 6.4.2.
LÔsh Efarmìzoume to deÔtero kanìna Kirchhoff sto kÔklwma kai parnoume
di(t)
L
dt
+ Ri(t) = in(t) (6.4.10)
kai epeid R = iR; ddtR = R dtdi èqoume
dR (t) R
dt
+ R(t) = R in (t)
L L
(6.4.11)
àtsi, efarmìzonta metasqhmatismì Laplace kai sta dÔo mèlh th (6.4.11) parnoume
R R
sVR (s) + VR (s) = Vin (s)
L L
apì thn opoa prosdiorzetai h sunrthsh metafor tou kukl¸mato
R=L
H (s) =
s + R=L
(6.4.12)
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 223
To sÔsthma èqei èna pìlo sto shmeo R=L, me apotèlesma to PS enai <e[s℄ > R=L,
afoÔ to sÔsthma w fusikì sÔsthma prèpei na enai aitiatì. H kroustik apìkrish
tou sust mato enai
R
h(t) = L 1 [H (s)℄ = e (t)
Rt
L u (6.4.13)
L
An den èqoume arqikè sunj ke , tìte h èxodo sust mato prosdiorzetai me th bo -
jeia tou jewr mato th sunèlixh sto qrìno gnwrzonta th sunrthsh metafor
tou sust mato kai to ML tou s mato eisìdou.
Pardeigma 6.4.3
Dnetai to kÔklwma tou Sq mato 6.8. An to kÔklwma arqik hreme kai sthn esodì tou,
kat th qronik stigm t0 = 0, efarmìsoume phg stajer tsh V , na prosdioriste
h tsh sta kra th antstash , R (t), se sunrthsh me to qrìno.
LÔsh Epeid h esodo enai phg stajer tsh , h opoa efarmìzetai th qronik
stigm t0 = 0, èqoume
V
in (t) = V u(t) L! Vin (s) = ; <e[s℄ > 0 (6.4.14)
s
To sÔsthma brsketai se hrema kai o ML th exìdou VR (s) upologzetai me th bo jeia
tou jewr mato th sunèlixh pou dnei
VR (s) = H (s)Vin (s)= s[sV+(R=L )
(R=L)℄
R C1 C2
= V L s + s + (R=L)
1 1
= V s s + (R=L) ; <e[s℄ > 0 (6.4.15)
ìpou h VR (s) èqei analuje se apl klsmata kai oi stajerè C1 = L=R kai C2 =
L=R èqoun prokÔyei me to gnwstì trìpo. H èxodo R (t) upologzetai me ton an-
tstrofo ML th VR (s), dhlad
R (t) = V u(t) V e (t) = V 1 u(t)
Rt Rt
L u e L (6.4.16)
An èqoume arqikè sunj ke , tìte sth diaforik exswsh (6.4.8), lìgw twn idiot twn
th parag¸gish sto qrìno kai th olokl rwsh sto qrìno pou èqei o monìpleuro
metasqhmatismì Laplace, sumperilambnoume ti arqikè sunj ke kai sthn Y s ( )=
() ()
H s X s emfanzetai kai èna epiplèon ìro o opoo proèrqetai apì ti arqikè
sunj ke .
224 METASQHMATISMOS LAPLACE Keflaio 6
Pardeigma 6.4.4
Dnetai to kÔklwma tou Sq mato 6.8. An h tsh sta kra th antstash arqik enai
R (0 ) kai kat th qronik stigm t0 = 0, efarmìsoume phg stajer tsh V , na
prosdioriste h tsh sta kra th antstash , R (t), se sunrthsh me to qrìno.
LÔsh Epeid to sÔsthma èqei arqikè sunj ke , efarmìzonta to monìpleuro metasqh-
matismì Laplace kai sta dÔo mèlh th diaforik exswsh (6.4.11), pou qarakthrzei
to kÔklwma, enswmat¸noume ti arqikè sunj ke kai èqoume
sVR (s) R (0 ) + RL VR(s) = R
V (s)
L in
R R
s+ VR (s) = V (s) + R (0 )
L L in
VR (s) = R=L
Vin (s) +
1 R(0 )(6.4.17)
s + R=L s + R=L
Epeid to s ma eisìdou enai aitiatì, o MML tou enai so me to ML
V
in (t) = V u(t) L! Vin (s) = (6.4.18)
s
èqoume
VR (s) = s +R=L V
+ 1 (0 )
R=L s s + R=L R
VR (s) = V 1s s + 1R=L + R (0 ) s + 1R=L (6.4.19)
Sugkrnonta thn (6.4.15) me thn (6.4.19) parathroÔme ìti o VR (s) perièqei ènan epi-
plèon ìro o opoo exarttai apì thn arqik sunj kh sthn opoa brsketai to sÔsthma.
H èxodo R (t) upologzetai me ton antstrofo ML th VR (s), dhlad ,
R (t) = V 1 u(t) + R (0 )e (t)
Rt Rt
e L L u (6.4.20)
Pardeigma 6.4.5
Dnetai to kÔklwma tou Sq mato 6.8. Na breje o metasqhmatismì Laplace th exìdou
ìtan to s ma eisìdou enai x(t) = te2t u(t). Dnetai ìti h stajer qrìnou tou kukl¸-
mato enai = L=R = 0; 2se kai to sÔsthma brsketai se hrema.
LÔsh Me th bo jeia twn (6.4.12) kai (6.1.23) brskontai oi ML th kroustik
apìkrish tou sust mato kai tou s mato eisìdou x(t)
H (s) =
5 ; <e[s℄ > 5
s+5
me
kai
X (s) =
1
(s 2)2 ; me <e[s℄ > 2
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 225
ìpou qrhsimopoi jhke ìti h stajer qrìnou tou sust mato enai 0; 2se . Me th bo -
jeia tou jewr mato th sunèlixh brsketai o ML th exìdou tou sust mato
Y (s) =
5
(s 2)2(s + 5) ; me <e[s℄ > 2 (6.4.21)
ParathroÔme ìti to s ma eisìdou den enai apolÔtw oloklhr¸simo, epomènw den
uprqei o MF tou kai w ek toÔtou den enai dunat h qr sh twn mejìdwn pou qrhsi-
mopoioÔn metasqhmatismoÔ Fourier gia th lÔsh tou probl mato .
Pardeigma 6.4.6
Na prosdiorisje h arqik kai h telik tim tou s mato x(t) tou opoou o monìpleuro
metasqhmatismì Laplace enai
X (s) = s7(ss++102)
LÔsh Efarmìzonta to je¸rhma th arqik tim brskoume ìti
x(0+ ) = slim 7s + 10
!1 s s(s + 2)
= slim 7s + 10
!1 (s + 2)
= 7 (6.4.22)
Efarmìzonta to je¸rhma th telik tim brskoume ìti
x(1) = slim s
7s + 10
!0 s(s + 2)
= slim 7s + 10
!0 (s + 2)
= 5 (6.4.23)
Shmei¸netai ìti h arqik kai h telik tim mpore na breje afoÔ prosdiorisje h
analutik morf tou s mato kai sth sunèqeia prosdiorisje h arqik kai h telik
tim X (s) enai o MML tou s mato x(t) =
tou s mato . Prgmati, parathroÔme ìti o
5u(t) + 2e 2tu(t) apì thn opoa epalujeÔoume ìti x(0+ ) = 7 kai x(1) = 5.
6.4.3 Parathr sei gia thn perioq sÔgklish tou metasqhmatismoÔ Laplace
äpw gnwrzoume, o ML enai sunrthsh th migadik metablht s. Upenjumzoume
()
ìti oi rze tou arijmht N s sthn (6.1.16) onomzontai mhdenik th H s . Pro- ()
()
fan¸ sta shmea aut h H s mhdenzetai. Epsh , oi rze tou paronomast D s , ()
()
ìpou h H s den orzetai, onomzontai pìloi th H s . ()
Gia na enai èna sÔsthma aitiatì prèpei h perioq sÔgklish na enai to dexiì h-
mieppedo tou migadikoÔ epipèdou me sÔnoro th gramm pou enai kjeth ston prag-
matikì xona sth jèsh < [ ℄j
e ak max , ìpou ak me k =1 2
; ; ::: enai oi pìloi th H s ()
226 METASQHMATISMOS LAPLACE Keflaio 6
kai max sumbolzei ton pìlo me to mègisto pragmatikì mèro (blèpe Pardeigma
6.1.3). Me lla lìgia, to pedo sÔgklish enì aitiatoÔ sust mato enai to mègisto
dunatì dexiì hmieppedo, to opoo den perièqei pìlou th H s . ()
()
An o bajmì tou poluwnÔmou tou N s enai megalÔtero so apì to bajmì tou
()
poluwnÔmou D s , tìte, prin analÔsoume se apl klsmata, prèpei na ektelèsoume
() () ()
th diaresh N s =D s . Sthn perptwsh aut h H s perilambnei ìrou th morf
0
sk ; k > . A jewr soume t¸ra èna sÔsthma sth sunrthsh metafor , H s , tou()
()
opoou uprqei o ìro s. Tìte, an h esodo tou sust mato enai h u t , h opoa
1
èqei ML so me =s, h èxodo tou sust mato ja enai h y t L 1 s =s
( )= [ (1 )℄ = ( )
Æt.
ParathroÔme ìti, h èxodo tou sust mato den enai fragmènh, se antjesh me thn
esodì tou h opoa enai fragmènh. Me bsh ta parapnw katal goume se èna pr¸to
sumpèrasma:
“ìtan o bajmì tou poluwnÔmou tou N (s) enai megalÔtero apì to bajmì tou poluwnÔ-
()
mou D s to sÔsthma den enai FEFE eustajè ”.
Sth sunèqeia ja doÔme ìti pèra apì th sqèsh twn bajm¸n twn poluwnÔmwn N s ()
() ()
kai D s , h jèsh twn pìlwn th H s kajorzei thn eustjeia tou sust mato . Sto
Pardeigma 2.4.1 èqoume dei ìti gia na enai èna sÔsthma FEFE eustajè prèpei h
kroustik apìkris tou na enai apìluta oloklhr¸simh. Sthn perptwsh ìmw aut
()
uprqei o MF th , dhlad h apìkrish suqnìthta tou sust mato H ! . Gnwrzoume,
epsh , ìti gia na uprqei o MF prèpei to pedo sÔgklish tou ML na perièqei to
fantastikì xona. àtsi:
“gia na enai to sÔsthma FEFE eustajè , prèpei o fantastikì xona na perièqetai
sto pedo sÔgklish tou ML”.
Sunduzonta t¸ra ta parapnw katal goume ìti gia na enai èna sÔsthma tautì-
qrona aitiatì kai FEFE eustajè prèpei
1. h perioq sÔgklish na enai to dexiì hmieppedo tou migadikoÔ epipèdou me
sÔnoro th gramm pou enai kjeth ston pragmatikì xona sth jèsh < [ ℄j
e ak max
kai
2. o fantastikì xona na perièqetai sto pedo sÔgklish tou ML.
()
Genikìtera, h jèsh twn pìlwn tou ML X s enì s mato sto migadikì eppedo- s
prosdiorzei th sumperifor tou s mato . Eidikìtera, isqÔoun ta ex
1. <[℄ 0
Aplo pìloi sto arnhtikì hmieppedo ( e s < kai m s = [ ℄=0 ) tou epipèdou-s
antistoiqoÔn se s mata ta opoa sto pedo tou qrìnou enai pollaplasiasmèna
me e jajt pou fjnei ekjetik pro to mhdèn, kaj¸ t !1 . Se antjesh, aplo
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 227
pìloi sto dexiì hmieppedo tou s antistoiqoÔn se s mata pollaplasiasmèna me
ejajt , pou auxnetai ekjetik pro to peiro kaj¸ t ! 1.
2. Aplo pìloi sto fantastikì xona antistoiqoÔn se s mata twn opown to plto
paramènei stajerì me to qrìno, en¸ pollaplo pìloi sto fantastikì xona
antistoiqoÔn se s mata pollaplasiasmèna me tn .
3. Migadiko suzuge pìloi antistoiqoÔn se s mata pou ufstantai talntwsh,
toi perièqoun hmitonikoÔ ìrou (Pardeigma 6.2.3). An to pragmatikì mèro
twn suzug¸n pìlwn enai mhdèn, tìte èqoume amewte talant¸sei , en¸ an to
pragmatikì mèro enai mh mhdenikì, èqoume talant¸sei ekjetik aÔxouse , an
oi suzuge pìloi brskontai sto jetikì hmieppedo, ekjetik fjnouse , an oi
suzuge pìloi brskontai sto arnhtikì hmieppedo.
Parìmoia isqÔoun kai gia thn kroustik apìkrish enì sust mato anloga me th
()
jèsh twn pìlwn th H s sto migadikì eppedo. Sto Sq ma 6.9 paristnontai oi
idiìthte enì aitiatoÔ sust mato kai h sumperifor th kroustik apìkrous
tou, ìpw aut prosdiorzetai apì th jèsh twn pìlwn tou sto migadikì eppedo.
jù
ó
ÅõóôáèÝò ÁóôáèÝò
Sq ma 6.9 Oi idiìthte enì sust mato kai h sumperifor th kroustik tou apìkrish
anloga me th jèsh twn pìlwn th sunrthsh metafor tou sto migadikì eppedo.
Pardeigma 6.4.7
Na deiqje ìti to kÔklwma tou Sq mato 6.8 enai eustajè sÔsthma.
LÔsh H sunrthsh metafor tou sust mato èqei èna pìlo sth jèsh (R=L) < 0,
dhlad sto arnhtikì hmieppedo. Epeid to sÔsthma w pragmatikì sÔsthma enai
aitiatì, to pedo sÔgklish prèpei na enai <e[s℄ > R.
L ParathroÔme ìti sto pedo
sÔgklish perièqetai o fantastikì xona , me apotèlesma to sÔsthma na enai eusta-
jè .
228 METASQHMATISMOS LAPLACE Keflaio 6
Pardeigma 6.4.8
àna GQA sÔsthma èqei sunrthsh metafor
s+1
H (s) =
(s + 2)(s 1) (6.4.24)
Na upologiste h kroustik apìkrish tou sust mato .
LÔsh H H (s) analÔetai se apl klsmata th morf
H (s) =
1 1 +2 1
3s+2 3s 1 (6.4.25)
Gia to GQA sÔsthma tou paradegmato den prosdiorzetai h perioq sÔgklish
th sunrthsh metafor . Oi pijanè perioqè sÔgklish enai oi trei , oi opoe
eikonzontai sto Sq ma 6.10. An to sÔsthma enai aitiatì, h perioq sÔgklish enai
<e[s℄ > 1 (Sq ma 6.10a) kai h kroustik apìkrish tou sust mato enai
1 2 2
h(t) = e + e u(t)
t t
3 3 (6.4.26)
Sto Sq ma 6.11a fanetai h kroustik apìkrish tou sust mato ìtan h perioq sug-
klish enai <e[s℄ > 1. Sthn perptwsh aut to sÔsthma enai aitiatì afoÔ to pedo
sÔgklish enai to mègisto dexiì hmieppedo to opoo den perièqei pìlou . To sÔsthma
den enai ìmw eustajè , afoÔ den perièqetai sto pedo sÔgklish o fantastikì xona .
To ìti to sÔsthma den enai eustajè fanetai kai apì to ìti h(t) ! 1 ìtan t ! 1.
An to sÔsthma enai eustajè , h perioq sÔgklish enai h 2 < <e[s℄ < 1 (Sq ma
6.10b) kai h kroustik apìkrish tou sust mato enai
1
h(t) = e 2t u(t)
2 etu( t)
3 3 (6.4.27)
ℑm ℑm ℑm
-2 1 ℜe -2 1 ℜe -2 1 ℜe
(á) ( â) (ã)
Sq ma 6.10 Oi pijanè perioqè sÔgklish th sunrthsh metafor gia to sÔsthma tou
Paradegmato 6.4.8 (a) aitiatì (b) eustajè kai (g) mh aitiatì mh eustajè sÔsthma.
Enìthta 6.3 Efarmogè twn Metasqhmatism¸n Laplace 229
h(t) h(t) h(t)
1
3
t
-1
1 0 t
0 t
2
(á) 3 (â) (ã)
Sq ma 6.11 Oi pijanè kroustikè apokrsei gia to sÔsthma tou Paradegmato 6.4.8 (a)
aitiatì, (b) eustajè kai (g) mh aitiatì mh eustajè sÔsthma.
Sto Sq ma 6.11b fanetai h kroustik apìkrish tou sust mato ìtan h perioq sug-
klish enai 2 < <e[s℄ < 1. Parathreste ìti to sÔsthma t¸ra enai eustajè , den
enai ìmw aitiatì.
Tèlo , an h perioq sÔgklish tou sust mato enai <e[s℄ < 2 (Sq ma 6.10g), to
sÔsthma den enai oÔte aitiatì, oÔte eustajè kai h kroustik apìkrish tou sust mato
1e 2 et u( t)
enai
h(t) = 2t
3 3 (6.4.28)
Sto Sq ma 6.11g fanetai h kroustik apìkrish tou sust mato ìtan h perioq sug-
klish enai <e[s℄ < 2.
Pardeigma 6.4.9
Dnetai to grammikì qronik anallowto sÔsthma tou opoou h sqèsh s mato eisìdou
exìdou perigrfetai apì th diaforik exswsh
d d2 d
y(t) + 3y(t) = 2 x(t) + x(t) 2x(t) (6.4.29)
dt dt dt
Na breje h sunrthsh metafor tou antistrìfou sust mato . Gia to sÔsthma autì
uprqei antstrofo sÔsthma to opoo na enai eustajè kai aitiatì;
LÔsh Lambnonta metasqhmatismì Laplace sta mèlh th (6.4.29) èqoume
Y (s)(s + 3) = X (s)(s2 + s 2)
apì thn opoa brsketai h sunrthsh metafor tou sust mato
Y (s) 2
H (s) =
X (s)
= s s++s 3 2 (6.4.30)
H sunrthsh metafor tou antstrofou sust mato enai
H (s) = 1
H (s)
ant
s+3
= s +s 2
2
s+3
= (s 1)(s + 2) (6.4.31)
230 METASQHMATISMOS LAPLACE Keflaio 6
To antstrofo sÔsthma èqei dÔo pìlou sto shmea s = 1 kai s = 2. Oi dÔo pìloi
brskontai ekatèrwjen tou fantastikoÔ xona, epomènw den enai dunatìn to mègisto
dexiì hmieppedo pou den perièqei pìlou (aitiatì sÔsthma) na perièqei to fantastikì
xona (eustajè sÔsthma). ra, gia to sÔsthma (6.4.30) den uprqei antstrofo sÔsth-
ma to opoo na enai sugqrìnw aitiatì kai eustajè .
SÔnoyh Kefalaou
Sto keflaio autì orsame to metasqhmatismì Laplace kai to monìpleuro metasqh-
matismì Laplace, parousisthkan oi idiìthtè tou kai upologsame tou ML orismèn-
wn basik¸n shmtwn, ta opoa sunantme sth melèth grammik¸n susthmtwn. Sth
sunèqeia prosdiorsame ton antstrofo ML. Edame ìti, an h morf tou ML enai
apl , tìte mporoÔme na upologsoume ton antstrofo ML me th bo jeia tou Pna-
ka 6.2. An o ML den èqei apl morf all enai rht sunrthsh, tìte analÔoume th
sunrthsh se apl klsmata kai me th bo jeia twn idiot twn tou ML kai tou Pnaka
6.2 upologzoume eÔkola to s ma qwr na katafÔgoume sthn exswsh antistrof .
