DOKK Library

Σήματα και Συστήματα

Authors Σεραφείμ Καραμπογιάς

License CC-BY-NC-ND-3.0

Plaintext
               ÓÅÑÁÖÅÉÌ ÊÁÑÁÌÐÏÃÉÁÓ
               ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ




                 ΣΗΜΑΤΑ
                 ÓÇÌÁÔÁ
                    ÊÁÉ
                   ΚΑΙ
                ÓÕÓÔÇÌÁÔÁ
               ΣΥΣΤΗΜΑΤΑ

õåéó(t)                                                õåî(t)
                                                                     Ät
   A                                                     B
                               R
                     õåéó(t)       i(t)       õåî(t)
                                          C
          T0     t                                              T0        t
  -A
   ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ
      Επίκουρος Καθηγητής




Σήματα και Συστήματα
                                   Σήματα και Συστήματα




                                             Συγγραφή
                                        Σεραφείμ Καραμπογιάς




                                      Κριτικός αναγνώστης
                                          Στέφανος Κόλλιας




                                      ISBN: 978-960-603-327-8



                                       Copyright © ΣΕΑΒ, 2015




Το παρόν έργο αδειοδοτείται υπό τους όρους της άδειας Creative Commons Αναφορά Δημιουργού - Μη Εμπορική
    Χρήση - Όχι Παράγωγα Έργα 3.0. Για να δείτε ένα αντίγραφο της άδειας αυτής επισκεφτείτε τον ιστότοπο
                             https://creativecommons.org/licenses/by-nc-nd/3.0/gr/




                 ΣΥΝΔΕΣΜΟΣ ΕΛΛΗΝΙΚΩΝ ΑΚΑΔΗΜΑΪΚΩΝ ΒΙΒΛΙΟΘΗΚΩΝ
                                    Εθνικό Μετσόβιο Πολυτεχνείο
                              Ηρώων Πολυτεχνείου 9, 15780 Ζωγράφου
                                          www.kallipos.gr
                                                             ÐÑÏËÏÃÏÓ




    To biblo autì apeujÔnetai se esˆ pou parakoloujete Tm mata Plhroforik
kai Thlepikoinwni¸n kai apotele katastˆlagma th empeira apì th didaskala tou
maj mato S mata kai Sust mata gia arketˆ qrìnia.
    Sth shmerin epoq th Koinwna th Plhrofora , pou qarakthrzetai apì th
sÔgklish kai enopohsh diaforetik¸n mèqri t¸ra episthmonik¸n perioq¸n, to pedo
twn shmˆtwn kai twn susthmˆtwn apotele plèon èna eniao sÔnolo basik¸n kai
jemeliwd¸n gn¸sewn gia èna eurÔ fˆsma perioq¸n pou sqetzontai me ton èna ˆl-
lo trìpo me thn paragwg , thn epexergasa, thn apoj keush kai th metˆdosh th
plhrofora .
    Basikì skopì tou biblou enai na eisagˆgei ton anagn¸sth sti basikè teqnikè
anˆlush kai melèth twn shmˆtwn kai susthmˆtwn me eniao trìpo kai na tou pro-
sfèrei ta katˆllhla majhmatikˆ ergalea, me ta opoa mpore na qeiriste ta s mata
kai ta sust mata. àqei katablhje prospˆjeia na dojoÔn oi jewrhtikè ènnoie me
aplì trìpo kai na sundejoÔn me antstoiqe ènnoie th fusik . H epilog twn
paradeigmˆtwn ègine me gn¸mona th qrhsimìthtˆ tou ¸ste na bohjoÔn ton anagn¸sth
na emped¸sei th jewra kai na katano sei ti teqnikè prosèggish kai antimet¸pish
twn problhmˆtwn.
    Oi basikè jematikè enìthte tou Maj mato S mata kai Sust mata anaptÔs-
sontai se Eptˆ kefˆlaia.