Epsh , sto keflaio autì anaptÔxame difore efarmogè tou ML. Eidikìtera
exetsame th dunatìthta pou èqei o MML na epilÔei grammikè diaforikè exis¸-
sei me stajeroÔ suntelestè , oi opoe den èqoun mhdenikè arqikè sunj ke . H
dunatìthta aut ofeletai sti idiìthte tou MML pou anafèrontai sthn pargwgo
kai to olokl rwma mia sunrthsh . Sth sunèqeia parousisthkan oi efarmogè twn
metasqhmatism¸n Laplace se ìti afor th melèth GQA susthmtwn. Prosdiorsame
th sunrthsh metafor sust mato apì th diaforik exswsh pou sundèei thn èxodo
kai thn esodo tou sust mato , upojètonta ìti oi arqikè sunj ke enai mhdenikè .
Epsh , me th bo jeia th diaforik exswsh , prosdiorsame to MML th exìdou
sust mato , to opoo mpore na mh brsketai se katstash hrema , kai antistrè-
fonta to MML prosdiorsame thn èxodo tou sust mato . Tèlo , parousisthkan ta
sumpersmata pou exgoume apì thn perioq sÔgklish kai th jèsh twn pìlwn th
sunrthsh metafor tou sust mato sto migadikì eppedo aut aforoÔn sthn eu-
stjeia kai sthn aitiìthta tou sust mato kaj¸ kai sth sumperifor th kroustik
apìkris tou.
PROBLHMATA
6.1 Na upologiste to aitiatì s ma pou èqei metasqhmatismì Laplace
a) X (s) = s23+4 s+7
s+3 X (s) = s23s2s5 3
b)
g) X (s) = s2 +4
s s+2
d) X (s) = s2 +4 s+13
e) X (s) = 2ss3 +4
2 +12 2 +5s+15
s st) X (s) = s3 +3s2
s
6.2 Na upologiste h sunèlixh twn shmtwn x1 (t) = u(t) u(t 1) kai x2 (t) =
u(t) u(t 2) me th bo jeia th idiìthta th sunèlixh tou metasqhmatismoÔ
Laplace.
Enìthta 6.4 Probl mata 231
6.3 Na brejoÔn ta aitiat s mata twn opown oi metasqhmatismo Laplace enai
X1 (s) = 2
1 X2 (s) =
s+1
s + 3s + 2 (s + 3)(s2 + 4s + 5)
kai (6.4.32)
6.4 Gia to kÔklwma RLC pou perigrfetai sto Sq ma 6.12.
1. Na prosdioriste h grammik diaforik exswsh h opoa sundèei thn esodo
()
tou kukl¸mato in t kai thn èxodì tou o t . ()
2. Na prosdioriste h sunrthsh metafor tou sust mato . Enai to sÔsth-
ma eustajè ;
3. An h esodo tou kukl¸mato enai in t e 3t u ()= (t) me th bo jeia tou
metasqhmatismoÔ Laplase, na upologsete thn èxodo 0 (t) gia t > 0, ìtan
oi arqikè sunj ke enai kai
do (t)
(0 ) = 1 = 2.
o dt t=0
R=3Ù
A B
i(t)
õin(t) C=0,5F õï(t)
L=1H
Ä Ã Sq ma 6.12 To kÔklwma tou Probl mato 6.4.
6.5 H sunrthsh metafor , enì GQA aitiatoÔ sust mato , enai
s+1
H (s) = 2
s + 2s + 2
(6.4.33)
Na upologiste h apìkrish y (t) tou sust mato ìtan to s ma eisìdou x (t) dne-
tai apì thn
x(t) = e jtj ; 1<t<1 (6.4.34)
Na prosdiorsete to pedo sÔgklish kje for pou parousizetai metasqhma-
tismì Laplace.
6.6 H apìkrish enì grammikoÔ qronik anallowtou sust mato sto s ma
x(t) = u(t)
enai to s ma
y(t) = (1 e t te t )u(t)
Me th bo jeia tou metasqhmatismoÔ Laplace na breje h esodo tou sust mato
ìtan to s ma exìdou enai
y1 (t) = (2 3e t + e 3t )u(t)
232 METASQHMATISMOS LAPLACE Keflaio 6
6.7 Sthn esodo enì GQA sust mato me kroustik apìkrish
h(t) = e 2t u(t)
Efarmìzetai to s ma
x(t) = e 3t u(t)
Na breje to s ma exìdou y(t), tou sust mato
1. ìtan to sÔsthma arqik hreme kai
2. ìtan y(0 ) = 1.
6.8 Dnetai to eustajè grammik anallowto sÔsthma me sunrthsh metafor
H (s) =
2
2 s
1. Na breje h kroustik apìkrish h(t), tou sust mato .
2. Me th bo jeia tou metasqhmatismoÔ Laplace na breje h èxodì tou ìtan
to s ma eisìdou enai
x(t) = 2e 2t u(t)
6.9 Dnetai to RC se seir kÔklwma tou Sq mato 6.13. Na upologistoÔn
1. h sunrthsh metafor H (s) tou kukl¸mato ,
2. h kroustik apìkrish h(t) tou kukl¸mato kai
3. h suqnìthta - 3 dB.
-6
C=10 F
6
õin(t) R=10 Ù õï(t)
i(t)
Sq ma 6.13 To kÔklwma tou Probl mato 6.9.
Bibliografa
6.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
6.2 A. Mrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
sei Tziìla 2012.
6.3 S. Haykin, B. Veen, “Signal and Systems”, John & Wiley Sons, Inc. 2003
6.4 A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
Hall Inc., N. Y., 1983.
ÊÅÖÁËÁÉÏ 7
ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ Z
O metasqhmatismì z enai o antstoiqo Laplace gia s mata diakritoÔ qrìnou kai
apotele genkeush tou metasqhmatismoÔ Fourier diakritoÔ qrìnou.
Skopì tou Kefalaou enai na orsei ton amfpleuro metasqhmatismì z, apl
metasqhmatismì z (Mz) kai to monìpleuro metasqhmatismì z (MMz), na perigryei
ti basikè tou idiìthte kai na upologsei tou antstoiqou metasqhmatismoÔ stoi-
qeiwd¸n shmtwn pou antimetwpzoume sth melèth grammik¸n susthmtwn diakritoÔ
qrìnou. Epsh , sto Keflaio autì ja parousiaste h dunatìthta pou èqei o monì-
pleuro metasqhmatismì z na epilÔei exis¸sei diafor¸n, oi opoe èqoun mh mh-
denikè arqikè sunj ke kai sth sunèqeia ja ekmetalleutoÔme th dunatìthta aut
gia th melèth GQA susthmtwn. Tèlo , skopì tou Kefalaou enai na anadexei th
sqèsh pou uprqei metaxÔ th aitiìthta , th eustjeia enì GQA sust mato , th
perioq sÔgklish th sunrthsh metafor tou kai th jèsh twn pìlwn aut
sto migadikì eppedo.
Eisagwg
H esodo kai h èxodo enì GQA sust mato diakritoÔ qrìnou sundèontai me ma
exswsh diafor¸n me stajeroÔ suntelestè . àtsi gia na prosdiorsoume thn èxodo
enì sust mato an gnwrzoume thn esodì tou ja prèpei na epilÔoume thn antstoiqh
exswsh diafor¸n. Sto Keflaio 2 parathr same ìti mporoÔme na upologsoume thn
èxodo enì sust mato an gnwrzoume thn esodì tou, me th bo jeia tou ajrosmato
th sunèlixh . Sto Keflaio 5 orsame to MF diakritoÔ qrìnou, o opoo parèqei th
dunatìthta metbash apì to pedo tou qrìnou sto pedo th suqnìthta . H idiìthta
th sunèlixh tou MF metatrèpei to jroisma th sunèlixh se èna aplì ginìmeno
twn antistoqwn metasqhmatism¸n, me thn bo jeia tou opoou upologzetai o MF th
exìdou kai sth sunèqeia me antstrofo MF prosdiorzetai h èxodo tou sust mato
sto pedo tou qrìnou. O MF loipìn, èdwse ma eÔkolh lÔsh sto prìblhma eÔresh
th exìdou enì sust mato , an gnwrzoume thn esodì tou kai thn kroustik tou
apìkrish. Dustuq¸ , ìmw , uprqoun poll s mata diakritoÔ qrìnou, ta opoa suqn
sunantme sth prxh, gia ta opoa den uprqei o MF.
234 Metasqhmatismì z Keflaio 7
Sto Keflaio autì ja perigryoume ton Metasqhmatismì z, o opoo metatrèpei
èna s ma diakritoÔ qrìnou se ma analutik sunrthsh migadik metablht . äpw
ja doÔme, se poll apì ta s mata diakritoÔ qrìnou me praktik spoudaiìthta, gia
ta opoa den uprqei o MF diakritoÔ qrìnou, uprqei o Mz kai ètsi dieurÔnetai to
sÔnolo twn shmtwn diakritoÔ qrìnou gia ta opoa mpore na epiteuqje metbash
apì to pedo tou qrìnou sto pedo th suqnìthta .
Sto Keflaio 5, me th bo jeia tou MF upologsame thn èxodo enì GQA sust ma-
to diakritoÔ qrìnou to opoo brsketai arqik se katstash hrema . Sto Keflaio
autì ja doÔme ìti an to sÔsthma de brsketai se katstash hrema , o monìpleuro
metasqhmatismì z ma epitrèpei na sumperilboume ti arqikè sunj ke sth exswsh
diafor¸n kai na prosdiorsoume thn èxodo tou sust mato .
Tèlo , sto Keflaio autì ja doÔme ìti h qr sh tou migadikoÔ pedou kai h jèsh
twn pìlwn se autì ma epitrèpei na exgoume basikè idiìthte twn susthmtwn di-
akritoÔ qrìnou, ìpw h aitiìthta kai h eustjeia. Gia ìlou tou parapnw lìgou ,
o metasqhmatismì z apotele èna akìma basikì majhmatikì ergaleo gia th melèth
GQA susthmtwn diakritoÔ qrìnou.
7.1 ORISMOI
Sthn Enìthta 2.5.2 èqoume dei ìti an h esodo enì grammikoÔ qronik anallowtou
()
sust mato diakritoÔ qrìnou, pou èqei kroustik apìkrish h n , enai z n tìte to
s ma exìdou enai
( )= ( )
y n H z zn (7.1.1)
ìpou
1
X
H (z ) = h(n)z n (7.1.2)
n= 1
enai o metasqhmatismì z th kroustik apìkrish h(n) kai enai h sunrthsh
metafor tou sust mato .
O metasqhmatismì z antistoiqe sthn akolouja x (n) th sunrthsh
1
X
X (z ) x(n)z n (7.1.3)
n= 1
H X (z ) enai migadik
sunrthsh th migadik metablht z =
rej kai onomzetai
amfpleuro metasqhmatismì z tou x n() apl metasqhmatismì z . O monìpleuro
metasqhmatismì z orzetai apì th sqèsh
1
X
X (z) x(n)z n (7.1.4)
n=0
Enìthta 7.1 Orismo 235
H perioq tim¸n tou z , gia ti opoe o metasqhmatismì z èqei peperasmènh tim
kaletai perioq sÔgklish (PS) (region of convergence ROC). Gia eukola o metasqh-
()
matismì z tou x n merikè forè sumbolzetai w Z x n kai h sqèsh metaxÔ tou [ ( )℄
()
x n kai tou metasqhmatismoÔ tou upodeiknÔetai w
x(n) ! X (z)
Z
(7.1.5)
Parathr sei
1. An o Mz uprqei kai gia timè me r
P1
, dhlad , z =1
ej , tìte X ej = =
()
n= 1 x n e
j n pou enai o MF diakritoÔ qrìnou th akolouja x (n),
dhlad ,
X (z )jz=ej = F [x(n)℄ (7.1.6)
Sto eppedo-s o metasqhmatismì Laplace metatrèpetai se metasqhmatismì Fouri-
=
er sto fantastikì xona (dhlad , s j! ). Sto migadikì eppedo-z o metasqh-
matismì z metatrèpetai se metasqhmatismì Fourier an to mètro th posìthta
metasqhmatismoÔ z enai monda z ( = )
ej , dhlad , an brsketai sto mona-
diao kÔklo tou migadikoÔ epipèdou-z Sq ma 7.1. Me lla lìgia o monadiao
kÔklo tou migadikoÔ epipèdou-z èqei ton dio rìlo me to fantastikì xona sto
eppedo-s tou metasqhmatismoÔ Laplace.
Met thn parat rhsh aut enai skìpimo na knoume ma apl allag tou sum-
bolismoÔ tou metasqhmatismoÔ Fourier diakritoÔ qrìnou thn opoa sunantme
pollè forè sta enqeirdia
X (z )jz=ej = F [x(n)℄ = X (ej ) ant tou X ( ) (7.1.7)
ℑm z
Ìïíáäéáßïò
êýêëïò
z=e jÙ
Ù
0 1 ℜe z Sq ma 7.1 z
To migadikì eppedo- . O metasqhma-
tismì z metatrèpetai se metasqhmatismì Fourier gia
ti timè tou z pou brskontai sto monadiao kÔklo.
2. O Mz sqetzetai me to DTFT kai sthn perptwsh ìpou h metablht r 6= 1.
Prgmati
1
X
X (rej )= x(n)r n e j n = F x(n) r n (7.1.8)
n= 1
236 Metasqhmatismì z Keflaio 7
( )
ParathroÔme ìti X rej enai o metasqhmatismì Fourier th akolouja x n ()
pollaplasiasmènh me thn pragmatik ekjetik akolouja r n . Epomènw gia
na sugklnei o metasqhmatismì z prèpei o metasqhmatismì Fourier diakritoÔ
( )
qrìnou th akolouja x n r n na sugklnei, dhlad , h akolouja x n z n ()
na enai arijm simh kat apìluth tim
1
X 1
X
jX (z)j = x(n)z n jx(n)jr n < 1 (7.1.9)
n= 1 n= 1
H parousa tou ìrou r n parèqei th dunatìthta sÔgklish tou ajrosmato
kai kat sunèpeia thn Ôparxh tou metasqhmatismoÔ z akìmh kai an den uprqei
()
o DTFT th x n . O DTFT th x n ()= ()
an u n den uprqei ìtan a > , jj 1
()
dedomènou ìti x n enai ma ekjetik aÔxousa akolouja ìpw fanetai sto
Sq ma 7.2a. An epilege r > a tìte h akolouja r n ìpw fanetai sto Sq ma
()
7.2b elatt¸netai taqÔtera apì ìti h x n auxnetai. àtsi h akolouja x n r n ()
ìpw fanetai sto Sq ma 7.2g enai arijm simh kat apìluth tim kai uprqei
o metasqhmatismì z.
n
x(n)= á u(n), á>1 r -n x(n) r-n
r >á
1 1
-4 -2 0 2 4 6 8 10 n -4 -2 0 2 4 6 8 10 n -4 -2 0 2 4 6 8 10 n
(á) (â) (ã)
Sq ma 7.2 (a) H akolouja x(n) = an u(n) gia th opoa den uprqei o DTFT (b) o pargonta
kai (g) h akolouja x(n)r
exasjènish r n n h opoa enai arijm simh kat apìluth tim .
7.1.1 Metasqhmatismì z stoiqeiwd¸n akolouji¸n
Sthn pargrafo aut ja upologsoume to Mz orismènwn basik¸n akolouji¸n.
Pardeigma 7.1.1 (S ma peperasmènh èktash )
Na upologiste o metasqhmatismì z tou orjog¸niou parajÔrou dirkeia N + 1
x(n) = 10;; 0alli¸
nN (7.1.10)
LÔsh O metasqhmatismì z enai
X1 XN XN
X (z ) = x(n)z n = 1z n = z N zn
n= 1 n=0 n=0
Enìthta 7.1 Orismo 237
kai me th bo jeia tou tÔpou me ton opoo upologzoume to jroisma twn ìrwn gewmetrik
seir èqoume
(
z Nz z 1 1 = zzNN(+1z 1)1 ;
N +1
X (z ) = z 6= 1; z 6= 0
N + 1; z=1
(7.1.11)
H perioq sÔgklish kalÔptei ìlo to migadikì eppedo ektì apì to mhdèn.
Pardeigma 7.1.2 (To ekjetikì aitiatì s ma)
Na upologiste o metasqhmatismì z gia to s ma
x(n) = an u(n) (7.1.12)
LÔsh O metasqhmatismì z enai
X1 X1
X (z ) = an u(n)z n = (az 1)n
n=1 n=0
Gia na sugklnei o X (z ) prèpei to jroisma
P1 twn aperwn ìrwn th gewmetrik seir ,
me lìgo az 1, n=0
na sugklnei, dhlad ,j az 1 j n < 1. àtsi h perioq sÔgklish
enai h perioq tim¸n tou z gia thn opoa jaz
1j < 1 jz j > jaj, opìte
X1 1 = z ; ìtan jzj > jaj
X (z ) = (az 1 )n =
n=0 1 az 1 z a (7.1.13)
O metasqhmatismì z orzetai sto exwterikì kÔklou aktna Rx = jaj blèpe Sq ma 7.3.
ℑm z
Ìïíáäéáßïò
x(n) êýêëïò
Rx
-4 -2 0 2 4 6 8 n 0 a ℜe z
(á)
(â)
Sq ma 7.3 (a) To s ma x(n) = anu(n) ìtan a enai pragmatikì arijmì < 1 kai (b) h
perioq sÔgklish , o pìlo kai to mhdenikì tou metasqhmatismoÔ z sto Pardeigma 7.1.2.
Gia a = 1 tìte to s ma x(n) enai h akolouja monadiaou b mato , h opoa èqei
metasqhmatismì z
u(n) Z! U (z ) =
1 = z z 1 me jzj > 1
1 z 1
(7.1.14)
238 Metasqhmatismì z Keflaio 7
dhlad , me perioq sÔgklish to exwterikì tou monadiaou kÔklou.
Parathr sei
1. ()
O metasqhmatismì z th akolouja x n sugklnei gia kje peperasmènh tim
tou a, en¸ o metasqhmatismì Fourier tou x n sugklnei an a < . () jj 1
2. jj 1
An a > h perioq sÔgklish den perièqei to monadiao kÔklo kai gia ti timè
autè den uprqei o metasqhmatismì Fourier th akolouja an u n . ()
3. O metasqhmatismì z èqei klasmatik morf , dhlad , èqei mhdenik kai pìlou .
Sto Pardeigma 7.1.2 o metasqhmatismì z èqei èna mhdenikì “ ” gia z kai Æ =0
èna pìlo “ ” gia z =
a (blèpe Sq ma 7.2).
Pardeigma 7.1.3
Na upologiste o metasqhmatismì z gia to s ma
x(n) = nan 1 u(n) (7.1.15)
P1
LÔsh Paragwgzonta thn exswsh n=0 a
nz n = zza w pro a èqoume
1
X z
nan 1 z n = jz j > jaj
n=1 (z a)2
me
Apì thn parapnw exswsh prokÔptei
z
x(n) = nan 1 u(n) Z! X (z ) = jz j > jaj
(z a)2
me (7.1.16)
Nèa parag¸gish w pro a dnei
1
X z
n(n 1)an 2z n = 2 (z jz j > jaj
a)3
me
n=2
gia apì thn opoa èqoume
n(n 1) an 2u(n) Z! X (z) = z
x(n) = jz j > jaj
2 (z a)3
me (7.1.17)
An epanalboume thn parag¸gish ja odhghjoÔme se antstoiqa apotelèsmata.
Pardeigma 7.1.4
Na upologiste o metasqhmatismì z tou monadiaou degmato .