Episkìphsh tou Biblou


     Sto Kefˆlaio 1 dnetai mia genik eikìna tou ti enai s ma kai parousiˆzontai oi
idiìthte twn shmˆtwn. Epsh orzontai merikˆ stoiqei¸dh s mata, ta opoa pazoun
idiatero rìlo sth jewra twn shmˆtwn.
    Sto Kefˆlaio 2 dnetai o orismì tou sust mato , parousiˆzontai oi kathgore
susthmˆtwn, oi trìpoi sÔndes tou kai merikè basikè idiìthtè tou . To kefˆlaio
autì odhge ton anagn¸sth sthn katanìhsh jemeliwd¸n sqèsewn, ìpw h sqèsh pou
sundèei to s ma eisìdou kai to s ma exìdou enì sust mato , kai basik¸n ennoi¸n,
ii                                                                       Prìlogo




ìpw oi ènnoie th grammikìthta , th eustˆjeia kai th aitiìthta .
    Sto Kefˆlaio 3 perigrˆfetai h mèjodo anˆlush enì analogikoÔ s mato katˆ
Fourier, dhlad w upèrjesh stoiqeiwd¸n hmitonoeid¸n shmˆtwn kai eisˆgontai oi
ènnoie th seirˆ Fourier kai tou metasqhmatismoÔ Fourier. Epsh anafèrontai oi
idiìthte tou metasqhmatismoÔ Fourier
   Sto Kefˆlaio 4 parousiˆzontai basikè efarmogè tou metasqhmatismoÔ Fourier
suneqoÔ qrìnou. Epsh eisˆgetai h ènnoia tou fltrou.
    Sto Kefˆlaio 5 perigrˆfetai h mèjodo anˆlush enì s mato diakritoÔ qrìnou
katˆ Fourier, dhlad , w upèrjesh stoiqeiwd¸n hmitonoeid¸n shmˆtwn diakritoÔ qrìnou
kai eisˆgontai oi ènnoie th seirˆ Fourier, tou metasqhmatismoÔ Fourier diakri-
toÔ qrìnou, tou diakritoÔ metasqhmatismoÔ Fourier kai tou taqèo metasqhmatismoÔ
Fourier. Epsh anafèrontai oi idiìthte twn metasqhmatism¸n Fourier. Tèlo parousiˆ-
zontai basikè efarmogè tou metasqhmatismoÔ Fourier diakritoÔ qrìnou.
    Sto Kefˆlaio 6 orzetai o metasqhmatismì Laplace, anafèrontai oi idiìthtè tou
kai parousiˆzetai h sten sqèsh tou me to metasqhmatismì Fourier suneqoÔ qrìnou.
Epsh parousiˆzetai o monìpleuro metasqhmatismì Laplace. Tèlo , parousiˆzetai
h qr sh tou metasqhmatismoÔ Laplace sthn anˆlush analogik¸n susthmˆtwn kai th
melèth th eustˆjeia kai th aitiìthtˆ tou .
   Sto Kefˆlaio 7 orzetai o metasqhmatismì z, anafèrontai oi idiìthtè tou kai
parousiˆzetai h sten sqèsh tou me to metasqhmatismì Fourier diakritoÔ qrìnou.
Epsh parousiˆzetai o monìpleuro metasqhmatismì z. Tèlo , parousiˆzetai h
qr sh tou metasqhmatismoÔ z sthn anˆlush susthmˆtwn diakritoÔ qrìnou kai th
melèth th eustˆjeia kai th aitiìthtˆ tou .
    To biblo oloklhr¸netai me tra parart mata. Sto pr¸to Parˆrthma parousiˆ-
zontai basikˆ stoiqea gia tou migadikoÔ arijmoÔ . Sto deÔtero Parˆrthma parou-
siˆzetai o trìpo anˆptuxh mia rht sunˆrthsh se aplˆ klˆsmata. Ta stoiqea
twn dÔo aut¸n pararthmˆtwn enai dh gnwstˆ apì to LÔkeio. Tèlo sto trto
Parˆrthma paratjentai qr simoi majhmatiko tÔpoi.