LÔsh O metasqhmatismì z tou monadiaou degmato x(n) = Æ(n) enai
X1
Z [Æ(n)℄ = Æ(n)z n = 1; me z 6= 0 (7.1.18)
n= 1
Enìthta 7.1 Orismo 239
kai tou olisjhmènou kat kb mata monadiaou degmato Æ(n k), enai
Z [Æ(n k)℄ = 0; k<0
z k; k 0 (7.1.19)
H perioq sÔgklish kalÔptei ìlo to migadikì eppedo ektì apì thn arq ,
Pardeigma 7.1.5
Na upologiste o metasqhmatismì z tou s mato
n n
x(n) =
1 u(n) +
1 u(n)
2 3 (7.1.20)
LÔsh O metasqhmatismì z enai
1 1 n
X 1 1
X
n
X (z ) = + z n z n
n=0 2 n=0 3
1
= 1 1z 1 + 1 1z 11
2 3
2 5z 1
= 1 1 z 16 1 1 z 1
2 3
z 2z 56
Telik
X (z ) =
z 12 z 13
(7.1.21)
Gia na èqoume sÔgklish tou X (z ) prèpei jz j > 1=2 kai jz j > 1=3. Epomènw prèpei
jz j > 1=2. MporoÔme na odhghjoÔme sta dia apotelèsmata an basistoÔme sta dÔo
prohgoÔmena paradegmata kai qrhsimopoi soume thn idiìthta th grammikìthta tou
metasqhmatismoÔ z thn opoa ja doÔme sth sunèqeia.
Pardeigma 7.1.6 (Austhr mh aitiatì ekjetikì s ma)
x(n) = anu( n 1) (7.1.22)
LÔsh O metasqhmatismì z enai
1
X X1 1
X 1
X
X (z ) = an u( n 1)z n = an z n = a nzn = 1 (a 1z)n
n= 1 n= 1 n=1 n=0
an ja 1 z j < 1 isodÔnama jz j < jaj to jroisma sugklnei kai èqoume
1 1 a z 1 z 1
X (z ) = 1 1z = 1 a 1z = z a
1 a
(7.1.23)
me perioq sÔgklish to eswterikì kÔklou aktna Rx = jaj Sq ma 7.4.
240 Metasqhmatismì z Keflaio 7
ℑm z
x(n) Ìïíáäéáßïò
êýêëïò
-8 -6 -4 -2 Rx
0 2 4 n
0 a ℜe z
(á) (â)
Sq ma 7.4 (a) To s ma x(n) = an u( n 1) ìtan a pragmatì arijmì > 1 kai (b) h
perioq sÔgklish , o pìlo kai to mhdenikì tou metasqhmatismoÔ z sto Pardeigma 7.1.6.
ParathroÔme ìti o metasqhmatismì z tou austhr mh aitiatoÔ s mato x n ()=
(
an u n 1)
èqei thn dia algebrik parstash me to ekjetikì aitiatì s ma x n ( )=
n ()
a u n , all llh perioq sÔgklish . Autì shmanei ìti h perioq sÔgklish , ìpw
kai sto metasqhmatismì Laplace, apotele anapìspasto tm ma tou metasqhmatismoÔ
z kai prèpei pntote na kajorzetai. An ma doje mìno o metasqhmatismì z qwr
thn antstoiqh perioq sÔgklis tou ja uprqei abebaiìthta ston prosdiorismì th
akolouja pou od ghse s' autìn, afoÔ ja uprqoun perissìtere apì ma apant sei .
Pardeigma 7.1.7
Na upologiste o metasqhmatismì z tou s mato
x(n) = ajnj ; 1 < n < 1 kai jaj < 1 (7.1.24)
LÔsh To s ma x(n) grfetai
x(n) = an u(n) + a n u( n 1)
Apì to Pardeigma 7.1.2 èqoume
an u(n) Z!
1 = z z a me jzj > jaj
1 az 1
en¸ apì to Pardeigma 7.1.6 èqoume
a n u( n 1) Z! 1 1 = 1 azaz me jzj < ja1j
a 1z 1
Epeid jaj < 1, enai kai jaj < jaj 1 . àtsi o metasqhmatismì z tou x(n) enai
X (z ) =
z
+ az
; me jaj < jz j <
1
a 1 az jaj (7.1.25)
z
Sto Sq ma 7.6 fanontai h perioq sÔgklish , to mhdenikì kai oi pìloi tou Mz th
akolouja x(n) = ajnj .
Enìthta 7.1 Orismo 241
ℑm z
x(n)
1
R R
a
a ℜe z
1
0
-8 -6 -4 -2 0 2 4 6 8 n
(á) (â)
Sq ma 7.5 (a) H akolouja x(n) = ajnj ìtan a pragmatì arijmì < 1 kai (b) h perioq
sÔgklish , oi pìloi kai to mhdenikì tou metasqhmatismoÔ z sto Pardeigma 7.1.7.
Pardeigma 7.1.8
Na upologiste o metasqhmatismì z tou s mato
x(n) = an ; 1<n<1 (7.1.26)
LÔsh To s ma x(n) grfetai
x(n) = an u(n) + an u( n 1)
Apì to Pardeigma 7.1.2 èqoume
an u(n) Z!
1 = z z a me jzj > jaj
1 az 1
en¸ apì to Pardeigma 7.1.6 èqoume
an u( n 1) Z! 1 1az 1 = z z a me jzj < jaj
ParathroÔme ìti en¸ oi metasqhmatismo z th a u(n) kai th a u( n 1) uprqoun,
n n
epeid prèpei tautìqrona na isqÔei jz j > a kai jz j < a, to ekjetikì s ma x(n) = a
n
den èqei amfpleuro metasqhmatismì z.
7.1.2 Idiìthte th perioq sÔgklish -Ôparxh metasqhmatismoÔ z
Apì ta prohgoÔmena paradegmata parathr same ìti o metasqhmatismì z den pros-
diorzei monos manta thn akolouja (s ma) ektì an èqei orisje h perioq sÔgklish .
Epsh parathr same ìti h morf th perioq sÔgklish tou metasqhmatismoÔ z
exarttai apì ta qarakthristik th akolouja . Sthn enìthta aut ja broÔme to
trìpo me to opoo sundèetai h perioq sÔgklish me ta qarakthristik th akolou-
()
ja x n . Ja parousisoume ti idiìthte qrhsimopoi¸nta diaisjhtik epiqeir ma-
ta par austhrè majhmatikè apodexei . Gnwrzonta ti idiìthte enai efiktì o
242 Metasqhmatismì z Keflaio 7
prosdiorismì th perioq sÔgklish apì to metasqhmatismì z, X (z ), kai èqonta
periorismènh gn¸sh twn qarakthristik¸n th akolouja x n . ()
Ma pr¸th idiìthta enai ìti h perioq sÔgklish tou metasqhmatismoÔ z, pou
enai rht sunrthsh th metablht z , den perièqei pìlou .
äpw parathr same sthn prohgoÔmenh enìthta gia na uprqei o metasqhmatismì
z tou s mato ()
x n prèpei
1
X 1
X
jX (z)j = x(n)z n jx(n)jr n < 1 (7.1.27)
n= 1 n= 1
h posìthta r enai to mètro tou migadikoÔ arijmoÔ z =
r ej kai oi timè th prag-
matik metablht r pou ikanopoioÔn thn parapnw anisìthta orzoun th perioq
sÔgklish tou metasqhmatismoÔ. Enai fanerì ìti h sÔgklish exarttai mìno apì
to mètro r =jjz kai ìqi apì to , to opoo shmanei ìti h perioq sÔgklish ja
kajorzetai apì omìkentrou kÔklou me kèntro thn arq twn axìnwn tou migadikoÔ
epipèdou-z.
Gia ma peperasmènou m kou akolouja, dhlad , x n ( )=0
an n < N1 kai n > N2
h opoa enai fragmènh, dhlad , uprqei jetikì arijmì M gia ton opoo x n M j ( )j
o metasqhmatismì z enai
N2
X
X (z ) = x(n)z n (7.1.28)
n=N1
Enai fanerì ìti h sunrthsh aut sugklnei gia kje tim tou z , dhlad ,
h perioq sÔgklish mia peperasmènou m kou kai fragmènh akolouja enai ìlo
to migadikì eppedo-z me dÔo pijanè exairèsei
1. 0
an N1 < tìte oi timè tou z me peiro mètro apokleontai apì thn perioq
sÔgklish .
2. 0
an N1 < kai N2 > 0 tìte h arq twn axìnwn apokleetai apì thn perioq
sÔgklish .
Sth sunèqeia ja exetsoume th genik perptwsh kat thn opoa h akolouj-
()
a x n den enai periorismènh dirkeia kai enai fragmènh. H akolouja aut
onomzetai amfpleurh akolouja. Sthn perptwsh aut diaqwrzoume to jroisma
P1
j ( )j
n= 1 x n r <
n 1
se dÔo tm mata. Sto pr¸to tm ma I r ta ìria tou ajros- ()
mato enai 1
kai 1
X1
I (r) = jx(n)jr n
n= 1
Enìthta 7.1 Orismo 243
Sto deÔtero tm ma I+ (r) ta ìria tou ajrosmato enai 0 kai 1
1
X
I+ (r) = jx(n)jr n
n=0
dhlad ,
X1 1
X
jX (z)j jx(n)j r n + jx(n)j r n = I (r) + I+(r)
n= 1 n=0
j ( )j
Gia na enai to X z fragmèno prèpei kai ta dÔo epimèrou ajrosmata na enai
peperasmèna.
A upojèsoume ìti mporoÔme na frxoume th x n brskonta ti elqiste j ( )j
jetikè stajerè M , M# , r kai r# tètoie ¸ste
jx(n)j M (r )n; n < 0; (7.1.29)
kai
jx(n)j M#(r# )n; n 0 (7.1.30)
()
H akolouja x n h opoa ikanopoie ta frgmata den auxnetai taqÔtera apì thn
( ) ( )
akolouja r# n gia ti jetikè timè tou n kai th r n gia ti arnhtikè timè th n.
Shmei¸netai ìti an kai uprqoun akolouje oi opoe den ikanopoioÔn ta parapnw
2
frgmata, gia pardeigma h akolouja n , oi akolouje autè den emfanzontai se
fusikè efarmogè kai ètsi den ma dhmiourgoÔn probl mata.
An to frgma pou prosdiorzetai apì thn (7.1.29) ikanopoietai, tìte
X1 X1
I (r ) = jx(n)j r n M (r )n r n
n= 1 n= 1
r1
X
m
m= n
= M
r
(7.1.31)
m=1
Gia na uprqei to jroisma twn aperwn ìrwn th gewmetrik proìdou prèpei
o
= r na enai mikrìtero th monda . Epomènw to rjoisma P1 r m
lìgo r 1 r
uprqei gia ti timè tou z oi opoe ikanopoioÔn thn jzj = r < r . An to frgma pou
prosdiorzetai apì thn (7.1.30) ikanopoietai, tìte
1
X 1
X
I+ (r) = jx(n)j r n M# (r# )nr n
n=0 n=0
1 r m
X
= M# #
r
(7.1.32)
n=0
244 Metasqhmatismì z Keflaio 7
P
1 r# m uprqei gia ti timè tou z oi opoe ikanopoioÔn thn z
To rjoisma 0 r j j=
r > r# .
ParathroÔme ìti to pr¸to jroisma uprqei gia ti timè to z gia ti opoe z < jj
jj
r en¸ to deÔtero gia ti timè to z gia ti opoe z > r# . Sth perptwsh aut h
perioq sÔgklish enai h tom twn dÔo parapnw perioq¸n tou epipèdou-z .
H perioq sÔgklish mia amfpleurh akolouja apoteletai apì ti timè tou
jj
migadikoÔ epipèdou z gia ti opoe isqÔei r# < z < r , dhlad , h perioq sÔgklish
èqei morf daktulou.
Pardeigma amfpleurh akolouja enai h akolouja x n ( )=
ajnj sto Pardeigma
7.1.7.
An r# r tìte oi dÔo perioqè sÔgklish den allhloepikalÔptontai kai h perioq
()
sÔgklish tou X z enai to kenì sÔnolo (blèpe Pardeigma 7.1.8).
Sth sunèqeia ja exetsoume th perptwsh kat thn opoa h akolouja x n , ()
ikanopoie th sunj kh x n ()=0
gia n < N1 . H akolouja aut onomzetai dex-
iìpleurh akolouja. Sthn perptwsh aut èqoume
1
X 1
X 1 r n
X
jX (z)j jx(n)jr n M# r#n r n = M# #
r
(7.1.33)
n=N1 n=N1 n=N1
ìpou upojèsame ìti to frgma pou prosdiorzetai apì thn (7.1.30) ikanopoietai. Gia
na uprqei to jroisma twn aperwn ìrwn th gewmetrik proìdou prèpei o lìgo
= ()
rr# na enai mikrìtero th monda . Epomènw o X z uprqei gia ti timè tou z
oi opoe ikanopoioÔn thn z j j=
r > r# .
H perioq sÔgklish mia dexiìpleurh akolouja apoteletai apì ti timè tou
jj
migadikoÔ epipèdou z gia ti opoe isqÔei r# < z , dhlad , h perioq sÔgklish mia
dexiìpleurh akolouja tou Mz ektenetai èxw apì kÔklo aktna r# sto eppedo-z .
Dedomènou ìti h perioq sÔgklish den perièqei pìlou r# enai h mikrìterh aktna
kÔklou ston opoo perièqontai ìloi oi pìloi tou X z . ()
H akolouja x n ( ) = anu(n) thn opoa melet same sto Pardeigma 7.1.2 enai ma
dexiìpleurh akolouja.
Sth sunèqeia ja exetsoume th perptwsh kat thn opoa h akolouja x(n),
ikanopoie th sunj kh x n ( )=0
gia n > N2 . H akolouja aut onomzetai aris-
terìpleurh akolouja. Sthn perptwsh aut èqoume
N2
X N2
X 1
X r
n
jX (z)j jx(n)jr
n M rn r n =M r
(7.1.34)
n= 1 n= 1 n= N2
Enìthta 7.2 Idiìthte tou MetasqhmatismoÔ z 245
apì thn opoa parathroÔme ìti o X (z) uprqei gia ti timè tou z oi opoe ikanopoioÔn
thn z j j=
r<r .
H perioq sÔgklish mia aristerìpleurh akolouja apoteletai apì ti timè
jj
tou migadikoÔ epipèdou-z gia ti opoe isqÔei z < r , dhlad , h perioq sÔgk-
lish mia aristerìpleurh akolouja tou Mz enai to eswterikì kÔklou aktna
r sto eppedo-z . Dedomènou ìti h perioq sÔgklish den perièqei pìlou , r enai h
megalÔterh aktna kÔklou ston opoo den perièqontai oi pìloi tou X z . ()
Pardeigma aristerìpleurh akolouja enai h akolouja x(n) = an u(
n 1)
sto Pardeigma 7.1.6.
Anloga me to edo tou s mato katal xame se trei diaforetikoÔ tÔpou peri-
oq¸n sÔgklish . Shmei¸netai ìti isqÔei kai to antstrofo, dhlad , an h perioq sÔg-
jj
klish enai to exwterikì kÔklou z > R to s ma enai aitiatì, an enai to eswterikì
kÔklou z < R enai mh aitiatì kai an èqei morf daktulou R+ < z < R to s ma
jj jj
enai ma amfpleurh akolouja.
7.2 IDIOTHTES TOU METASQHMATISMOU Z
Sthn pargrafo aut ja parousiastoÔn basikè idiìthte tou metasqhmatismoÔ z.
Oi idiìthte autè ja ma bohj soun ston upologismì tou metasqhmatismoÔ z mia
dedomènh akolouja qwr kat' angkh na prosdiorzetai to sqetikì jroisma.
(1) Grammikìthta
An x1 (n) Z! X1 (z) me perioq sÔgklish P1 kai x2 n ( ) Z! X2(z) me perioq
sÔgklish P2 tìte gia opoiesd pote stajerè a kai b isqÔei
a x1 (n) + b x2 (n) Z! a X1 (z ) + b X2 (z ) (7.2.1)
H perioq sÔgklish tou Z [a x1 (n) + b x2 (n)℄ enai toulqiston h P1 \ P2 . H lèxh
“toulqiston” qrhsimopoi jhke gia thn perptwsh kat thn opoa o grammikì sundu-
asmì enai tètoio ¸ste kpoia mhdenik na exoudeter¸noun orismènou pìlou . Se
mia tètoia perptwsh h perioq sÔgklish enai megalÔterh apì thn tom twn dÔo
epimèrou perioq¸n sÔgklish .
H apìdeixh th grammikìthta apotele meso epakìloujo th grammikìthta tou
ajrosmato ston orismì tou metasqhmatismoÔ z.
(2) Idiìthta th qronik olsjhsh
x(n) me amfpleuro metasqhmatismì z X (z ) kai perioq sÔgklish
àstw s ma
P = fz 2 C : R+ < jz j < R g, tìte gia kje akèraio n0 , jetikì arnhtikì, isqÔei
x(n + n0 ) Z! z n0 X (z ); R+ < jz j < R (7.2.2)
246 Metasqhmatismì z Keflaio 7
Apìdeixh
H apìdeixh aporrèei mesa apì tou orismoÔ . Prgmati, èqoume
1
X
Z [x(n + n0 )℄ = x(n + n0 )z n
n= 1
1
X
i=n+n0
= x(i)z i+n0
i= 1
1
X
= z n0 x(i)z i
i= 1
= z n0 X (z )
Gia n0 = 1 èqoume Z [x(n 1)℄ = z 1 X (z).
To sÔsthma diakritoÔ qrìnou tou Sq mato 7.6 to opoo prokale kajustèrhsh
enì degmato sumbolzetai me z 1 . Genik èna sÔsthma diakritoÔ qrìnou to opoo
prokale kajustèrhsh kat m degmata sumbolzetai me z m .
Sq ma 7.6 Sqhmatik perigraf sust -
x(n) z -1 x(n-1)
mato kajustèrhsh enì degmato .
(3) Idiìthta th sunèlixh sunèlixh sto pedo tou qrìnou
An x1 (n) ! X1 (z) me perioq
Z
sÔgklish P1 kai x2 (n) ! X2(z) me perioq
Z
sÔgklish P2 tìte
x(n) = x1 (n) ? x2 (n) ! X (z) = X1 (z) X2 (z)
Z
(7.2.3)
H perioq sÔgklish tou X1 z ( ) ( )
X2 z enai toulqiston h P1 P2 . Se merikè \
peript¸sei mpore to ginìmeno na uprqei kai se megalÔterh perioq , gia tou diou
lìgou ìpw kai sth grammikìthta.
Apìdeixh
Epeid
1
X
x(n) = x1 (k)x2 (n k)
k= 1
Enìthta 7.2 Idiìthte tou MetasqhmatismoÔ z 247
èqoume
1 1 " 1 #
X X X
X (z ) = x(n)z n = x1 (k)x2 (n k) z n
n= 1 n= 1 k= 1
1 " 1 #
X X
= x1 (k) x2 (n k)z n
k= 1 n= 1
1 " 1 #
X X
= x1 (k)z k x2 (n k)z (n k)
k= 1 n=1
" #
1
X 1
X
m=n k m)
= x1 (k)z k x2 (m)z
k= 1 m= 1
= X1 (z ) X2 (z ) (7.2.4)
(4) Idiìthta th diamìrfwsh olsjhsh suqnìthta -klimkwsh sto pedo
tou z
àstw s ma x n ( ) Z! ( )
X z me perioq sÔgklish P z = f 2 C : R+ < jzj < R g,
kai migadikì arijmì . Tìte o metasqhmatismì z tou s mato y(n) = n x(n) enai
y(n) = n x(n) ! Y (z ) = X z
Z
me j jR+ < jzj < j jR (7.2.5)
Apìdeixh
1
X 1
X
Y (z ) = y(n)z n = nx (n)z n
n= 1 n= 1
1
X z n z
= x(n) =X
n= 1
(5) Idiìthta th parag¸gish sto pedo tou z
àstw s ma x (n) ! X (z) me perioq
Z
sÔgklish P = fz 2 C : R+ < jzj < R g,
tìte
nx(n) Z
! z dXdz(z) me thn dia perioq sÔgklish (7.2.6)
248 Metasqhmatismì z Keflaio 7
Apìdeixh
1
X
X (z ) = x(n)z n
n= 1
dX (z ) 1
X
= nx(n)z (n+1)
dz n= 1
X1
= z 1 nx(n)z n
n= 1
= 1
z Z [nx(n)℄
(6) Idiìthta th suzuga (Suzug akolouja)
àstw migadikì s ma x(n) me metasqhmatismì z X (z ) me perioq sÔgklish P =
fz 2 C : R+ < jzj < R g, tìte
x? (n) ! X ? (z? ); R+ < jzj < R
Z
<e [x(n)℄ Z! 21 [X (z) + X ? (z? )℄ (7.2.7)
=m [x(n)℄ ! 21j [X (z) X ? (z? )℄
Z
Apìdeixh
An y(n) = x? (n) èqoume
1
X
Y (z ) = x? (n)z n
n= 1
1
X
Y ? (z )= x(n)(z ? ) = X (z ? )
n
n= 1
Y (z ) = Z [x? (n)℄ = X ? (z ? ) (7.2.8)
(7) Katoptrismì sto qrìno
àstw s ma x (n) Z! X (z) me perioq sÔgklish = fz 2 C : R+ < jzj < R g,
P
tìte
x( n) Z
! X (z 1 ); 1 < jzj < 1
R+
me PS (7.2.9)
R
Enìthta 7.2 Idiìthte tou MetasqhmatismoÔ z 249
Apìdeixh
1
X
Z [x( n)℄ = x( n)z n
n= 1
1
X
k= n
= x(k) z 1 k
k= 1
= X (z 1 ) (7.2.10)
(8) Susqètish
An jewr soume dÔo s mata w dianÔsmata, èna arijmì pou metrei thn o-
moiìtht tou enai to eswterikì tou ginìmeno. Autì gnetai mègisto gia dianÔsmata
(s mata) pou sumpptoun, en¸ mhdenzetai gia dianÔsmata pou enai kjeta.
Wstìso, se ìti afor sta s mata, pollè forè aut enai apl¸ metatopismè-
na to èna se sqèsh me to llo qwr na enai ousiastik diaforetik. àtsi èna
mìno arijmì (eswterikì ginìmeno) den enai arketì gia na antimetwpsei ìle ti
pijanè sqetikè metatopsei metaxÔ twn shmtwn. Qreizetai loipìn na oriste èna
nèo s ma (sunrthsh) tou opoou h anexrthth metablht ja ekfrzei thn metatìpish
metaxÔ twn dÔo shmtwn. Orzetai loipìn h sunrthsh - akolouja susqètish etero-
susqètish twn s matwn diakritoÔ qrìnou - akolouji¸n x n kai y n w () ()
1
X
rxy (l) = x(n) ? y( n) = x(n)y? (n l); 1<l<1 (7.2.11)
n= 1
Thn anexrthth metablht l ja onomzoume kajustèrhsh (lag).
An x (n) ! Z
X (z ) me perioq sÔgklish P1 kai y(n) Z! Y (z ) me perioq
sÔgklish P2 , tìte o metasqhmatismì z th susqètish twn dÔo shmtwn enai
rxy (l) Z
! X (z) Y (z 1 ) (7.2.12)
Apìdeixh
H apìdeixh th idiìthta gnetai an qrhsimopoihjoÔn oi idiìthte sunèlixh kai
[ ( )℄
tou katoptrismoÔ. H perioq sÔgklish tou Z rxy l enai toulqiston h P1 P2 . \
H susqètish exarttai apì thn enèrgeia twn dÔo shmtwn. O suntelest susqètish
()
xy l dÔo shmtwn diakritoÔ qrìnou orzetai w
%xy (l) =
(l) ;
prExyp 1<l<1 (7.2.13)
x E y
250 Metasqhmatismì z Keflaio 7
enai sunrthsh th kajustèrhsh twn dÔo akolouji¸n kai enai anexrthto apì thn
enèrgei tou .
àna llo polÔ qr simo mègejo enai h sunrthsh autosusqètish (autocorrelation).
H sunrthsh autosusqètish orzetai apì th sqèsh
1
X
rxx (l) = x(n) ? x( n) = x(n)x? (n l); 1<l<1 (7.2.14)
n= 1
H akolouja autosusqètish èqei dÔo basikè idiìthte
a) H enèrgeia tou s mato enai sh me th tim th sunrthsh autosusqètis tou
gia l =0. Prgmati
1
X
rxx (0) = jx(n)j2 dn = Ex (7.2.15)
n= 1
b) O metasqhmatismì Fourier diakritoÔ qrìnou th sunrthsh autosusqètish enì
s mato isoÔtai me th fasmatik puknìthta enèrgeia tou s mato . H sunrthsh
fasmatik puknìthta enèrgeia perigrfei ton trìpo me to opoo katanèmetai h
enèrgeia tou s mato sto q¸ro suqnot twn. Prgmati, lìgw tou jewr mato th
sunèlixh tou metasqhmatismoÔ Fourier èqoume
rxx (l) = x(n) ? x? ( n) ) F [rxx (l)℄ = jX ( )j2 (7.2.16)
kai apì to je¸rhma tou Parseval èqoume
1
X 1 Z jX ( )j2 d
Ex = rxx(0) = jx(n)j2 dn = 2 2 (7.2.17)
n= 1
Pèra apì ta stoiqei¸dh s mata, ta opoa melet jhkan sta paradegmata, uprqoun
kai arket lla pou epsh sunant¸ntai sth melèth grammik¸n susthmtwn diakritoÔ
qrìnou. Oi metasqhmamo z twn shmtwn aut¸n upologzontai me th bo jeia tou oris-
moÔ kai twn idiot twn tou metasqhmatismoÔ z. Ston Pnaka 7.1 uprqoun oi idiìthte
tou metasqhmatismoÔ z, en¸ ston Pnaka 7.2 uprqoun oi metasqhmatismo z kai oi
antstoiqe perioqè sÔgklish gia ti plèon sunhjismène kai qr sime peript¸sei .
7.3 O MONOPLEUROS METASQHMATISMOS Z
Sthn pargrafo aut ja estisoume sta basik shmea tou monìpleurou metasqh-
matismoÔ z kai kurw se aut pou ton diaforopoioÔn apì to metasqhmatismì z. H
diafor metaxÔ twn dÔo metasqhmatism¸n entopzetai sta ìria tou ajrosmato oris-
P1
moÔ X( )
z ()
n=0 x n z
n
Enìthta 7.3 O Monìpleuro Metasqhmatismì z 251
PINAKAS 7.10 Oi idiìthte tou MetasqhmatismoÔ z
Idiìthta S ma Metasqhmatismì z Perioq sÔgklish
x(n) X (z ) P =fz 2C :R+ <jz j<R g
x1 (n ) X1 (z ) P1 =fz 2C :R+
1 <jz j<R1 g
x2 (n ) X2 (z ) P2 =fz 2C :R+
2 <jz j<R2 g
Grammikìthta ax1 (n)+bx2 (n) aX1 (z )+bX2 (z ) Toulqiston P1 \P2
Qronik olsjhsh x(n+n0 ) z n0 X (z ) P
Sunèlixh x1 (n)?x2 (n) X1 (z )X2 (z ) Toulqiston P1 \P2
sto pedo tou qrìnou
Klimkwsh sto pedo z
olsjhsh suqnìthta
n x(n) X z() j jR+<jzj<j jR
Parag¸gish nx(n) z dXdn(z) R+ <jz j<R
sto pedo z
Suzuga x? (n) X ? (z ? ) P
Pn
k= 1 x(n) 1 z 1 X (z ) P1 \jz j>1
Ajrosmato 1 Toulqiston
Katoptrismì ston x( n) X (z 1 ) 1 1
R <jz j< R+
xona tou qrìnou
Profan¸ an dÔo s mata diakritoÔ qrìnou enai diaforetik gia n < kai sa 0
gia n 0 tìte èqoun ton dio MMz kai diaforetikì Mz. Gia aitiat s mata, x n ( )=0
0
gia n < , o Mz kai o MMz sumpptoun. Me lla lìgia o monìpleuro metasqh-
()
matismì z tou s mato x n tautzetai me ton amfpleuro metasqhmatismì z tou
()() ()()
s mato x n u n . Efìson to s ma x n u n enai aitiatì s ma, h perioq sÔgk-
lish tou monìpleurou metasqhmatismoÔ z enai pnta to exwterikì mèro kÔklou me
th mikrìterh aktna Rx pou perilambnei tou pìlou tou s mato .
Sqedìn ìle oi idiìthte tou metasqhmatismoÔ z isqÔoun kai gia to monìpleuro.
Epeid to ktw ìrio tou ajrosmato orismoÔ tou monìpleurou metasqhmatismoÔ z
enai to mhdèn o monìpleuro metasqhmatismì èqei thn idiìthta th dexi kai th
arister olsjhsh oi opoe apoteloÔn th dÔnamh tou monìpleurou metasqhmatismoÔ
z. Oi idiìthte autè kai h idiìthta th sunèlixh parèqei sto monìpleuro metasqh-
matismì z th dunatìthta eplush exis¸sewn diafor¸n, oi opoe èqoun mh mhdenikè
arqikè sunj ke .
(1) Idiìthta th dexi olsjhsh - Kajustèrhsh
An x(n) Z! X (z ) me aktna sÔgklish R tìte
x
n0
X
x(n n0 ) Z! z n0 X (z) + z n0 x( i)z i gia kje n0 1 (7.3.1)
i=1
252 Metasqhmatismì z Keflaio 7
PINAKAS 7.11 Metasqhmatismo z merik¸n basik¸n shmtwn diakritoÔ qrìnou
S ma Metasqhmatismì z Perioq sÔgklish
1 Æ(n) 1 Gia kje z 6= 0
u(n) 1 1 = z 1
z jzj > 1
2 1 z
3 Æ(n m); m > 0 z m jzj 6= 0
an u(n) 1 = zza jzj > jaj
4 1 az 1
5 an 1 u(n 1) 1 jzj > jaj
z a
6 nan u(n) (1
az 1
az 1 )2 jzj > jaj
anu ( n 1) 1 = zza jzj < jaj
7 1 az 1
8 an 1 u( n) 1 jzj < jaj
z a
9 nan u( n 1) az 1
(1 az 1 )2 jzj < jaj
[ os( 0n)℄u(n) 1 ( os 0 )z 1 jzj > 1
10 1 (2 os 0 )z 1 +z 2
[sin( 0n)℄u(n) (sin 0 )z 1 jzj > 1
11 1 (2 os 0 )z 1 +z 2
[rn os( 0n)℄u(n) 1 (r os 0 )z 1 jzj > r
12 1 (2r os 0 )z 1 +r2 z 2
[rn sin( 0 n)℄u(n) (r sin 0 )z 1 jzj > r
13 1 (2r os 0 )z 1 +r2 z 2
Apìdeixh
H apìdeixh aporrèei mesa apì tou orismoÔ . Prgmati, èqoume
1
X 1
X
Z [x(n n0)℄ = x(n n0 )z n n n0 =i
= x(i)z i n0
n=0 i= n0
" #
X1 1
X
= z n0 x(i)z i + x(i)z i
i= n0 i=0
n0
X
= z n0 X (z) + z n0 x( i)z i
i=1
ParathroÔme ìti kat th dexi olsjhsh nèa degmata eisèrqontai sto disthma
[0 1)
; ja prèpei na lboun kai aut mèro stou upologismoÔ . Ta nèa degmata
enai ta x ( 1) ( 2)
;x ( )
; : : : ; x n0 .
Gia n0 =1 èqoumeZ [ ( 1)℄ =
xn z 1 z x X ( ) + ( 1)
.
Enìthta 7.3 O Monìpleuro Metasqhmatismì z 253
(2) Idiìthta th arister olsjhsh - Pro ghsh
An x(n) Z! X (z ) me aktna sÔgklish R tìte
x
0 1
nX
z n0 Z [x(n + n0)℄ = X (z) x(i)z i gia kje n0 1 (7.3.2)
i=0
Apìdeixh
H apìdeixh aporrèei mesa apì tou orismoÔ . Prgmati, èqoume
1
X 1
X
Z [x(n + n0)℄ = x(n + n0 )z n n+n0 =i
= x(i)z i+n0
n=0 i=n0
" #
1
X 0 1
nX
= z n0 x(i)z i x(i)z i
i=0 i=0
" #
0 1
nX
= z n0 X (z ) x(i)z i
i=0
ParathroÔme ìti kat thn arister olsjhsh kpoia apì ta uprqonta degmata
brskontai ektì diast mato ; [0 1)
kai sunep¸ prèpei na afairejoÔn apì to suno-
(0) (1)
likì jroisma. Ta degmata aut enai ta x ; x ; : : : ; x n0 . ( 1)
Gia n0 èqoume z 1 x n
=1 Z [ ( + 1)℄ = X ( ) (0)
z x .
(3) Je¸rhma th Arqik Tim
An x(n) Z! X (z ) me aktna sÔgklish R tìte
x
x(0) = zlim
!1
X (z) (7.3.3)
(4) Je¸rhma th Telik Tim
An x(n) Z! X (z ) me aktna sÔgklish Rx tìte
lim x(n) = zlim
n!1 !1
(z 1)X (z) (7.3.4)
Parat rhsh: Ta jewr mata th arqik kai telik tim , ìpw kai ta ants-
toiqa jewr mata tou metasqhmatismoÔ Laplace, ma parèqoun th dunatìthta upolo-
()
gismoÔ th asumptwtik tim th akolouja x n ìtan enai gnwstì o monìpleuro
metasqhmatismì z kai ètsi apofeÔgetai o upologismì tou x n apì ton ()
z . Ta X( )
jewr mata isqÔoun ìtan sth perioq sÔgklish tou z z X ( ) ( 1)X ( )
z perilambne-
tai o monadiao kÔklo ètsi ¸ste to s ma, ìpw ja doÔme, na enai eustajè .
254 Metasqhmatismì z Keflaio 7
Pardeigma 7.3.1
Na upologiste o monìpleuro kai o amfpleuro metasqhmatismì z tou s mato
x(n) = an u(n) (7.3.5)
LÔsh Epeid x(n) = 0; n < 0, o monìpleuro kai o amfpleuro metasqhmatismì z
1
enai soi
X (z ) = X (z ) =
1 az 1
= z z a an jzj > jaj (7.3.6)
Pardeigma 7.3.2
Na upologiste o monìpleuro kai o amfpleuro metasqhmatismì z tou s mato
y(n) = an+1 u(n + 1) (7.3.7)
LÔsh O monìpleuro metasqhmatismì z enai
1
X
Y (z ) = y(n)z n
n=0
1
X
= an+1 z n
n=0
a
= 1 az 1
; me jz j > jaj (7.3.8)
O monìpleuro metasqhmatismì z mpore na upologiste kai w ex . Gnwrzoume
x(n) = an u (n) Z! X (z ) = 1=(1 az 1 ) me jz j > jaj. Me th bo jeia th idiìthta
th arister olsjhsh èqoume
z 1 Z [x(n + 1)℄ = X (z) x(0)
= 1 1az 1 1
1
= 1 azaz 1 )
Z [y(n)℄ = 1 aaz 1
Gia ton amfpleuro metasqhmatismì z gnwrzoume ìti x(n) = anu(n) Z! X (z) =
1=(1 az 1 ) me jz j > jaj. Me th bo jeia th idiìthta th olsjhsh èqoume
Z [x(n + 1)℄ = zX (z) = 1 zaz 1 )
z
Z [y(n)℄ =
1 az 1 ; jzj > jaj (7.3.9)
Enìthta 7.3 O Monìpleuro Metasqhmatismì z 255
(5) O monìpleuro metasqhmatismì z periodik¸n shmtwn
()
àstw to periodikì s ma x n me perodo N , dhlad , x n N x n . Tìte o ( + )= ( )
monìpleuro metasqhmatismì z X( ) ()
z , tou x n uprqei kai dnetai apì th sqèsh
NX1
X (z) = 1 1z N x(n)z n me jzj > 1 (7.3.10)
n=0
Apìdeixh
1
X
X (z) = x(n)z n
n=0
NX1 2X
N 1 (k+1)
X N 1
= x(n)z n + x(n)z n + ::: + x(n)z n + :::
n=0 n=N n=kN
P(k+1)N 1 x(n)z
H antikatstash l = n kN sto jroisma n=kN
n dnei
(k+1)
X N 1 NX1
x(n)z n = x(l + kN )z (l+kn)
n=kN l=0
NX1
= z kN x(l)z l
l=0
ra,
NX1
X (z) = [1 + z N 2
+ z + : : : ℄ x(n)z
N n
n=0
NX1
= 1 1z N x(n)z n
n=0
Ston Pnaka 7.3 uprqoun oi idiìthte tou monìpleurou metasqhmatismoÔ z.
Pardeigma 7.3.3
Na upologiste o monìpleuro metasqhmatismì z tou periodikoÔ orjog¸niou kÔmato
me perodo N
x(t) = 1; kN n < kN + N1 k = 0; 1; 2; : : :
0; kN + N1 n < (k + 1)N N1 < N (7.3.11)
256 Metasqhmatismì z Keflaio 7
PINAKAS 7.12 Oi idiìthte tou monìpleurou metasqhmatismoÔ z
Idiìthta S ma Metasqhmatismì z Perioq sÔgklish
x(n) X (z) P =fz 2C :R<jz jg
x1 (n) X1 (z) P1 =fz 2C :R<jz jg
x2 (n) X2 (z) P2 =fz 2C :R<jz jg
Grammikìthta ax1 (n)+bx2 (n) aX1 (z )+bX2 (z ) P1 \P2
Dexi olsjhsh
Kajustèrhsh
x(n n0 ); n0 1 [ P 0
z n0 X (z )+ ni=1 x( i)z i ℄ R<jz j
h Pn0 1 i
Arister olsjhsh x(n+n0 ); n0 1 z n0 X (z) i=0 x(i)z
i R<jz j
Pro ghsh
Sunèlixh x1 (n)?x2 (n) X1 (z)X2 (z) P1 \P2
sto pedo tou qrìnou
Klimkwsh sto pedo z n x(n) X(z) j jR<jzj
olsjhsh suqnìthta
Suzuga x? (n) X ? (z? ) R<jz j
PN 1
Periodikì s ma x(n+N )=x(n) 1 z N n=0 x(n)z
1 n jzj>1
Je¸rhma x(0) = limz!1 X (z )
arqik tim
Je¸rhma limn!1 x(n) = limz!1(z 1)X (z)
telik tim
LÔsh O metasqhmatismì z dnetai apì thn exswsh
1 1
X (z ) = 1 z 1 NX
z n
N
n=0
= 1 1z N
z N1
z 1 1
1 (7.3.12)
7.4 O ANTISTROFOS METASQHMATISMOS Z
Gnwrzoume
X (rej ) = F x(n) r n (7.4.1)
kai an jzj = r kai brsketai sthn perioq sÔgklish èqoume
x(n) r n =F 1 X (rej 1
) ) x(n) = 2
Z
X (rej )ej
rn nd
<2>
Enìthta 7.4 O Antstrofo Metasqhmatismì z 257
Me eisagwg th rn sto eswterikì tou oloklhr¸mato èqoume
x(n) =
1 Z
X rej
rej
n
d
2 <2>
(7.4.2)
Me allag metablht z = rej kai epeid r enai stajer posìthta, prokÔptei ìti
dz = jrej d = jz d d = (1=j )z 1 dz . To olokl rwma orzetai pnw se
2
disthma tou . Gia th nèa metablht z to disthma autì antistoiqe se kampÔlh
gÔrw apì to kÔklo z j j=
r. àtsi èqoume
x(n) =
1 Z
1 dz
2j C X (z)z
n (7.4.3)
ìpou C enai mia aristerìstrofh kleist kampÔlh olokl rwsh gÔrw apì thn arq
twn axìnwn, h opoa brsketai sto eswterikì th perioq sÔgklish tou metasqhma-
tismoÔ z , h de olokl rwsh gnetai antstrofa apì th for twn deikt¸n tou rologioÔ.