    Se kˆje kefˆlaio upˆrqoun probl mata. Metˆ apì th melèth kˆje kefalaou,
sa sunistoÔme na prospajete na ta lÔnete. Ta probl mata autˆ sa dnoun th
dunatìthta na parakoloujete thn prìodì sa kai exasfalzoun ìti èqete afomoi¸sei
to ulikì tou antstoiqou kefalaou.
   Ja prèpei ed¸ na shmei¸soume ìti to biblo autì èqei kajarˆ eisagwgikì qara-
kt ra. Sto tèlo tou upˆrqei bibliografa sthn opoa mporete na anatrèxete gia
plèon exeidikeumène gn¸sei .
   Ja jela na euqarist sw tou spoudastè ekenou , proptuqiakoÔ kai meta-
ptuqiakoÔ , pou me prosoq melèthsan mèrh tou biblou kai me ti parathr sei tou
bo jhsan sth beltws tou.
     An kai katabl jhke h mègisth dunat   prospˆjeia na mhn upˆrqoun parorˆma-
Prìlogo                                                                           iii

ta, sthn perptwsh pou diapistwje ìti upˆrqoun, ja epishmanontai sth dieÔjunsh
http://sig-sys-book.di.uoa.gr/ tou diktÔou. Sth dieÔjunsh aut , h opoa euelpistoÔme
ìti ja apotelèsei mia anoikt gramm epikoinwna , ja parousiˆzoume nèe ask sei ,
¸ste na èqete perissìtere dunatìthte exˆskhsh .

                                                             Serafem Karampogiˆ
                                                             Epkouro Kajhght
                                                       EjnikoÔ kai KapodistriakoÔ
                                                            Panepisthmou Ajhn¸n
                                                                             ÐÅÑÉÅ×ÏÌÅÍÁ




    PROLOGOS                                                                                       vi

1   EISAGWGH STA SHMATA                                                                            1
    1.1   Taxinìmhsh Shmˆtwn             2
          1.1.1    S mata suneqoÔ     qrìnou      analogikˆ s mata, 2

          1.1.2    S mata diakritoÔ qrìnou, 2

          1.1.3    Yhfiakˆ s mata, 2


    1.2   Idiìthte Analogik¸n Shmˆtwn                  3
          1.2.1    Periodikˆ kai mh periodikˆ s mata, 3

          1.2.2    Aitiˆta kai mh aitiatˆ s mata, 4

          1.2.3    S mata peperasmèna kai s mata peperasmènh               kai ˆpeirh   diˆrkeia , 5

          1.2.4    €rtia kai perittˆ s mata, 5

          1.2.5    Energeiakˆ s mata - S mata isqÔo , 6

          1.2.6    Aitiokratikˆ kai Tuqaa - Stoqastikˆ s mata, 7


    1.3   Metatropè S mato w pro to Qrìno                           8
          1.3.1    Anˆklash, 8

          1.3.2    Allag    klmaka   qrìnou, 8

          1.3.3    Qronik     metatìpish, 9


    1.4   Stoiqei¸dh S mata           10
          1.4.1    Migadikì ekjetikì s ma suneqoÔ          qrìnou, 10

          1.4.2    Migadikì ekjetikì s ma diakritoÔ qrìnou, 14

          1.4.3    Idiìthte   twn ekjetik¸n shmˆtwn, 15

          1.4.4    H sunˆrthsh monadiaou b mato           suneqoÔ      qrìnou, 18

          1.4.5    H kroustik     sunˆrthsh suneqoÔ        qrìnou       Sunˆrthsh dèlta, 19

          1.4.6    O orjog¸nio     palmì , 24

          1.4.7    O trigwnikì    palmì , 24

          1.4.8    H sunˆrthsh klsh , 25

          1.4.9    H sunˆrthsh pros mou, 25

          1.4.10    Monadiaa bhmatik         akolouja - Monadiao b ma diakritoÔ qrìnou, 26
Perieqìmena                                                                                       v

              1.4.11    To monadiao degma - Kroustik         akolouja, 26


              Probl mata           28

 2    EISAGWGH STA SUSTHMATA                                                                     31
       2.1    Orismì Sust mato - Kathgore Susthmˆtwn                          32
       2.2    Sundèsei Susthmˆtwn                35
       2.3    Idiìthte Susthmˆtwn               37
              2.3.1    Grammikìthta, 37

              2.3.2    Aitiìthta, 37

              2.3.3    Antistrèyima kai mh antistrèyima sust mata, 38

              2.3.4    Sust mata statikˆ kai dunamikˆ, 39

              2.3.5    Qronikˆ anallowta sust mata, 39

              2.3.6    Eustˆjeia, 40


       2.4    Sqèsh metaxÔ Eisìdou - Exìdou Sust mato                     41
              2.4.1    Grammikˆ qronikˆ anallowta sust mata suneqoÔ            qrìnou. -

                       To olokl rwma th       sunèlixh , 41

              2.4.2    Idiìthte   th    sunèlixh , 45

              2.4.3    Grafikì     prosdiorismì      th   sunèlixh , 47

              2.4.4    Grammikˆ qronikˆ anallowta sust mata diakritoÔ qrìnou. -

                       To ˆjroisma th      sunèlixh , 49


       2.5    Apìkrish Grammik¸n Susthmˆtwn se Ekjetikè Eisìdou                             54
              2.5.1    Suneq      perptwsh, 54

              2.5.2    Diakrit    perptwsh, 56


              Probl mata            60

 3    ANAPTUGMA - METASQHMATISMOS                                  FOURIER
      ANALOGIKWN SHMATWN                                                                         63
       3.1    H Idèa tou Q¸rou twn Shmˆtwn                    63
              3.1.1    To sÔnolo twn orjogwnwn ekjetik¸n periodik¸n shmˆtwn, 67

              3.1.2    To sÔnolo twn orjogwnwn trigwnometrik¸n periodik¸n shmˆtwn, 68


       3.2    Anˆptugma Fourier - Seirˆ Fourier       69
              3.2.1 Ekjetik  seirˆ Fourier, 69

              3.2.2 Trigwnometrik   seirˆ Fourier, 70

              3.2.3 Seirè Fourier periodik¸n shmˆtwn, 72

              3.2.4 Ìparxh seirˆ Fourier, 72

              3.2.5 Tautìthta tou Parseval, 77

              3.2.6 Fainìmeno Gibbs, 81
vi                                                                                        Perieqìmena




     3.3   Metasqhmatismì Fourier                  82
           3.3.1   Ìparxh tou metasqhmatismoÔ Fourier, 91
           3.3.2   Idiìthte tou metasqhmatismoÔ Fourier, 93

           3.3.3   Metasqhmatismì Fourier periodik¸n shmˆtwn, 109


     3.4   Enèrgeia kai IsqÔ             110
           3.4.1   Energeiakˆ s mata, 111

           3.4.2   S mata isqÔo , 113


           Probl mata            115

 4   EFARMOGES TOU METASQHMATISMOU                                FOURIER                       119
     4.1   Apìkrish Suqnìthta Sust mato                    119
           4.1.1   H apìkrish suqnìthta        gia sust mata ta opoa perigrˆfontai

                   apì diaforikè       exis¸sei    me stajeroÔ   suntelestè , 120


     4.2   Upologismì tou Antistrìfou MetasqhmatismoÔ Fourier                             122
     4.3   Diagrˆmmata Bode              125
     4.4   Idanikì Fltro Basik           Z¸nh - Katwperatì Fltro                  128
           Probl mata            133

 5   SEIRA - METASQHMATISMOS                       FOURIER
     DIAKRITOU QRONOU                                                                           137
     5.1   Parˆstash Periodik¸n Shmˆtwn sto Pedo tou Qrìnou
           Seirˆ Fourier DiakritoÔ Qrìnou     138
           5.1.1  Prosdiorismì th seirˆ Fourier diakritoÔ qrìnou, 138


     5.2   Metasqhmatismì Fourier DiakritoÔ Qrìnou                      143
     5.3   Idiìthte tou FM DiakritoÔ Qrìnou                  151
           5.3.1   Apodekˆtish sto qrìno, 152

           5.3.2   Parembol , 154

           5.3.3   €jroisma, 156

           5.3.4   Idiìthta th    diamìrfwsh , 157

           5.3.5   O   MF diakritoÔ qrìnou gia periodikˆ s        mata, 160


     5.4   S mata apì deigmatolhya sto Pedo Suqnot twn                      163
           5.4.1   Je¸rhma deigmatolhya , 167

           5.4.2   Oi Suntelestè       Fourier w   degmata se ma perodo tou   MF,   168


     5.5   Diakritì Metasqhmatismì Fourier                  170
           5.5.1   Kuklik   anˆklash akolouja , 173

           5.5.2   Kuklik   olsjhsh akolouja , 174

           5.5.3   Kuklik   sunèlixh akolouji¸n, 175
Perieqìmena                                                                                                 vii