7.4.1 Upologismì tou antstrofou metasqhmatismou z gia rhtè sunart sei
O apeujea upologismì tou antstrofou metasqhmatismoÔ z mèsw tou oloklhr¸ma-
to th (7.4.3) enai epponh diadikasa kai gi' autì sun jw akoloujoÔntai èmmesoi
trìpoi eÔresh tou antstrofou metasqhmatismoÔ z. An h morf th sunrthsh
()
X z enai apl kai mpore eÔkola na ekfraste w jroisma epimèrou stoiqeiwd¸n
ìrwn, tìte me th qr sh gnwst¸n metasqhmatism¸n z kai twn idiot twn tou metasqh-
matismoÔ z mporoÔme ap' eujea na upologsoume ton antstrofo metasqhmatismì
()
z. An h sunrthsh X z enai rht sunrthsh tìte thn anaptÔssoume se apl k-
lsmata kai upologzoume ton antstrofo metasqhmatismì z, me th qr sh gnwst¸n
metasqhmatism¸n z se aut.
7.4.2 Upologismì me anptuxh se apl klsmata
Thn anptuxh mia sunrthsh se apl klsmata thn èqoume diapragmateuje sto
Parrthma B. ExeidikeÔonta thn teqnik sthn perptwsh tou metasqhmatismoÔ z,
diakrnoume dÔo peript¸sei
1. An o bajmì m, tou poluwnÔmou tou arijmht enai mikrìtero tou bajmoÔ
n, tou poluwnÔmou tou paronomast h rht sunrthsh anaptÔssetai se apl
klsmata sÔmfwna me thn exswsh
X (z ) = (z C11z1 ) + (z C12z1 )2 + + (z C1zr1)r
+ (z C21z2 ) + (z C31z3 ) + + (zC(nznr)1r ) (7.4.4)
258 Metasqhmatismì z Keflaio 7
=
ìpou z1 ; z2 ; : : : ; zl enai oi l ()
n r pìloi th X z me pollaplìthte r; 1; : : : ; 1
antstoiqa. Oi suntelestè C1;k prosdiorzontai apì ti sqèsei
C1k =
1 dr k (z z1 )r X (z )
; k = 1; 2; : : : ; r
(r k)! dz r k
z =z1
(7.4.5)
Gia tou aploÔ pìlou oi suntelestè Ci1 prosdiorzontai apì ti sqèsei
Ci1 = (z zi )X (z )jz=zi ; i = 2; 3; : : : ; n r (7.4.6)
()
àqonta analÔsei th sunrthsh X z se apl klsmata, mporoÔme sth sunè-
qeia sqetik eÔkola na upologsoume ton antstrofo metasqhmatismì z. Prg-
mati upologzoume pr¸ta tou epimèrou metasqhmatismoÔ z twn apl¸n klas-
mtwn kai Ôstera ajrozoume ti prokÔptouse ekfrsei .
Orismèna apì ta pio sunhjismèna zeÔgh metasqhmatism¸n z paratjentai s-
ton Pnaka 7.2 Ta zeÔgh aut ma bohjoÔn ston upologismì tou antistrìfou
metasqhmatismoÔ z, ekfrzonta thn sunrthsh X z w grammikì sunduasmì ()
aploustèrwn sunart sewn.
2. An o bajmì m, tou poluwnÔmou tou arijmht enai megalÔtero so tou ba-
jmoÔ n, tou poluwnÔmou tou paronomast tìte diairoÔme pr¸ta ta polu¸numa
kai katal goume se mia èkfrash pou èqei th morf
X (z ) = Bm n z m n + Bm n 1zm n 1 + : : : ; +B0 z 0 + X1 (z ) (7.4.7)
()
ìpou h sunrthsh X1 z èqei bajmì arijmht mikrìtero tou bajmoÔ tou parono-
mast , kai thn opoa anaptÔssoume se apl klsmata sÔmfwna me ta prohgoÔ-
mena.
àna sunhjismèno tèqnasma gia na apofÔgoume th diaresh poluwnÔmwn, an m =
( )= ( )
n, enai na qrhsimopoi soume th sunrthsh X1 z X z =z auxnonta ètsi
to bajmì tou poluwnÔmou tou paronomast kat èna, kai na anaptÔxoume sth
()
sunèqeia se apl klsmata th sunrthsh X1 z ìpw fanetai sto Pardeigma
7.4.3.
Pardeigma 7.4.1
Na upologiste to s ma x(n) to opoo èqei metasqhmatismì z th sunrthsh
X (z ) =
3 5=6z 1 1
(1 1=4z 1)(1 1=3z 1) jzj > 3 (7.4.8)
LÔsh AnalÔoume se apl klsmata
C1 C2
X (z ) =
1 1=4z 1 + 1 1=3z 1
Enìthta 7.4 O Antstrofo Metasqhmatismì z 259
kai upologzoume ti stajerè C1 kai C2 .
C1 = (1 1=4z 1)X (z)jz 1 =4 = 1 kai C2 = (1 1=3z 1)X (z)jz 1 =3 =2
àtsi o metasqhmatismì z apokt th morf
X (z ) =
1 2
1 1=4z 1 + 1 1=3z 1 = X1(z) + X2(z)
Me th bo jeia tou Paradegmato 7.1.2 èqoume
n
x1 (n) =
1 u(n) Z! X1(z) = 1 jzj >
1
4 1 1=4z 1 4
n
x2 (n) = 2
1 u(n) Z! X2(z) = 2 j zj >
1
3 1 1=3z 1 3
Telik
x(n) =
n
1 u(n) + 2
n
1 u(n) Z! X (z ) =
3 5=6z 1 1
4 3 (1 1=4z 1)(1 1=3z 1 jz j > 3
Pardeigma 7.4.2
Na upologiste to s ma x(n) to opoo èqei metasqhmatismì z th sunrthsh
X (z ) =
3 5=6z 1 1 < jzj < 1
(1 1=4z )(1 1=3z ) 4
1 1 3 (7.4.9)
LÔsh Apì to prohgoÔmeno pardeigma èqoume
X (z ) =
1 + 2
1 1=4z 1 1 1=3z 1 = X1(z) + X2(z)
lìgw th perioq sÔgklish kai me th bo jeia twn Paradeigmtwn 7.1.2 kai 7.1.5
èqoume
n
x1 (n) =
1 u(n) Z! X1 (z ) =
1 1
4 1 1=4z 1 jzj > 4
n
x2 (n) = 2 13 u( n 1) Z! X2(z) = 1 12=3z 1 jzj < 31
Telik n n
x(n) =
1 u(n) 2 31 u( n 1)
4
260 Metasqhmatismì z Keflaio 7
Pardeigma 7.4.3
Na upologiste to s ma x(n) to opoo èqei metasqhmatismì z th sunrthsh
z
X (z ) = 2
z +z 2
(7.4.10)
LÔsh AnalÔoume se apl klsmata th sunrthsh X (z )=z , kai èqoume
X (z )
z
= (z + 2)(1 z 1) = 13 z +1 2 + 13 z 1 1
àtsi prokÔptei
X (z ) =
1 z 1 z
3z+2 + 3z 1
Gia to GQA sÔsthma tou paradegmato den prosdiorzetai h perioq sÔgklish th
sunrthsh metafor . Oi pijanè perioqè sÔgklish enai oi trei , oi opoe eikon-
zontai sto Sq ma 7.7.
ℑm z ℑm z ℑm z
-2 0 1 ℜe z -2 0 1 ℜe z -2 0 1 ℜe z
( á) (â) ( ã)
Sq ma 7.7 Oi pijanè perioqè sÔgklish tou metasqhmatismoÔ z th akolouja x(n) sto
Pardeigma 7.4.3.
1. Sth perioq fz 2 C : 0 < jz j < 1g upoqrewtik èqoume
z z
Z 1 = ( 2) ( n 1) kai Z 1
1 = u( 1)
nu n
z+2 z
sunep¸ , to s ma enai
1 ( 2)nu( n 1) 1 u( n 1)
x(n) =
3 3
2. Sth perioq fz 2 C : 1 < jz j < 2g upoqrewtik èqoume
1 z 1 z
Z
z+2
= ( 2) u( n 1) kai Z z 1 = u(n)
n
sunep¸ , to s ma enai
x(n) =
1 ( 2)nu( n 1) + 13 u(n)
3
Enìthta 7.4 O Antstrofo Metasqhmatismì z 261
3. Sth perioq fz 2 C : 2 < jz j < 1g upoqrewtik èqoume
z z
Z 1 = ( 2)nu(n) kai Z 1
z+2 z 1 = u(n)
sunep¸ , to s ma enai
x(n) =
1 ( 2)nu(n) + 1 u(n)
3 3
7.4.3 Upologismì me anptuxh se dunamoseir
SÔmfwna me th mejodologa aut anaptÔssoume th sunrthsh X z se dunamoseir ()
()
kai sth sunèqeia h akolouja x n upologzetai me antistoqish stou suntelestè
th dunamoseir . H anptuxh mia rht sunrthsh se dunamoseir epitugqnetai
sun jw me suneq diaresh. H mejodo aut den katal gei se ma analutik èkfrash
()
gia thn x n . Enai mia arijmhtik mèjodo me thn opoa mporoÔme na upologzoume
()
èna stoiqeo th x n kje for.
Pardeigma 7.4.4
Na upologiste h akolouja x(n) h opoa èqei metasqhmatismì z th sunrthsh
X (z ) =
1 ; jz j > jaj
1 az 1
(7.4.11)
LÔsh H èkfrash aut mpore na anaptuqje se dunamoseir me suneqe diairèsei
1 1 az 1
1 +az1 1+az
1 +a2z 2 + : : :
+az1
az 1 +a2 z 2
+a22z 22 3 3
a z +a z
+a3z 3
ParathroÔme ìti to jroisma 1+ az
1 + a2 z 2 + a3z 3 + : : : sugklnei an az 1 < 1,
dhlad , an jaj < jz j. àtsi èqoume to anptugma gia to metasqhmatismì z
X (z ) =
1 = 1 + az 1 + a2z 2 + a3z 3 + : : :
1 az 1
(7.4.12)
Sugkrnonta thn parapnw èkfrash me thn sqèsh orismoÔ tou metasqhmatismoÔ z
1
X
X (z ) = x(n) z n
n= 1
èqoume
: : : x( 2) = 0; x( 1) = 0; x(0) = 1; x(1) = a; x(2) = a2; x(3) = a3; : : :
262 Metasqhmatismì z Keflaio 7
dhlad x(n) = an u(n) apotèlesma to opoo anamèname lìgw tou Paradegmato 7.1.2.
An az 1 > 1, dhlad , an jaj > jz j tìte h anptuxh se seir tou metasqhmatismoÔ z
gnetai me thn paraktw diaresh.
1 az 1 +1
1 +a 1z a 1z a 2z 2 a 3z 3 : : :
+a 1z
a 1z +a 2z 2
+a 2z2
a 2 z 2 +a 3z3
+a 3z3
Me parìmoio trìpo skèyh ìpw kai sthn prohgoÔmenh perptwsh katal goume
: : : x( 3) = a 3 ; x(
2) = a 2; x( 1) = a 1; x(0) = 0; x(1) = 0; x(2) = 0; : : :
dhlad x(n) = anu( n 1) apotèlesma to opoo anamèname lìgw tou Paradegmato
7.1.6.
Pardeigma 7.4.5
Na upologiste h akolouja x(n) h opoa èqei metasqhmatismì z th sunrthsh
X (z ) = log 1 + az 1 ; jz j > jaj (7.4.13)
LÔsh Gnwrzoume
1
X ( 1)n+1wn ; jwj < 1; (Anptugma se seir Taylor)
log(1 + w) = n
n=1
Me efarmog th parapnw sqèsh èqoume
1
X ( 1)n+1anz n
X (z ) =
n=1 n
Sugkrnonta thn parapnw èkfrash me thn sqèsh orismoÔ tou metasqhmatismoÔ z
èqoume
x(n) = ( 1)n+1 ann ; n1
0; n<0
Telik prokÔptei
x(n) =
( a)n u(n 1) (7.4.14)
n
7.5 EFARMOGES TOU METASQHMATISMOU Z
Sthn enìthta aut ja anaptÔxoume ti efarmogè twn metasqhmatism¸n z. Eidikìtera
ja susthmatikopoi soume th dunatìthta pou parèqei o monìpleuro metasqhmatismì
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 263
z gia thn eplush exis¸sewn diafor¸n oi opoe èqoun mh mhdenikè arqikè sun-
j ke kai ja efarmìsoume th diadikasa aut sth melèth GQA susthmtwn diakritoÔ
qrìnou. Telei¸nonta , ja exetsoume th sqèsh pou uprqei metaxÔ th jèsh twn
pìlwn th sunrthsh metafor sto migadikì eppedo me ti idiìthte th aitiìthta
kai th eustjeia enì GQA sust mato diakritoÔ qrìnou.
Ma apì ti pio shmantikè idiìthte tou metasqhmatismoÔ z enai aut th sunèli-
xh . Sto pardeigma pou akolouje prosdiorzetai, qwr na katafÔgoume sto jroi-
sma th sunèlixh , h akolouja exìdou enì GQA sust mato diakritoÔ qrìnou, an h
kroustik apìkrish kai h esodì tou enai akolouje peperasmènh èktash .
Pardeigma 7.5.1
Na prosdioriste h akolouja exìdou enì GQA sust mato diakritoÔ qrìnou, to opoo
èqei kroustik apìkrish h(n) = [ 1; 2; 3℄ ìtan diegeretai apì thn akolouja x(n) =
"
[ 3; 4; 5; 2℄.
"
LÔsh Oi metasqhmatismo z th kroustik apìkrish kai th eisìdou enai
H (z ) = 1 + 2z 1 + 3z 2 kai X (z ) = 3 + 4z 1 + 5z 2 + 2z 3
H èxodo tou sust mato prosdiorzetai apì to jroisma th sunèlixh y (n) = h(n) ?
x(n) kai lìgw th idiìthta th sunèlixh Y (z ) = H (z ) X (z ), ètsi èqoume
èqoume
Y (z ) = 3 + 10z 1 + 22z 2 + 24z 3 + 19z 4 + 6z 5
Me antstrofo metasqhmatismì z brskoume thn akolouja exìdou.
y(n) = [ 3; 10; 22; 24; 19; 6℄
"
7.5.1 Sust mata ta opoa qarakthrzontai apì grammikè exis¸sei diafor¸n
me stajeroÔ suntelestè
Gia ta sust mata ta opoa qarakthrzontai apì grammikè exis¸sei diafor¸n me
stajeroÔ suntelestè , o metasqhmatismì z apotele isqurì ergaleo gia ton pros-
diorismì th sunrthsh metafor sust mato th apìkrish suqnìthta th
kroustik apìkrish sust mato .
Genik, ìpw gnwrzoume, oi prxei oi opoe prèpei na gnoun, sto pedo tou
qrìnou, apì èna GQA sÔsthma diakritoÔ qrìnou sta dedomèna eisìdou, ¸ste na
prokÔyei h akolouja exìdou, perigrfontai apì mia grammik exswsh diafor¸n
me stajeroÔ suntelestè . Me lla lìgia, gnwrzoume ìti h esodo kai h èxodo enì
GQA sust mato diakritoÔ qrìnou ikanopoioÔn mia grammik exswsh diafor¸n me
264 Metasqhmatismì z Keflaio 7
stajeroÔ suntelestè th morf
N
X M
X
ak y(n k) = bk x(n k) me a0 = 1 (7.5.1)
k=0 k=0
Efarmìzoume metasqhmatismì z kai sta dÔo mèlh th exswsh . Jewr¸nta ti ar-
qikè sunj ke mhdenikè , lìgw twn idiot twn th grammikìthta kai th qronik
metatìpish pou èqei o metasqhmatismì z, èqoume thn exswsh,
N
X M
X
ak z kY (z) = bk z k X (z ) (7.5.2)
k=0 k=0
Gnwrzoume
Y (z ) = H (z ) X (z ) (7.5.3)
()
ìpou H z enai o metasqhmatismì z th kroustik apìkrish kai enai h sunrthsh
metafor tou sust mato . àtsi h sunrthsh metafor sust mato to opoo qarak-
thrzetai apì thn exswsh diafor¸n enai
PM
Y (z ) k
H (z ) =
X (z )
= PNk=0 bk z k
(7.5.4)
k=0 ak z
ParathroÔme ìti h sunrthsh metafor enì GQA sust mato enai rht sunrthsh.
H eustjeia kai h aitiatìthta tou sust mato ìpw ja doÔme prosdiorzoun thn
akrib perioq sÔgklish .
Pardeigma 7.5.2 (SÔsthma diakritoÔ qrìnou pr¸th txh )
Na upologiste h sunrthsh metafor kai h kroustik apìkrish tou aitiatoÔ GQA
sust mato diakritoÔ qrìnou pr¸th txh , to opoo ìpw enai gnwstì perigrfetai
apì thn exswsh diafor¸n
y(n) ay(n 1) = bx(n); a kai b jetiko pragmatiko arijmo (7.5.5)
LÔsh Efarmìzoume metasqhmatismì z kai sta dÔo mèlh th exswsh kai lìgw twn
idiot twn th grammikìthta kai th metatìpish tou metasqhmatismoÔ z, èqoume thn
exswsh
Y (z ) az 1Y (z ) = bX (z )
Y (z ) 1 az 1 = X (z )
apì thn opoa brskoume th sunrthsh metafor
Y (z ) b
H (z ) = =1
X (z ) az 1
(7.5.6)
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 265
Upologsame thn algebrik èkfrash th H (z ) kai èqoume dÔo pijanè perioqè sÔgk-
lish , h mia enai h jz j > a kai h llh h jz j < a. Epeid to sÔsthma enai aitiatì h
perioq sÔgklish enai jz j > a.
H kroustik apìkrish tou sust mato enai
h(n) = Z 1 [H (z )℄ = b an u(n) (7.5.7)
Sto Sq ma 7.8 perigrfetai to sÔsthma pr¸th txh diakritoÔ qrìnou ìpw autì èqei
ulopoihje me th bo jeia mia monda kajustèrhsh enì degmato , enì ajroistoÔ
kai dÔo pollaplasiast¸n kai h kroustik tou apìkrish, dhlad , h akolouja exìdou
tou ìtan h esodì tou enai h kroustik akolouja.
x(n)=ä(n) y(n)=h(n)
x(n) b y(n)
z -1
-2 0 2 4 n a -2 0 2 4 n
Sq ma 7.8 H kroustik apìkrish tou sust mato pr¸th txh diakritoÔ qrìnou.
Pardeigma 7.5.3
Na upologiste h sunrthsh metafor kai h kroustik apìkrish tou aitiatoÔ GQA
sust mato diakritoÔ qrìnou, to opoo perigrfetai apì thn exswsh diafor¸n
y(n) a1 y(n 1) + a2y(n 2) = x(n) (7.5.8)
LÔsh Efarmìzoume metasqhmatismì z kai sta dÔo mèlh th exswsh kai lìgw twn
idiot twn th grammikìthta kai th metatìpish tou metasqhmatismoÔ z, èqoume thn
exswsh
Y (z ) + a1 z 1 Y (z ) + a2 z 2 = X (z )
Y (z ) 1 + a1 z 1 + a2 z 2 = X (z )
apì thn opoa brskoume th sunrthsh metafor
Y (z )
H (z ) = = 1 + a1z 11 + a2z 2
X (z )
(7.5.9)
Upologsame thn algebrik èkfrash th H (z ). Epeid to sÔsthma enai aitiatì h
perioq sÔgklish enai jz j > R.