              5.5.4   Idiìthte     tou diakritoÔ metasqhmatismoÔ        Fourier, 176
              5.5.5   H grammik         sunèlixh me th bo jeia tou diakritoÔ     MF,      177

              5.5.6   O diakritì        metasqhmatismì     Fourier se   morf       pinˆkwn, 180

              5.5.7   TaqÔ   metasqhmatismì          Fourier, 181
       5.6    Efarmogè tou MF DiakritoÔ Qrìnou                         186
              5.6.1   H apìkrish suqnìthta           gia sust mata ta opoa qarakthrzontai

                      apì grammikè        exis¸sei    diafor¸n me stajeroÔ          suntelestè , 187


              Probl mata            195

 6    METASQHMATISMOS                      LAPLACE                                                         199
       6.1    Orismo        200
              6.1.1   Metasqhmatismì           Laplace stoiqeiwd¸n shmˆtwn, 202
              6.1.2   Idiìthte     th    perioq    sÔgklish -Ìparxh metasqhmatismoÔ             Laplace, 206
              6.1.3   Idiìthte     tou metasqhmatismoÔ      Laplace, 209
       6.2    Antstrofo Metasqhmatismì Laplace                         211
              6.2.1   Upologismì        tou antstrofou MetasqhmatismoÔ            Laplace, 213
       6.3    O monìpleuro Metasqhmatismì Laplace                             216
       6.4    Efarmogè twn Metasqhmatism¸n Laplace                            219
              6.4.1   Eplush grammik           diaforik    exswsh     me th bo jeia     MML,       220

              6.4.2   H qr sh tou       ML sthn   anˆlush GQA susthmˆtwn, 221

              6.4.3   Parathr sei         gia thn perioq    sÔgklish    tou   ML,   226


              Probl mata            231

 7    METASQHMATISMOS                      Z                                                               233
       7.1    Orismo        234
              7.1.1   Metasqhmatismì           z stoiqeiwd¸n akolouji¸n, 236
              7.1.2   Idiìthte     th    perioq    sÔgklish -Ìparxh metasqhmatismoÔ             z,   241


       7.2    Idiìthte tou MetasqhmatismoÔ z                    245
       7.3    O Monìpleuro Metasqhmatismì z                       250
       7.4    O Antstrofo Metasqhmatismì z                      256
              7.4.1  Upologismì tou antistrìfou Mz            gia rhtè       sunart sei , 257

              7.4.2   Upologismì        me anˆptuxh se aplˆ klˆsmata, 257

              7.4.2   Upologismì        me anˆptuxh se dunamoseirˆ, 261


       7.5    Efarmogè twn Metasqhmatism¸n z                      262
              7.5.1   Sust mata ta opoa qarakthrzontai apì grammikè                  exis¸sei       diafor¸n

                      me stajeroÔ        suntelestè , 263

              7.5.1   Melèth GQA sust mato            me th bo jeia    Mz,   270
viii                                                                               Perieqìmena




             Probl mata          274

       PARARTHMA A: MERIKA BASIKA STOIQEIA
       GIA TOUS MIGADIKOUS ARIJMOUS                                                      279
       A.1   Parˆstash migadikoÔ arijmoÔ sto migadikì eppedo               279
       A.2   Suzug    migadikì arijmì - Idiìthte              280
             Probl mata          282

       PARARTHMA B: ANAPTUXH RHTHS SUNARTHSHS
       SE APLA KLASMATA                                                                  283
       B.1   O bajmì tou N      (x) enai mikrìtero    tou bajmoÔ tou D   (x)      283
             B.1.1   Rze   diakekrimène   kai pragmatikè , 284

             B.1.2   Rze   pollaplè   kai pragmatikè , 285

             B.1.3   Migadikè    rze , 286


       B.2   O bajmì tou N      (x) enai megalÔtero     so tou bajmoÔ tou D     (x)     286

       PARARTHMA G: QRHSIMOI MAJHMATIKOI TUPOI                                           287
       G.1   Trigwnometra         287
       G.2   Aìrista oloklhr¸mata              288
             G.2.1   Rht¸n algebrik¸n sunart sewn, 288

             G.2.2   Trigwnometrik¸n sunart sewn, 289

             G.2.3   Ekjetik¸n sunart sewn, 289

             G.2.4   Orismèna oloklhr¸mata, 289


       G.3   Gewmetrikè seirè            290

       EURETHRIO                                                                         291
       Pnaka   suntomeÔsewn-akrwnÔmia


 dB                                                                Desibel
 A/D             analogoyhfiakì metatropèa               analog to digital converter
IDFT    antstrofo diakritì metasqhmatismì Foureir   inverse disctete Fourier transform
                      bajuperatì fltro
LPF                  fltro basik z¸nh                         lowpass filter
            fltro dièleush qamhl¸n suqnot twn
 GS                     grammikì sÔsthma                       linear system
GQAS        grammikì qronikˆ anallowto SÔsthma        linear time invariant system
DFT           diakritì metasqhmatismì Fourier           discrete Fourier transform
2-D                    disdiˆstata s mata                two-dimensional signals
FEFE              eustˆjeia fragmènh eisìdou          bounded input bounded output
                        fragmènh exìdou
BPF                   zwnoperatì fltro
                      zwnodiabatì fltro                       bandpass filter
              fltro dièleush z¸nh suqnot twn
BSF                  zwnofraktikì fltro                       bandstop filter
              fltro apokop z¸nh suqnot twn
 MF                 metasqhmatismì Fourier                   Fourier transform
DTFT      metasqhmatismì Fourier diakritoÔ qrìnou     discrete time Fourier transform
 ML                 metasqhmatismì Laplace                   Laplace transform
 Mz                    metasqhmatismì z                          z Transform
 1-D                  monadiˆstata s mata                 One-dimensional signal
MML         monìpleuro metasqhmatismì Laplace          unilateral Laplace transform
MMz             monìpleuro metasqhmatismì z                unilateral z Transform
 PS                      pedo sÔgklish                   Region of convergence
ROC                      pedo sÔgklish                   Region of convergence
DTFS            seirˆ Fourier diakritoÔ qrìnou          discrete-time Fourier series
QAS               sÔsthma qronikˆ anallowto               Time invariant system
MISO      sust mata me pollè eisìdou -ma exìdou         multi-input, single-output
MIMO    sust mata me pollè eisìdou -pollè exìdou         multi-input, multi-output
SISO         sust mata ma eisìdou-ma exìdou           single-input, single-output
 HPF                   uyiperatì fltro                        highpass filter
             fltro dièleush uyhl¸n suqnot twn
D/A              yhfioanalogikì metatropèa               digital to analog converter
          Pnaka   basik¸n sumbìlwn