An = 1; 2728 kai a2 = 0; 81 to sÔsthma èqei dÔo suzuge pìlou tou 0; 9ej 4 .
a1
H sunrthsh metafor H (z ) analÔetai se apl klsmata w
H (z ) =
0; 5(1 j ) + 0; 5(1 + j )
1p 0; 6364(1 + j )z 1 1 p0; 6364(1 j )z 1
= 22 e j 4 1 0; 91ej 4 z 1 + 22 ej 4 1 0; 9e1 j 4 z 1 (7.5.10)
266 Metasqhmatismì z Keflaio 7
kai h kroustik apìkrish tou sust mato enai
p p
h(n) =
2 e j
4 0; 9e u(n) + 22 ej 4 0; 9e
j n
4 j 4 n u (n)
p2 h i
= 2(0; 9)n os (n 1) 4 u(n) (7.5.11)
Sto Sq ma 7.9 perigrfetai h perioq sÔgklish oi suzuge migadiko pìloi tou sust -
mato diakritoÔ qrìnou kai h kroustik tou apìkrish h opoa enai ma fjnousa h-
mitonoeid akolouja. To sÔsthma enai eustajè .
ℑm z
Ìïíáäéáßïò
êýêëïò
h(n)
j 4ð
0,9 e
0 1 ℜe z 0 n
j 4ð
0,9 e
Sq ma 7.9 H perioq sÔgklish , oi suzuge migadiko pìloi, to mhdenikì me pollaplìthta
2 kai h kroustik apìkrish tou sust mato diakritoÔ qrìnou sto Pardeigma 7.5.3.
An a1 = 1; 5556 kai a2 = 1; 21 to sÔsthma èqei dÔo suzuge pìlou tou 1; 1ej 4 .
H H (z ) analÔetai se apl klsmata w
H (z ) = 1 0;07778(1
; 5(1 j )
+ + 0; 5(1 + j )
j )z 1 1 0; 7778(1 j )z 1
p p
= 2 e 1 1; 1ej 4 z 1 + 22 ej 4 1 1; 1e1 j 4 z
2 j
4
1
1 (7.5.12)
kai h kroustik apìkrish tou sust mato enai
p p
h(n) =
2 e j
4 1; 1e u(n) + 22 ej 4 1; 1e
j n
4 j 4 n u (n)
p2 h i
= 2(1; 1)n os (n 1) 4 u(n) (7.5.13)
Sto Sq ma 7.10 perigrfetai h perioq sÔgklish oi suzuge migadiko pìloi, to mh-
denikì me pollaplìthta 2 tou sust mato diakritoÔ qrìnou kai h kroustik tou apìkr-
ish h opoa enai ma aÔxousa hmitonoeid akolouja. To sÔsthma enai mh eustajè .
Pardeigma 7.5.4
àstw to aitiatì sÔsthma tou opoou h esodo kai h èxodo ikanopoioÔn th grammik
exswsh diafor¸n
y(n)
1 y(n 1) = x(n) + 1 x(n 1)
2 3 (7.5.14)
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 267
ℑm z
Ìïíáäéáßïò
êýêëïò
j 4ð
1,1 e h(n)
0 1 ℜe z 0 n
j 4ð
1,1 e
Sq ma 7.10 H perioq sÔgklish , oi suzuge migadiko pìloi kai h kroustik apìkrish tou
sust mato diakritoÔ qrìnou sto Pardeigma 7.5.3.
Na upologiste h kroustik apìkrish tou sust mato .
LÔsh Efarmìzoume metasqhmatismì z kai sta dÔo mèlh th exswsh kai lìgw twn
idiot twn th grammikìthta kai th metatìpish tou metasqhmatismoÔ z, èqoume thn
exswsh
Y (z )
1 z 1 Y (z ) = 1
X (z ) + z 1 )
2 3
Y (z ) 1
1 z 1 =
1
X (z ) 1 + z
1 )
2 3
apì thn opoa brskoume thn sunrthsh metafor
Y (z ) 1
H (z ) =
X (z )
= 11 + 11==32zz 1 (7.5.15)
Upologsame thn algebrik èkfrash th H (z ) kai èqoume dÔo pijanè perioqè sÔgk-
lish , h mia enai h jz j > 1=2 kai h llh h jz j < 1=2. Epeid to sÔsthma enai aitiatì
h perioq sÔgklish enai jz j > 1=2.
Epeid o bajmì tou poluwnÔmou tou arijmht enai so me to bajmì tou poluwnÔmou
tou paronomast prèpei na gnei diaresh prin thn anlush se apl klsmata. àtsi
èqoume
H (z ) =
2+5 1
3 3 1 1=2z 1 (7.5.16)
H kroustik apìkrish tou sust mato enai
h(n) = Z 1 [H (z )℄ =
2 Æ(n) + 5 1 n u(n)
3 3 2 (7.5.17)
Oi idiìthte th dexi kai th arister olsjhsh se sunduasmì me thn idiìthta th
sunèlixh dnoun axa sto monìpleuro metasqhmatismì z, giat ma epitrèpoun na lÔ-
noume diaforikè exis¸sei me arqikè sunj ke , kai na upologzoume thn èxodo GQA
susthmtwn, ta opoa den brskontai arqik se hrema, an gnwrzoume thn sunrthsh
268 Metasqhmatismì z Keflaio 7
()
metafor tou sust mato H z kai to metasqhmatismì z tou s mato eisìdou X (z ).
Efarmìzoume ta parapnw sto pardeigma pou akolouje.
Pardeigma 7.5.5
Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo kai h èxodo
sundèontai apì thn exswsh diafor¸n
y(n) 0; 5y(n 1) = x(n) (7.5.18)
Na breje h sunrthsh metafor kai h kroustik apìkrish tou sust mato .
LÔsh Efarmìzoume metasqhmatismì z kai sta dÔo mèrh th exswsh diafor¸n kai
èqoume
Y (z ) 0; 5z 1Y (z ) = X (z ) (7.5.19)
Apì thn opoa brskoume th sunrthsh metafor tou sust mato
H (z ) =
1
1 0; 5z 1 (7.5.20)
me perioq sÔgklish jz j > 0; 5 afoÔ to sÔsthma enai aitiatì. H kroustik apìkrish
tou sust mato upologzetai me antstrofo metasqhmatismì z
h(n) = (0; 5)nu(n) (7.5.21)
An den èqoume arqikè sunj ke tìte h èxodo tou sust mato prosdiorzetai me th
bo jeia tou jewr mato th sunèlixh gnwrzonta th sunrthsh metafor kai to
metasqhmatismì z tou s mato eisìdou.
Pardeigma 7.5.6
Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo kai h èxodo
sundèontai apì thn exswsh diafor¸n
y(n) 0; 5y(n 1) = x(n) (7.5.22)
Na upologiste h èxodo tou sust mato an to s ma eisìdou enai x(n) = u(n) kai to
sÔsthma brsketai se hrema.
LÔsh Sto prohgoÔmeno pardeigma èqei upologiste h sunrthsh metafor tou
sut mato H (z ) = 1 0;15z 1 jz j > 0; 5. O metasqhmatismì z th
me pedo sÔgklish
eisìdou enai X (z ) =
1 1 me pedo sÔgklish jz j > 1. O metasqhma-
akolouja
1 z
tismì z th akolouja exìdou enai
Y (z ) = H (z )X (z ) =
1 1
1 0; 5z 1 1 z 1 (7.5.23)
me perioq sÔgklish thn tom twn dÔo epimèrou perioq¸n sugklsh , dhlad , jz j > 1.
AnalÔoume ton Y (z ) se apl klsmata kai èqoume
Y (z ) =
1 2
1 0; 5z 1 + 1 z 1 (7.5.24)
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 269
kai me antstrofo metasqhmatismì z brsketai h akolouja exìdou tou sust mato .
y(n) = (0; 5)nu(n) + 2u(n) (7.5.25)
y(n)
0 2 4 6 8 10 12 14 n
ìåôáâáôéêÞ Sq ma 7.11 H akolouja exìdou tou
ìüìéìç
êáôÜóôáóç êáôÜóôáóç Probl mato 7.5.6.
Sto Sq ma 7.11 fanetai h èxodo tou sust mato . ParathroÔme ìti n!1 ;
n lim (0 5)
()=0
nn , epomènw h èxodo tou sust mato gia n >> enai h n un. 0 ()=2()
H katstash aut qarakthrzetai w mìnimh katstash (steady-state response). To
disthma tim¸n sto opoo o ìro (0 5) ( )
; n u n den enai perpou so me mhdèn qarak-
thrzetai w metabatik katstash (transient response). H metabatik katstash ek-
tenetai sto disthma 0 7
n kai h mìnimh katstash gia ti timè tou n pou enai
megalÔtere se apì 8.
An èqoume arqikè sunj ke tìte sthn exswsh diafor¸n lìgw th idiìthta th
arister olsjhsh tou metasqhmatismoÔ z sumperilambnoume ti arqikè sunj ke .
Pardeigma 7.5.7
Dnetai to GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo kai h èxodo sundèontai
apì thn exswsh diafor¸n
y(n) 0; 5y(n 1) = x(n) (7.5.26)
Na upologiste h èxodo tou sust mato an to s ma eisìdou enai x(n) = u(n) me
arqik sunj kh y( 1) = 1
LÔsh Efarmìzoume monìpleuro metasqhmatismì z kai sta dÔo mèrh th (7.5.26) kai
èqoume
Y (z ) 0; 5 z 1 Y (z ) + y( 1) = X (z ) (7.5.27)
Y (z ) 0; 5z 1Y (z ) 0; 5 = X (z ) (7.5.28)
LÔnonta thn (7.5.27) w pro Y (z ) èqoume
Y (z ) = 1 01; 5z 1 X (z ) + 1 00;; 55z 1
= H (z)X (z) + 1 00;; 55z 1
= Yo (z ) + Yi (z ) (7.5.29)
270 Metasqhmatismì z Keflaio 7
ìpou
Yo (z ) = H (z )X (z ) = 1 01; 5z 1 1 1z 1
= 1 01; 5z 1 + 1 2z 1 (7.5.30)
enai o metasqhmatismì z th exìdou tou sust mato gia mhdenikè arqikè sunj ke .
O antstrofo metasqhmatismì z dnei
yo (n) = (0; 5)nu(n) + 2u(n) (7.5.31)
kai enai gnwst w apìkrish mhdenik katstash (zero stage response)
kai
Yi (z ) = 0; 5
1
1 0; 5z 1 (7.5.32)
enai o metasqhmatismì z th exìdou tou sust mato o opoo proèrqetai apì ti ar-
qikè sunj ke tou sust mato . H suneisfor tou ìrou sthn èxodo tou sust mato
brsketai me antstrofo metasqhmatismì z kai enai
yi (n) = 0; 5(0; 5)nu(n) (7.5.33)
kai enai gnwst w apìkrish mhdenik eisìdou (zero input response).
H èxodo tou sust mato ja enai
y(n) = yo(n) + yi (n) = (0; 5)nu(n) + 2u(n) + 0; 5(0; 5)nu(n)
= [ 0; 5(0; 5)n + 2℄ u(n) (7.5.34)
7.5.2 Melèth GQA sust mato me th bo jeia metasqhmatismoÔ z
. Apì thn (7.5.4) parathroÔme ìti h sunrthsh metafor sust mato enai rht
sunrthsh. Upenjumzetai ìti oi rze tou arijmht onomzontai mhdenik th H z ()
kai oi rze tou paronomast pìloi th H z . ()
Apì thn perioq sÔgklish kai th jèsh twn pìlwn kai twn mhdenik¸n mporoÔme
na exgoume sumpersmata gia thn eustjeia kai thn aitiatìthta tou sust mato ,
prgmati
àna GQA sÔsthma diakritoÔ qrìnou enai aitiatì an h n gia n < . Sthn( )=0 0
perptwsh aut h perioq sÔgklish tou metasqhmatismoÔ z th kroustik
apìkrish , enai to exwterikì enì kÔklou me aktna R+ sh me to mètro tou
pìlou pou èqei mègisto mètro. Me lla lìgia gia na enai èna sÔsthma diakritoÔ
qrìnou aitiatì prèpei h perioq sÔgklish na enai to exwterikì kÔklou me thn
mikrìterh aktna pou perièqei tou pìlou .
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 271
àna GQA sÔsthma diakritoÔ qrìnou enai eustajè an gia fragmènh esodo,
j ( )j
x n < M1 , kai h èxodo enai fragmènh. Prgmati
1
X 1
X 1
X
jy(n)j = jh(k)x(n k)j M1 jh(k)j < 1 ) jh(k)j < 1
k= 1 k= 1 k= 1
ParathroÔme ìti an to sÔsthma enai eustajè h kroustik apìkrish enai
apolÔtw fragmènh kai ètsi uprqei o metasqhmatismì Fourier th . ra gia na
enai to sÔsthma eustajè prèpei h perioq sÔgklish tou H z na perièqei to ()
monadiao kÔklo, oÔtw ¸ste na sugklnei o metasqhmatismì Fourier tou h n . ()
Gia na enai eustajè kai aitiatì prèpei na isqÔoun kai oi dÔo parapnw sun-
j ke ìloi oi pìloi prèpei na brskontai sto eswterikì tou monadiaou kÔklou.
()
Genikìtera h jèsh twn pìlwn th H z sto eppedo z prosdiorzei th sumperifor
th kroustik apìkrish tou sust mato .
AnaptÔssonta th sunrthsh metafor se apl klsmata kai upojètonta ìti
èqoume aploÔ pìlou 1 ; 2 ; : : : ; ; N èqoume
z z z
H (z ) = C1 + C2 z + : : : + CN z (7.5.35)
z 1 2 N
Apì thn opoa brskoume thn kroustik apìkrish tou sust mato
h(n) = Z 1 [H (z )℄ = (C1 n1 + C2 n2 + : : : CN nN ) u(n) (7.5.36)
An èqoume pragmatikì pìlo , tìte h kroustik apìkrish èqei ti akìlouje
idiìthte
a) 0<1 limn!1(n) = 0
h suneisfor tou ìrou sth h(n) enai ma fjnousa ekjetik akolouja
b) =1 n = 1 gia ìle ti timè tou n
h suneisfor tou ìrou sth h(n) enai h bhmatik akolouja
g) < 1 limn!1(n) = 1
h suneisfor tou ìrou sth h(n) enai ma aÔxousa ekjetik akolouja
d) 1
<< 0 limn!1(n) = 0 kai to n enallssei prìshmo
h suneisfor tou ìrou sth h(n) enai ma fjnousa ekjetik akolouja me ìrou
pou enallsoun prìshmo
e) = 1 n = 1;1; n = 2k
n = 1k + 1
h suneisfor tou ìrou sth h(n) enai h bhmatik akolouja me ìrou pou enal-
lssoun prìshmo
st) < 1 limn!1 jn j = 1 kai to n enallssei prìshmo
h suneisfor tou ìrou sth h(n) enai ma aÔxousa ekjetik akolouja me ìrou
pou enallssoun prìshmo
272 Metasqhmatismì z Keflaio 7
An to polu¸numo tou paronomast èqei dÔo migadikè suzuge rze kai ? h
kroustik apìkrish tou sust mato enai
h(n) = [C + C ? (? )n ℄ u(n)
upojètonta C = jC jej kai = jjej èqoume
h(n) = jC jjjn ej (n+) + jC jjjn e j (n+) u(n)
= 2C jjjn os(n + )u(n)
O ìro os(n + ) enai fragmèno apì to 1. H sÔgklish mh th kroustik
jj
apìkrish tou sust mato ja prosdiorzetai apì ton ìro n . An < h jj 1
kroustik apìkrish apotele fjnousa hmitonoeid seir (blèpe Pardeigma
7.5.3). Sth perptwsh aut to sÔsthma enai eustajè . Antjeta an > h jj 1
kroustik apìkrish apotele aÔxousa hmitonoeid seir kai to sÔsthma enai
astajè . An j j=1 h kroustik apìkrish tou sust mato enai hminonoeid
seir me stajerì plto .
Sto Sq ma 7.12 paristnetai h sumperifor th kroustik apìkroush enì
aitiatoÔ sust mato diakritoÔ qrìnou, ìpw aut prosdiorzetai apì th jèsh twn
pìlwn tou sto migadikì eppedo.
ℑm z
Ìïíáäéáßïò
êýêëïò
ℜe z
Sq ma 7.12 H sumperifor th kroustik tou apìkrish enì sust mato diakritoÔ qrìnou
anloga me th jèsh twn pìlwn th sunrthsh metafor tou sto migadikì eppedo z.
Pardeigma 7.5.8
JewroÔme to sÔsthma diakritoÔ qrìnou, me esodo x(n) kai èxodo y(n), to opoo peri-
grfetai apì thn exswsh
3y(n) 7y(n 1) + 2y(n 2) = 3x(n 2) (7.5.37)
Enìthta 7.5 Efarmogè tou MetasqhmatismoÔ z 273
Na upologiste h kroustik apìkrish tou sust mato gia na enai to sÔsthma a) aitiatì
kai b) eustajè . Mpore na enai to sÔsthma suqrìnw aitiatì kai eustajè ;
LÔsh Efarmìzonta metasqhmatismì z kai sta dÔo mèlh th exswsh èqoume
Z y(n)
7 2
3 y(n 1) + 3 y(n 2) = Z [x(n 2)℄
Y (z ) 1
7z 1 + 2z 2 = z 2X (z )
3 3
kai h sunrthsh metafor tou sust mato enai
Y (z ) 2
H (z ) =
X (z )
= 1 7 zz 1 + 2 z 2
3 3
1
= z2 7 z + 2
3 3
= z 1 1(z 2)
3
AnaptÔssonta thn H (z ) se apl klsmata èqoume
H (z ) = z
C1
+ zC 22
1
3
= 3 1 +3 1
5 z 13 5 z 2 (7.5.38)
(a) Gia na enai to sÔsthma aitiatì prèpei h perioq sÔgklish na enai jz j > 2. àtsi h
kroustik apìkrish tou aitiatoÔ sust mato enai
3 n
1 1
h(n) =
5 3 u(n 1) + 35 (2)n 1 u(n 1) (7.5.39)
ìpou qrhsimopoi jhke to zeugri Mz 5 tou Pnaka 7.2.
(b) Gia na enai to sÔsthma eustajè prèpei h perioq sÔgklish na perièqei to mona-
1 < jz j < 2.
diao kÔklo dhlad na enai
3 àtsi h kroustik apìkrish tou eustajoÔ
sust mato enai
3 n
1 1
h(n) =
5 3 u(n 1) 35 (2)n 1u( n) (7.5.40)
ìpou qrhsimopoi jhkan ta zeugria Mz 5 kai 8 tou Pnaka 7.2.
Parathr sei
H parapnw exswsh diafor¸n den mpore na perigrfei sÔsthma pou na enai
sugqrìnw eustajè kai aitiatì.
Gia thn perptwsh aitiatoÔ sust mato n!1 h n . lim ( )=1
274 Metasqhmatismì z Keflaio 7
SÔnoyh Kefalaou
Sto Keflaio autì orsame to metasqhmatismì z kai to monìpleuro metasqhma-
tismì z, parousisthkan oi idiìthtè tou kai upologsame tou metasqhmatismoÔ z
orismènwn basik¸n shmtwn diakritoÔ qrìnou, ta opoa sunantme sth melèth gram-
mik¸n susthmtwn. Sth sunèqeia prosdiorsame ton antstrofo metasqhmatismì z.