  j                    tetragwnik rza tou -1                          squere root of -1
  jzj                 mètro migadikoÔ arijmoÔ z               magnitude of complex quantity z
argfzg                   fˆsh (ìrisma) tou z                            phase angle of z
<efzg                  pragmatikì mèro tou z                          imaginary part of z
=mfzg                  fantastikì mèro tou z                          imaginary part of z
  z?               suzug migadikì arimjì tou z                      complex conjugate of z
  !       (kuklik ) suqnìthta gia s mata suneqoÔ qrìnou     frequency for continuous-time signal
          (kuklik ) suqnìthta gia s mata diakritoÔ qrìnou     frequency for discrete-time signal
 u(t)                    bhmatik sunˆrthsh                                step function
 Æ(t)       sunˆrthsh dèlta (dirac)-kroustik sunˆrthsh                     unit impulse
 (t)                     orjog¸nio palmì                              rectangular pulse
 (t)                     trigwnikì palmì                                triangular pulse
 r(t)                     sunˆrthsh klsh                                 ramb function
sgn(t)                  sunˆrthsh pros mou                              signum function
  ?            sumbolzei to olokl rwma th sunèlixh             detotes convolution operation
  N                 kuklik sunèlixh N -shmewn                  N -point circular convolousion
  h(t)                  kroustik sunˆrthsh                             impulse response
 H (s)                  sunˆrthsh metaforˆ                              transfer function
 H (!)                  apìkrish suqnìthta                            frequency response
sin (t)              sunˆrthsh deigmatolhya                           sampling function
 X (!)                                        ()
                  metasqhmatismì Fourier tou x t                                       ()
                                                                   Fourier transform of x t
X( )                                         ()
                  metasqhmatismì Fourier th x n                                        ()
                                                                  Fourier transform of x n
 X (k)                                            ()
             diakritì metasqhmatismì Fourier th x n                                        ()
                                                              disrete Fourier transform of x n
 X (s)                                        ()
                  metasqhmatismì Laplace tou x t                                        ()
                                                                  Laplace transform of x t
 X (s)     monìpleuro metasqhmatismì Laplace tou x t()                                      ()
                                                             unilateral Laplace transform of x t
 X (z )                                    ()
                     metasqhmatismì z th x n                                         ()
                                                                      z transform of x n
 X (z)        monìpleuro metasqhmatismì z th x n ()                                      ()
                                                                unilateral z transform of x n
  F!        upodeiknÔei zeÔgo metasqhmatism¸n Fourier              Fourier transform pair
  L
   !        upodeiknÔei zeÔgo metasqhmatism¸n Laplace              Laplace transform pair
  L!      upodeiknÔei monìpleuro metasqhmatismì Laplace       unilateral Laplace transform pair
  Z
   !           upodeiknÔei zeÔgo metasqhmatism¸n z                    z transform pair
  Z!         upodeiknÔei monìpleuro metasqhmatismì z             unilateral z transform pair
                                                                ÊÅÖÁËÁÉÏ 1

                                   ÅÉÓÁÃÙÃÇ ÓÔÁ ÓÇÌÁÔÁ




    Skopì tou kefalaou autoÔ enai na d¸sei ma genik eikìna tou ti enai s ma kai
na katatˆxei ta diˆfora s mata se kathgore anˆloga me ti basikè tou idiìthte .
Epiprìsjeta ja oristoÔn antiproswpeutikˆ s mata, ta opoa èqoun idiaterh shmasa
sth jewra shmˆtwn.
    To kefˆlaio autì, pragmateÔetai ta krit ria bˆsei twn opown orzontai ta s ma-
ta kai taxinome ta s mata. Epsh , anafèrei ti basikè idiìthte pou parousiˆzoun
ta s mata kai ti metatropè s mato w pro to qrìno. Sth sunèqeia orzontai
stoiqei¸dh s mata, ta opoa pazoun ènan idiatero rìlo sth jewra shmˆtwn, w
ergalea gia th melèth poluplokìterwn shmˆtwn. Shmei¸netai ìti sto Parˆrthma A
upˆrqoun merikˆ basikˆ stoiqea gia tou migadikoÔ arijmoÔ .


   Eisagwg

   W s ma orzetai èna fusikì mègejo to opoo metabˆlletai se sqèsh me to qrìno   to
q¸ro   me opoiad pote ˆllh anexˆrthth metablht   metablhtè . Gia parˆdeigma, to s -
ma omila antistoiqe sti metabolè th akoustik pesh se sqèsh me to qrìno kai
proèrqetai apì ti kin sei twn fwnhtik¸n qord¸n. To s ma eikìna antistoiqe sti
metabolè th fwteinìthta se sqèsh me ti dÔo qwrikè metablhtè . €lla paradeg-
mata shmˆtwn enai ta seismikˆ s mata, ta iatrikˆ s mata (ìpw to kardiogrˆfhma),
o et sio dekth tim¸n katanalwt , o dekth tou posostoÔ anerga anˆ m na k.l.p.
   Apì majhmatik ˆpoyh, èna s ma ekfrˆzetai w sunˆrthsh mia          perissìterwn
anexˆrthtwn metablht¸n.