Edame ìti an h morf tou metasqhmatismoÔ z enai apl , tìte mporoÔme na up-
ologsoume ton antstrofo metasqhmatismì z me th bo jeia tou Pnaka 7.2. An o
metasqhmatismì z den èqei apl morf all enai rht sunrthsh, tìte analÔoume
th sunrthsh se apl klsmata kai me th bo jeia twn idiot twn tou metasqhma-
tismoÔ z kai tou Pinka 7.2 upologzoume eÔkola to s ma qwr na katafÔgoume
sthn exswsh antistrof .
Epsh sto Keflaio autì anaptÔxame ti efarmogè tou metasqhmatismoÔ z.
Eidikìtera exetsame th dunatìthta pou èqei o monìpleuro metasqhmatismì z na
epilÔei grammikè exis¸sei diafor¸n me stajeroÔ suntelestè oi opoe den èqoun
mhdenikè arqikè sunj ke . H dunatìthta aut ofeletai sti idiìthte tou monì-
pleurou metasqhmatismoÔ z pou anafèrontai sth dexi kai arister olsjhsh. Sth
sunèqeia parousisthkan oi efarmogè tou metasqhmatismoÔ z se ìti afor th melèth
GQA susthmtwn diakritoÔ qrìnou. Prosdiorsame th sunrthsh metafor tou
sust mato apì thn exswsh diafor¸n pou sqetzei thn èxodo kai thn esodo tou
sust mato , upojètonta ìti oi arqikè sunj ke enai mhdenikè . Epsh me th bo jeia
th exswsh diafor¸n, prosdiorsame to monìpleuro metasqhmatismì z th exìdou
tou sust mato , to opoo mpore na mh brsketai se katstash hrema kai antistrè-
fonta to monìpleuro metasqhmatismì z prosdiorsame thn èxodo tou sust mato .
Tèlo parousisame ta sumpersmata pou exgoume apì thn perioq sÔgklish kai
th jèsh twn pìlwn th sunrthsh metafor tou sust mato sto migadikì eppedo
kai ta opoa aforoÔn sthn eustjeia kai thn aitiìthta tou sust mato diakritoÔ
sust mato kaj¸ kai sth sumperifor th kroustik apìkrish tou sust mato .
7.6 PROBLHMATA
7.1 Dnetai to GQA sÔsthma to opoo qarakthrzetai apì thn exswsh diafor¸n
y(n) = x(n) + x(n 2)
()
Na prosdioriste o sunrthsh metafor tou sust mato H z . Me th bo jeia
()
th H z na upologiste h apìkrish suqnìthta tou sust mato H ( )
. Na
j ( )j
gnoun oi grafikè parastsei tou mètrou H kai th fsh arg ( )
H se
sunrthsh me thn .
Enìthta 7.6 Probl mata 275
7.2 Dnetai to eustajè kai aitiatì sÔsthma, to opoo perigrfetai apì thn exswsh
diafor¸n
y(n) + y(n
1 1) = x(n)
2
1. Na upologiste h apìkrish suqnìthta tou sust mato
2. Na upologiste h apìkrish tou sust mato an to s ma eisìdou enai
x(n) = Æ(n)
1 Æ(n 1)
2
7.3 Aitiatì sÔsthma diakritoÔ qrìnou èqei sunrthsh metafor
z+1
H (z ) = 2
z 0; 9z + 0; 81
1. Na sqediaste to pedo sÔgklish oi pìloi kai ta mhdenik tou sust mato .
2. Na upologiste h apìkrish suqnìthta tou sust mato .
3. Na prosdioriste h exswsh diafor¸n, me stajeroÔ suntelestè , h opoa
qarakthrzei to sÔsthma.
7.4 Dnetai sÔsthma diakritoÔ qrìnou to opoo èqei sunrthsh metafor
1 z 2
H (z ) = jzj > 0; 9
1 0; 81z 2 ;
1. Na upologiste h kroustik apìkrish tou sust mato .
2. Na prosdioriste h èxodo tou sust mato an h esodì tou enai h sunrthsh
monadiaou b mato .
7.5 Dnetai GQA sÔsthma to opoo èqei kroustik apìkrish
n
h(n) =
1 u(n)
3
Na upologiste h èxodo tou sust mato an h esodì tou enai to s ma
n
x(n) =
1 u(n)
2
276 Metasqhmatismì z Keflaio 7
7.6 Na upologiste h aitiat lÔsh th exswsh
y(n)
3 y(n 1) + 1 y(n 2) = x(n); n0
2 2
ìtan n
x(n) =
1 u(n)
4
an y( 1) = 4 kai y( 2) = 10
7.7 àna grammikì qronik anallowto sÔsthma èqei kroustik apìkrish
n
h(n) = 2 1 u(n)
2
1. Na breje h èxodo tou sust mato ìtan to s ma eisìdou enai x(n) =
1 n u n . Oi arqikè sunj ke tou sust mato enai y
() ( 1) = 4 kai
4
y( 2) = 10 .
2. Poio enai to s ma sthn èxodo tou sust mato sth mìnimh katstash;
7.8 Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik apìkrish h(0) = 1,
h(1) = 2 kai h (2) = 1
1. Na upologsete th apìkrish suqnìthta H( ) tou sust mato kai
2. na knete th grafik parastsh tou mètrou th apìkrish suqnìthta tou
sust mato se sunrthsh me th suqnìthta.
7.9 Na breje to s ma diakritoÔ qrìnou, tou opoou o metasqhmatismì z èqei peri-
oq sÔgklish , tou pìlou kai ta mhdenik pou eikonzontai sto Sq ma 7.13.
Im
1 1 1 1 Re
2 2 Sq ma 7.13 Oi pìloi, ta mhdenik kai h perioq
sÔgklish sto Prìblhma 7.9.
7.10 Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou me sunrthsh metafor
1 kz 1
H (z ) = 4
1 + 3z
k 1
Enìthta 7.6 Probl mata 277
1. Gia poie timè tou k to sÔsthma enai eustajè ;
n
2. Gia k= 1 kai s ma eisìdou x(n) = 32 , poia enai h èxodo tou sust -
mato ;
7.11 Gia èna grammikì qronik anallowto sÔsthma dnontai
1. An to s ma eisìdou enai to s ma x (n) = ( 2)n, tìte h èxodo tou sust -
mato enai to s ma y n ( )=0 kai
2. an to s ma eisìdou enai to s ma x(n) = 12 n u(n) tìte h èxodo tou
sust mato enai to s ma y n () = Æ(n) + 41 n u(n), ìpou stajer
posìthta.
1. Na breje h stajer .
2. Na upologiste h sunrthsh metafor tou sust mato , kai
3. na prosdioriste h èxodo tou sust mato ìtan h esodì tou enai to s ma
( )=1
xn .
7.12 Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo x(n) kai
()
h èxodo y n ikanopoioÔn thn exswsh diafor¸n
k
y(n) + y(n
3 1) = x(n) k4 x(n 1)
To opoo brsketai se hrema.
1. Na breje h sunrthsh metafor tou sust mato kai na sqedisete to
digramma twn pìlwn kai mhdenik¸n kai na sqedisete th perioq sÔg-
klis th .
2. Gia poie timè th paramètrou k to sÔsthma enai eustajè ;
3. Na prosdioriste h èxodo tou sust mato an k = 1 kai to s ma eisìdou
enai n
x(n) =
2
3
7.13 àna aitiatì sÔsthma diakritoÔ qrìnou qarakthrzetai apì thn exswsh diafor¸n
1
y(n) = y(n 2) + x(n) x(n 2)
4
ìpou x(n) enai to s ma eisìdou kai y(n) to s ma exìdou. Na upologistoÔn
1. H sunrthsh metafor tou sust mato .
278 Metasqhmatismì z Keflaio 7
2. Na gnei to digramma twn pìlwn kai mhdenik¸n kai h perioq sÔgklish
th sunrthsh metafor tou sust mato
3. H kroustik apìkrish tou sust mato .
4. H èxodo tou sust mato an x(n) = u(n) ìpou u(n) enai h monadiaa
bhmatik akolouja.
To sÔsthma brsketai se hrema.
7.14 Dnetai sÔsthma diakritoÔ qrìnou to opoo èqei sunrthsh metafor
1 z 2
H (z ) = jzj > 0; 9
1 0; 81z 2 ;
1. Na upologiste h kroustik apìkrish tou sust mato .
2. Na prosdioriste h èxodo tou sust mato an h esodì tou enai h sunrthsh
monadiaou b mato .
7.15 An x(n) = an na upologistoÔn oi monìpleuroi metasqhmatismo z
1. X [x(n 2)℄
2. X [x(n + 2)℄
7.16 Na breje h kroustik apìkrish thlepikoinwniakoÔ kanalioÔ sto opoo parousi-
zontai dÔo diadìsei , dhlad , perigrfetai apì thn exswsh diafor¸n,
y(n) = x(n) + ax(n 1)
Gia poie timè th paramètrou a to antstofo sÔsthma enai aitiatì kai eusta-
jè ;
Bibliografa
7.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmtwn
kai Susthmtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
7.2 N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”, Daulo , Aj na, 1994.
7.3 J. G. Proakis, D. G. Manolakis, “Introduction to Digital Signal Processing”,
MacMillan Publishing Company, 1994.
7.4 A. V. Oppenheim, R. W. Schafer, “Digital Signal Processing”, Prentice - Hall Inc.,
N. Y., 1975.
ÐÁÑÁÑÔÇÌÁ Á
ÌÅÑÉÊÁ ÂÁÓÉÊÁ ÓÔÏÉ×ÅÉÁ ÃÉÁ
ÔÏÕÓ ÌÉÃÁÄÉÊÏÕÓ ÁÑÉÈÌÏÕÓ
Sto parrthma autì anafèrontai oi trìpoi parstash enì migadikoÔ arijmoÔ
sto migadikì eppedo kai orzontai merikè basikè ènnoie , ìpw mètro, fsh, prag-
matikì mèro , fantastikì mèro migadikoÔ arijmoÔ kai suzug migadikì arijmì .
A.1 PARASTASH MIGADIKOU ARIJMOU STO MIGADIKO EPIPEDO
Se kartesianè suntetagmène h morf enì migadikoÔ arijmoÔ z dnetai apì thn exsw-
sh
z = x + jy (A.1.1)
ìpou j= p 1 kai x kai y enai pragmatiko arijmo, oi opooi antstoiqa onomzontai
pragmatikì mèro kai fantastikì mèro , tou migadikoÔ arijmoÔ. Sun jw
tm ma
sumbolzoume x = <e[z ℄ kai y = =m[z ℄. O migadikì arijmì z mpore epsh na
parastaje se polikè suntetagmène apì thn exswsh
z = r ej (A.1.2)
ìpou r > 0enai to mètro tou migadikoÔ arijmoÔ z , to mètro sumbolzetai kai me
jj
z kai enai h gwna h fsh tou migadikoÔ arijmoÔ z ( = argz =\)
z.
Sto Sq ma A.1 uprqei h parstash enì migadikoÔ arijmoÔ sto migadikì eppedo.
H sqèsh metaxÔ twn dÔo aut¸n ekfrsewn twn migadik¸n arijm¸n aporrèei apì th
sqèsh tou Euler
ej = os + j sin (A.1.3)
apì thn sqedash tou z sto migadikì eppedo, Sq ma A.1. ParathroÔme ìti
x=r os kai y = r sin (A.1.4)
280 Merik Basik Stoiqea gia tou MigadikoÔ ArijmoÔ . Parrthma A
ℑm z
y Á
r
è Sq ma A.1 Parstash enì migadikoÔ arijmoÔ
0 x ℜe z sto migadikì eppedo.
ìpou
p
r = x2 + y 2 ! !
y
= sin 1 p = os 1 p x = tan 1 y (A.1.5)
x + y2
2 x2 + y 2 x
Me th bo jeia th sqèsh tou Euler èqoume
os = 12 ej + e j
ej = os + j sin
sin = 21j ej e j
e j = os j sin (A.1.6)
A.2 SUZUGHS MIGADIKOS ARIJMOS - IDIOTHTES
An z = + = ej enai èna
x jy r migadikì arijmì tìte o suzug migadikì tou z
pou sumbolzetai w z ? , dnetai apì th sqèsh
z ? = x jy = r e j (A.2.1)
Gia dÔo suzuge migadikoÔ arijmoÔ èqoume ti idiìthte
1. An èna migadikì arijmì enai so me to suzug tou migadikì arijmì, tìte to
fantastikì tou mèro enai so me mhdèn, dhlad o arijmì enai pragmatikì ,
prgmati
z = z ? ) x + jy = x jy ) y = 0
2. To tetrgwno tou mètrou migadikoÔ arijmoÔ enai so me to ginìmeno tou mi-
gadikoÔ arijmoÔ ep to suzug tou migadikì arijmì, prgmati
z z ? = r ej r e j = r2
3. To pragmatikì mèro enì migadikoÔ arijmoÔ enai so me to hmijroisma tou
migadikoÔ arijmoÔ kai tou suzug tou migadikoÔ arijmoÔ, prgmati
z + z?
z + z ? = x + jy + x jy = 2x kai <e[z ℄ =
2
Enìthta A.2 Suzug migadikì arijmì - Idiìthte 281
4. To fantastikì mèro enì migadikoÔ arijmoÔ enai so me thn hmidiafor tou
suzugoÔ migadikoÔ arijmoÔ tou apì to migadikì arijmì diairoÔmenh me j , prg-
mati
z z?
z z ? = x + jy x + jy = 2jy kai =m[z ℄ =
2j
Pardeigma A.1
Na ekfraste o migadikoÔ arijmì z = 4+3
2 j
j se polik morf kai na parastaje sto
migadikì eppedo.
LÔsh Pollaplasizoume arijmht kai paronomast me to suzug tou paronomast ,
ètsi èqoume
z=
4 + 3j = (4 + 3j )(2 + j ) = 8 + 4j + 6j 3 = 5 + 10j = 1 + 2j
2 j (2 j )(2 + j ) 4+1 5
Sto Sq ma A.2 blèpoume th parstash tou migadikoÔ arijmoÔ sto migadikì eppedo.
ℑm z
y=2 Á
Sq ma A.2 H grafik parstash tou migadikoÔ
0 x=1 ℜe z arijmoÔ sto Pardeigma A.1.
Pardeigma A.2
p
Na ekfraste o migadikì arijmì z= 3 + j se polik morf kai na parastaje sto
migadikì eppedo.
LÔsh Me th bo jeia twn sqèsewn (A.1.5) upologzetai to mètro tou migadikoÔ arijmoÔ
p
r= 3+1=2
kai h fsh tou
p
tan = p13 = 33 ) = 6
ètsi h polik morf tou migadikoÔ arijmoÔ enai
z = 2 ej 6
Sto Sq ma A.3 uprqei h parstash tou migadikoÔ arijmoÔ sto migadikì eppedo
282 Merik Basik Stoiqea gia tou MigadikoÔ ArijmoÔ . Parrthma A
ℑm z
Á
r=2
è= 6ð
Sq ma A.3 H grafik parstash tou migadikoÔ
0 ℜe z arijmoÔ sto Pardeigma A.2.
A.3 PROBLHMATA
A.1 Na ekfraste kje èna apì tou migadikoÔ se kartesian morf kai na paras-
taje sto migadikì eppedo sto opoo na fanetai to pragmatikì kai to fan-
tastikì tm ma kje arijmoÔ.
p 6 ej 4 3
z1 = 2 ej 4 z2 = 3 ej4 +2 ej5 z3 =
1 j z4 = 2j ej 94
A.2 Na ekfraste kje èna apì tou paraktw migadikoÔ arijmoÔ se polik mor-
f kai na parastajoÔn sto migadikì eppedo ìpou na fanetai to mètro kai h
fsh kje arijmoÔ.
p p p
z1 = 3 z2 = (1 j )4 z3 =
3 + j3
3+j
2
z4 =
3 +pj
1+j 3
ÐÁÑÁÑÔÇÌÁ B
ÁÍÁÐÔÕÎÇ ÑÇÔÇÓ ÓÕÍÁÑÔÇÓÇÓ
ÓÅ ÁÐËÁ ÊËÁÓÌÁÔÁ
O basikì skopì tou parart mato enai na parousisei ton trìpo anlush
mia rht sunrthsh , dhlad , mia sunrthsh h opoa mpore na ekfraste w
lìgo dÔo poluwnÔmwn th metablht , se jroisma apl¸n klasmtwn.
()
àstw h rht sunrthsh f x h opoa èqei th morf
f (x) =
N (x)
= bamxxn ++ abm
m
1 xm 1 + : : : + b1 x + b0
D(x) n n 1 xn 1 + : : : + a1 x + a0
Ja exetsoume pr¸ta thn perptwsh sthn opoa o bajmì tou arijmht , m, enai
( )
mikrìtero tou bajmoÔ tou paronomast , n m < n kai sth sunèqeia ja exetsoume
thn perptwsh pou o bajmì tou arijmht enai megalÔtero so tou bajmoÔ tou
paronomast .
B.1 O BAJMOS TOU N (x) EINAI MIKROTEROS TOU BAJMOU TOU
D(x).
()
ätan o bajmì tou polu¸numou tou arijmht N x , enai mikrìtero tou bajmoÔ tou
()
poluwnÔmou tou paronomast D x , dhlad enai m < n, analÔoume ton paronomas-
t se ginìmeno paragìntwn
n
Y
D(x) = (x i ) (B.1.1)
i=1
ìpou 1 ; 2 ; : : : ; n oi rze tou D(x). Anloga me th fÔsh twn riz¸n diakrnoume
ti peript¸sei :
B.1.1 Rze diakekrimène kai pragmatikè
A jewr soume ìti o bajmì tou paronomast enai 2, opìte h sunrthsh f (x) grfe-
tai diadoqik
b x + b0 b1 x + b0
f (x) = 2 1
x + a1 x + a0
= (x 1 )(x 2 )
= x C11 + x C22 (B.1.2)
284 Anptuxh rht sunrthsh se apl klsmata. Parrthma B
To prìblhma enai na upologsoume ti stajerè C1 kai C2 . Knonta apaloif
paronomast¸n èqoume diadoqik:
b1 x + b0 = C1 (x 2 ) + C2 (x 1 ) = (C1 + C2 )x (C12 + C21 )
apì thn opoa èqoume to sÔsthma twn dÔo exis¸sewn
C1 + C2 = b1
C1 2 + C2 1 = b0
H lÔsh tou sust mato dnei ti timè twn stajer¸n C1 kai C2
b1 1 + b0
C1 = 1 2
b1 2 + b0
C2 = 2 1
(B.1.3)
An kai o trìpo autì isqÔei pnta, uprqei mia pio eÔkolh mèjodo . An jèloume na
upologsoume th stajer C1 pollaplasizoume thn (B.1.2) me x 1 kai èqoume
x 1
(x 1 )f (x) = C1 + C2
x 2
(B.1.4)
AfoÔ oi rze 1 kai 2 enai diakritè , o deÔtero ìro tou dexioÔ mèlou th (B.1.4)
enai so me mhdèn gia x = 1 , ètsi èqoume
b +b
C1 = (x 1 )f (x)jx=1 = 1 1 0 (B.1.5)
1 2
ìmoia brskoume kai
b +b
C2 = (x 2 )f (x)jx=2 = 1 2 0 (B.1.6)
2 1
Oi dÔo auto trìpoi genikeÔontai, an o bajmì tou paronomast enai n, kai èqoume
C1 C2
f (x) = +
x 1 x 2
+ : : : + x Cnn (B.1.7)
kai oi stajerè upologzontai apì ton tÔpo
Ck = (x k )f (x)jx=k ; k = 1; 2; : : : ; n (B.1.8)
Enìthta B.1 O bajmì tou N (x) enai mikrìtero tou bajmoÔ tou D(x) . 285
B.1.2 Rze pollaplè kai pragmatikè
A upojèsoume ìti o paronomast èqei ma dipl pragmatik rza, thn 1 , kai ma
()
apl pragmatik rza, thn 2 , tìte h sunrthsh f x grfetai:
b x2 + b1 x + b0
f (x) = 2
(x 1)2 (x 2 ) (B.1.9)
Sthn perptwsh aut anazhtoÔme èna anptugma th morf :
C11
f (x) =
(x + C12 + C21
1 ) (x 1 )2 (x 2 )
(B.1.10)
Gia na upologsoume tou suntelestè C11 , C12 kai C21 mporoÔme kai ed¸ na knoume
apaloif paronomast¸n na exis¸soume tou suntelestè twn omobjmiwn ìrwn kai
na lÔsoume to sÔsthma. Uprqei ìmw kai giaut thn perptwsh èna aploÔstero
trìpo .
Pollaplasizoume thn (B.1.10) me x 1 2 kai èqoume:
( )
C (x 1 )2
(x 1 )2 f (x) = C11 (x 1 ) + C12 + 21
(x 2 ) (B.1.11)
Apì thn (B.1.11) upologzoume thn C12 me th sqèsh:
b 2 + b + b
C12 = (x 1 )2 f (x) x=1 = 2 1 1 1 0 (B.1.12)
1 2
Gia na upologsoume to C11 diaforzoume thn (B.1.11) w pro x kai èqoume:
d
(
x 1 )2 f (x) = C11 + C21
2(x 1)(x 2) (x 1 )2
dx
(x 2)2
2
= C11 + C21 2((xx 21)) 2((xx 21))2 (B.1.13)
o teleutao ìro th (B.1.13) enai so me mhdèn gia x = 1 ètsi èqoume:
d
C11 =
dx
(x 1 )2 f (x)
x=1
2
= 2b2 1 + b1 b2(1+ b11)+2 b0 (B.1.14)
1 2 1 2
O suntelest C21 upologzetai apì th gnwst sqèsh:
C21 = (x 2 )f (x)jx=2
2
= b2(2+2 b112)+2 b0 (B.1.15)
286 Anptuxh rht sunrthsh se apl klsmata. Parrthma B
Genik, an to polu¸numo tou paronomast èqei th rza 1 me pollaplìthta r kai n r
aplè rze 2 ; 3 ; : : : ; n r+1 tìte o paronomast analÔetai
r+1
nY
D(x) = (x 1 )r (x i ) (B.1.16)
i=2
ètsi sunrthsh f (x) analÔetai se apl klsmata w
C11 C12 C1r C21 C(n r)1
f (x) = + + + + + +
(x 1) (x 1 ) 2 (x 1) (x 2 )
r (x n r ) (B.1.17)
kai oi suntelestè C1i ; i = 1; 2; : : : ; r upologzontai apì thn:
C1i =
1 dr i [(x 1)r f (x)℄
(r i)! dxr i x=i
(B.1.18)
oi upìloipe stajerè Cki ; 4 = 2; 3; : : : ; n r upologzontai me thn (B.1.8).
B.1.3 Ìparxh migadik¸n riz¸n
An to polu¸numo D(x) èqei èna zeÔgo suzug¸n migadik¸n riz¸n 1 = + j! kai
2 = 1 =
? ()
j!, tìte h sunrthsh f x analÔetai w :
C1 C2
f (x) = +
x 1 x ?1
+ (x C3 )r + + x Cn (B.1.19)
3 n
äloi oi suntelestè upologzontai apì thn sqèsh:
Ck = (x k )f (x)jx=k ; k = 1; 2; : : : ; n (B.1.20)
shmei¸netai ìti oi suntelestè C1 kai C2 enai suzuge migadiko (C2
C1? . Se = )
perptwsh pou oi rze emfanzontai me kpoia pollaplìthta, akoloujetai h pro-
hgoÔmenh mejodologa.
B.2 O BAJMOS TOU N (x) EINAI MEGALUTEROS H ISOS TOU BA-
JMOU TOU D(x)
()
An o bajmì tou polu¸numou tou arijmht N x , enai megalÔtero so tou bajmoÔ
()
tou polu¸numou tou paronomast D x , dhlad , m
n, knoume th diaresh kai h
()
sunrthsh f x grfetai:
N (x) g(x)
f (x) = = ( x) +
D(x) D(x)
(B.2.1)
Epeid o bajmì tou poluwnÔmou g (x) enai mikrìtero apì to bajmì tou D (x), o ìro
g(x)
D(x) sthn (B.2.1) analÔetai se apl klsmata ìpw se kpoia apì ti peript¸sei
pou perigryame.
ÐÁÑÁÑÔÇÌÁ Ã
×ÑÇÓÉÌÏÉ ÌÁÈÇÌÁÔÉÊÏÉ ÔÕÐÏÉ
O basikì skopì tou parart mato enai na parousisei qr sime sqèsei apì
ta majhmatik.
G.1 Trigwnometra.
Gia to orjog¸nio trgwno tou sq mato isqÔoun oi sqèsei
sin = yr (G.1.1)
os = xr (G.1.2)
r
tan = xy = sin
y
os (G.1.3) è
x
2 2
sin + os = 1 (G.1.4) To orjog¸nio trgwno.
os 2 = sin (G.1.5)
sin 2 = os (G.1.6)
Sth sunèqeia parousizontai trigonwmetrikè tautìthte
sin( ) = sin os os sin (G.1.7)
os( ) = os os sin sin (G.1.8)
2sin sin = os( ) os( + ') (G.1.9)
2 os os = os( ) + os( + ') (G.1.10)
2sin os = sin( ) + sin( + ') (G.1.11)
os2 = 12 (1 + os 2) (G.1.12)
288 Qr simoi Majhmatiko TÔpoi. Parrthma G
sin2 = 21 (1 os 2) (G.1.13)
os(2) = os2 sin2
= 2 os2 1
= 1 2sin2 (G.1.14)
4 os3 = 3 os + os(3) (G.1.15)
4sin3 = 3sin sin(3) (G.1.16)
a os b sin = A os( + ) (G.1.17)
ìpou p
A = a2 + b2
= tan 1 (b=a)
a = A os
b = A sin
G.2 Aìrista oloklhr¸mata.
G.2.1 Rht¸n alebrik¸n sunart sewn
Z
xn dx =
1 xn+1; n 6= 1
n+1
(G.2.1)
Z
dx
= 1 ln ja + bxj
a + bx b
(G.2.2)
n+1
(a + bx)n dx = (ab+(nbx+)1) ; n > 0
Z
(G.2.3)
Z
dx 1
(a + bx) (n 1)b(a + bx)n 1 ; n > 1
n = (G.2.4)
Z
dx
= 1 tan 1 bx
a +b x
2 2 2 (G.2.5)
ab a
= 1 ln(a2 + x2)
Z
xdx
a2 + x2 2
(G.2.6)
x2 dx
Z x
=x a tan 1
a2 + x2
(G.2.7)
a
Enìthta G.2 Aìrista oloklhr¸mata 289
G.2.2 Trigwnometrik¸n sunart sewn
os( x) dx = 1 sin( x)
Z
(G.2.8)
os( x) dx = 1 [ os( x) + x sin( x)℄
Z
x 2 (G.2.9)
Z
x2 os x dx = 2x os x + (x2 2)sin x (G.2.10)
sin( x) dx = 1 os( x)
Z
(G.2.11)
Z
x sin( x) dx = 2 [sin( x) + x
1 os( x)℄ (G.2.12)
Z
x2 sin x dx = 2x sin x (x2 2) os x (G.2.13)
G.2.3 Ekjetik¸n sunart sewn
Z
eax dx = eax
1 (G.2.14)
a
x 1
Z
xe dx = e
ax ax
a a2
(G.2.15)
Z
eax
eax sin( x) dx = 2 2 [a sin( x) os( x)℄
a +
(G.2.16)
Z
eax
eax os( x) dx = 2 2 [a os( x) + sin( x)℄
a +
(G.2.17)
G.2.4 Orismèna oloklhr¸mata
Z 1
x=22 dx p
e = 2; >0 (G.2.18)
1
Z 1 p
x2 e x=22 dx = 3 2; >0 (G.2.19)
1
Z 1 p b2
e a2 x+ bx dx = a
e 4a2 ; a > 0 (G.2.20)
1
Z 1 Z 1 sin x
sin (x) dx = x
dx =
2 (G.2.21)
0 Z
0
1
sin 2 (x) dx = 2 (G.2.22)
0
290 Qr simoi Majhmatiko TÔpoi. Parrthma G
G.3 Gewmetrikè seirè
N
X N (N + 1)
n=
n=1 2 (G.3.1)
XN
N (N + 1)(2N + 1)
n2 =
n=1
6 (G.3.2)
XN
N 2 (N + 1)2
n3 =
n=1
4 (G.3.3)
(
NX1 1 xN ; x 6= 1
xn = 1 x
N; x=1
(G.3.4)
n=0
m (
X
xn =
xk xm+1 ;
1 x x 6= 1
m k + 1; x = 1
(G.3.5)
n=k
1
X 1
xn = ; jxj < 1
n=0
1 x
(G.3.6)
1
X xk
xn = ; jxj < 1
n=k
1 x
(G.3.7)
1
X x
nxn =
n=k
(1 x)2 ; jxj < 1 (G.3.8)
XN
ej (+n) =
sin[(N + 1)=2℄ ej[+(N=2)℄
n=0 sin(=2) (G.3.9)
x2 x 3 1 xn
X
ex = 1 + x +
2! 3! + =
+
n=0
n!
(G.3.10)
ÅõñåôÞñéï
jroisma th sunèlixh , 51 Grafikì prosdiorismì th Jemeli¸dh analogik
Ajroist , 32 sunèlixh , 47 perodo , 11
Aitiatì s ma, 4 suqnìthta, 11
Aitiatì sÔsthma, 37 Decibel, 125 kuklik suqnìthta, 11
Aitiokratikì s ma, 7 Deigmatolhya, 2 Jemeli¸dh yhfiak kuklik
Akolouja eterosusqètish , 249 perodo deigmatolhya , 2 suqnìthta, 14
Akolouja susqètish , 249 Dexiìpleurh akolouja, 244 Je¸rhma Parseval, 99
Amfpleurh akolouja, 242 Dexiìpleurh s ma, 209 Je¸rhma th sunèlixh tou ML,
Amfpleuro s ma, 207
Diagrmmata Bode, 125 211
Amfpleuro metasqhmatismì
Diakritì Fsma, 79, 74 Je¸rhma th sunèlixh tou MF, 97
Diakritì metasqhmatismì
Laplace, 200
Amfpleuro metasqhmatismì z, Fourier, 171 Idanikì katwperatì fltro, 128
Diamìrfwsh, 95, 135
234 Idanikì fltro basik z¸nh , 128
Diamorfwt , 61
Anklash, 8 Idiìthte susthmtwn, 37
Distash dianusmatikoÔ q¸rou, 64
Analogoyhfiakì metatropèa , 33 Idiìthte th sunèlixh , 45
Diat rhsh th suqnìthta , 55, 57
Analutik sunrthsh, 204 antimetajetik , 45
Diaforik exswsh
Anptugma Fourier, 69 epimeristik , 46
deÔterh txh , 35
Antistrof sust mato , 35 proseteristik , 46
me stajeroÔ suntelestè , 34
Antstrofo diakritì tautotik , 46
pr¸th txh , 34
metasqhmatismì Fourier, 171 Idiìthte tou ML, 209, 217
Diaforist , 41
Apìkrish isqÔo , 113 Idiìthte tou MF, 151, 176
Duðsmì , 105
Apìkrish mhdenik eisìdou, 270 Idiìthte tou Mz, 245, 251
Dunamikì sÔsthma, 39
Apìkrish mhdenik eisìdou, 270 IsqÔ s mato , 7
Apìkrish mhdenik katstash ,
Euler sqèsh, 279
270 Kajustèrhsh, 249
Esodo sust mato , 32
Apìkrish monadiaou degmato , 51 Katstash hrema , 37
Ekjetik seir Fourier, 69
Apìkrish pltou , 55 Kbntish, 2
Enèrgeia s mato , 6
Apìkrish suqnìthta sust mato , Kentrikì lobì , 115
Energeiakì s ma, 6
55, 57
Exswsh anlush , 69, ,139, 145
Krit rio Nyquist, 168
Apìkrish fsh , 55 Kroustik akolouja, 26
Exswsh sÔnjesh , 70, 139, 145
Aristerìplerh akolouja, 244 Kroustik apìkrish sust mato ,
àxodo sust mato , 32
Aristerìpleuro s ma, 208 44, 51
Eswterikì ginìmeno
Armonik susqetizìmena ekjetik Kroustik sunrthsh, 19
dianusmtwn, 65
s mata Kuklik anklash akolouja , 173
shmtwn, 66
diakritoÔ qrìnou, 137 Kuklik olsjhsh akolouja , 174
Eukledio q¸ro shmtwn, 66
suneqoÔ qrìnou, 67, 68 Eustajè sÔsthma, 40 Kuklik sunèlixh akolouji¸n, 175
Armonik sunist¸sa fsmato , 70 Efarmogè twn MF, 119 Kuklik suqnìthta, 4
rtio s ma, 5 Efarmogè twn ML, 219 Kuklik suqnìthta -3 dB, 127
Efarmogè twn Mz, 262 Kwdikopohsh, 3
L2
Perittì s ma, 5
Bajmwtì pollaplasiast , 32 Z¸nh -mètro
apokop , 128
Grammik sunèlixh, 51, 177 dièleush , 128 Meikt sÔndesh susthmtwn, 35
Grammikì sÔsthma, 37 metbash , 130 Metabatik katstash, 269
Grammikì fsma, 83 Mèsh tim s mato , 70
292 Euret rio
Mèsh qronik sunrthsh deigmatolhya , 164 analutik , 204
autosusqètish , 113 jemeli¸dh , 3 autosusqètish , 99, 111, 250
Metasqhmatismì Fourier, 55, 57, Perioq sÔgklish , 200, 251 deigmatolhya , 93
88, 145, 171 Perittì s ma, 5 klsh , 25
Metasqhmatismì Laplace, 54, 200, Pollaplasiast , 32 monadiaou b mato , 18
Metasqhmatismì z, 57, 234 Pìlo sunrthsh , 204 pros mou, 25
Mètro Poluwnumikì ekjetikì s ma, 205 Sunrthsh dèlta kroustik
dianÔsmato , 65 Pragmatikì ekjetikì s ma, 11 Dirac, 19
migadikoÔ arijmoÔ, 279 Pragmatikì mèro migadikoÔ idiìthta olsjhsh , 20
s mato , 66 arijmoÔ, 279 Sunrthsh metafor sust mato ,
Mhdenikì sunrthsh , 204 54, 50, 57
M ko dianÔsmato , 65 Rht sunrthsh, 121, 204 Sundèsei susthmtwn, 35
Migadikì ekjetikì s ma me anatrofodìthsh me
diakritoÔ qrìnou, 14 Seir Fourier diakritoÔ qrìnou, andrash, 35
suneqoÔ qrìnou, 10 139, meikt , 35
Monadiaa bhmatik akolouja, 26 Seiriak sÔndesh susthmtwn, 35 parllhlh, 35
Monadiao b ma diakritoÔ qrìnou, S ma, 1 seiriak , 35
26 aitiatì, 4 Sunèlixh, 44, 51
Monadiao degma, 26 aitiokratikì, 7 Suneqè fsma, 145
Monadiao kÔklo , 235 analogikì, 2 Suneq sunist¸sa fsmato , 70
Mìnimh katstash, 269 peirh dirkeia , 5 Sunj ke Dirichlet, 74
Monodistato s ma, 1 apl suqnìthta , 12 Suntelestè Fourier, 70, 139
Monìpleuro Metasqhmatismì rtio, 5 Suntelest
Laplace, 216 diakritoÔ qrìnou, 2 susqètish , 249
Monìpleuro Metasqhmatismì z, didistato, 1 autosusqètish , 250
234 enèrgeia , 7 SÔsthma, 32
ekjetik txh , 208 aitiatì, 37
Nomoteleiakì s ma, 7 isqÔo , 7 aitiokratikì, 32
monodistato, 1 analogikì, 32
Olokl rwma th sunèlixh , 44 nomoteleiakì, 7 antistrèyimo, 38
Oloklhrwt , 61 periodikì, 3 grammikì, 37
Orjog¸nia perittì, 5 diamìrfwsh , 61
dianÔsmata, 65 peperasmènh dirkeia , 5 deÔterh txh , 35, 122
s mata, 66 peperasmèno, 5 diakritoÔ qrìnou, 28
Orjog¸nio sÔnolo shmtwn, 137 poludistato, 1 diafìrish , 41
Orjog¸nio palmì , 24 stoqastikì,7 eustajè , 40
Orjokanonik bsh shmtwn, 66 suneqoÔ qrìnou, 2 kajustèrhsh , 32
Orjokanonikì sÔnolo dianusmtwn, tuqao, 7 me mn mh, 39
65 uyhl¸n suqnot twn, 72 mèsh tim , 38, 45, 62
fjnwn hmitonoeidè , 13 ma eisìdou mia exìdou, 32
Palmì qamhl¸n suqnot twn, 72 olokl rwsh , 61
orjog¸nio , 24 yhfiakì, 3 pl rou anìrjwsh , 60
trigwnikì ,24 Shmeo -3dB, 114 poll¸n eisìdwn mia exìdou, 32
Palmokwdik diamìrfwsh, 3 Shmeo anwmala sunrthsh , 204 poll¸n eisìdwn poll¸n exìdwn,
ParajÔrwsh, 174 Stajer apìsbesh sust mato , 34 32
Parllhlh sÔndesh susthmtwn, Stajer elathrou, 34 pr¸th txh , 34, 121, 188
31 Stajer sunist¸sa fsmato , 70 stoqastikì, 32
Parembol , 154 Perittì s ma, 5 suneqoÔ qrìnou, 32
Peperasmèno s ma, 5 Stajer qrìnou, 126 qronik anallowto, 39
Peribllousa, 13 Stoqastikì s ma, 7 qwr mn mh, 34
Periodikì s ma, 3 Stoqastikì sÔsthma, 32 ubridikì, 33
Periodik sunèlixh, 157 Suzug migadikì arijmì , 280 Suqnìthta -3 dB,
Perodo , 3 Sunrthsh Suqnìthta Nyquist, 168
Euret rio 293
Suqnìthta apokop , 128 Fsh migadikoÔ arijmoÔ, 279 zwnodiabatì, 130
Suqnìthta deigmatolhya , 164 Fsma s mato , 70 zwnofraktikì, 130
Sqèsh metaxÔ ML kai MF, 201 diakritì, 88 katwperatì, 128
Sqèsh tou Euler, 279 suneqè , 88, 145 uyiperatì, 130
Fsma suqnot twn, 104 apìrriyh suqnìthta , 130
Txh sust mato , 34
Fasmatik mhdenik, 90
Tautìthta Parseval, 77 Fasmatikè grammè , 70, 139 Qronik anallowto sÔsthma, 39
Tmhmatik omalè sunart sei , 74
Fasmatik puknìthta enèrgeia , Qronik
Trigwnikì palmì , 24
100 diastol , 8
Trigwnometrik seir Fourier, 70 Fasmatik puknìthta isqÔo , 113 sustol , 9
Tuqao s ma, 7
Fasmatik puknìthta pltou , 88 Qronik metatìpish, 9
Fèrousa suqnìthta, 96, 135 Qronik stajer, 126
Ubridikì sÔsthma, 33
Fjnonta hmitonoeid s mata, 13 Q¸ro shmtwn, 66
Ìparxh MF, 72
FEFE eustajè sÔsthma, 40
Fltro, 128 Yhfiakì s ma, 2
Fainìmeno Gibbs, 82, 90
bajuperatì, 130 Yhfiak kuklik suqnìthta, 14
Fantastikì mèro migadikoÔ
basik z¸nh , 128, 130 Yhfioanalogikì metatropèa , 33
arijmoÔ, 279