                                     t ! x(t)

H anexˆrthth metablht t enai sun jw o qrìno , h opoa mpore na èqei kai ˆllh
                      ()
fusik shmasa. Me x t sumbolzetai h tim tou s mato th qronik t.
  Anˆloga me to pl jo twn anexart twn metablht¸n ta s mata qarakthrzontai
w monodiˆstata s mata (1-D), disdiˆstata (2-D), poludiˆstata s mata.
2                                                  Eisagwg   sta S mata        Kefˆlaio 1




1.1     TAXINOMHSH SHMATWN

Anˆloga me ton tÔpo th anexˆrthth   th exarthmènh metablht                th sunˆrthsh
ta s mata katatˆssontai sti parakˆtw kathgore :


1.1.1   S mata suneqoÔ    qrìnou    analogikˆ s mata


S mata suneqoÔ qrìnou analogikˆ s mata enai ta s mata twn opown h anexˆrthth
metablht metabˆlletai se èna suneqè diˆsthma tim¸n. Sta monodiˆstata s mata
to pedo orismoÔ tou s mato enai diˆsthma th eujea twn pragmatik¸n arijm¸n.
Sto Sq ma 1.1 èqei sqediaste èna analogikì s ma. Epeid h anexˆrthth metablht t
sun jw enai o qrìno , ta s mata autˆ onomˆzontai s mata suneqoÔ qrìnou s mata
suneqoÔ metablht .


                                   x(t)



                                                                     t


             Sq ma 1.1    Grafik   anaparˆstash enì   analogikoÔ s mato .




1.1.2   S mata diakritoÔ qrìnou


                         ()
àna analogikì s ma xa t enai dunatì na anaparaqje apì ti timè twn deigmˆtwn
        ()
tou x n pou lambˆnontai anˆ qronikˆ diast mata TÆ . Ta qronikˆ diast mata TÆ
kajorzontai anˆloga me to edo tou analogikoÔ s mato kai thn epijumht pistìthta
anaparagwg .
                         x(n)  xa (nTÆ );    n = 0; 1; 2; :::                   (1.1.1)

H diadikasa onomˆzetai deigmatolhya kai to qronikì diˆsthma metaxÔ diadoqik¸n
deigmˆtwn perodo deigmatolhya TÆ . Me th diadikasa th deigmatolhya enì
analogikoÔ s mato prokÔptei èna s ma diakritoÔ qrìnou.
    S mata diakritoÔ qrìnou enai ta s mata twn opown to pedo orismoÔ enai kˆpoio
diakritì sÔnolo p.q. to sÔnolo twn akerawn arijm¸n en¸ h exarthmènh metablht
enai dunatìn na lambˆnei opoiad pote tim . To s ma sto Sq ma 1.2a enai èna s ma
diakritoÔ qrìnou.
   Sti efarmogè sti opoe enai anagkao na metaddoume na apojhkeÔoume èna
analogikì s ma metaddoume apojhkeÔoume ta degmatˆ tou.
Enìthta 1.2      Idiìthte    Analogik¸n Shmˆtwn                                        3



                 x(n)                                      x(n)



                                            n                                    n

                    (á)                                      ( â)

Sq ma 1.2     Grafik    anaparˆstash (a) enì s mato diakritoÔ qrìnou kai (b) enì yhfiakoÔ

s mato .


1.1.3   Yhfiakˆ s mata

H anaparˆstash twn analogik¸n deigmatolhpthmènwn tim¸n x n ; n      ()    =0 1 2
                                                                        ; ; ; ::: me
èna peperasmèno sÔnolo epitrepìmenwn tim¸n lègetai kbˆntish. Me th diadikasa th
                        ()
kbˆntish oi timè x n enì diakritoÔ s mato stroggulopoioÔntai sthn plhsièsterh
epitrepìmenh tim kai ètsi prokÔptei èna yhfiakì s ma.
    Yhfiakˆ s mata enai ta s mata sta opoa tìso h anexˆrthth metablht , ìso kai
h exarthmènh metablht mporoÔn na lambˆnoun mìno diakritè timè . Sto Sq ma 1.2b
fanetai èna yhfiakì s ma.
    AfoÔ deigmatolhpthje kai kbantiste h èxodo ma analogik        phg    plhro-
fora , dhmiourgetai ma akolouja apì kbantismène timè . Kˆje kbantismènh stˆ-
jmh kwdikopoietai se ma duadik akolouja m kou  , ìpou N          =2
                                                                  enai o arijmì
twn epitrepìmenwn tim¸n.
    àna sÔsthma yhfiak metˆdosh         katagraf     qou metatrèpei èna akoustikì
s ma se ma seirˆ apì arijmoÔ bit tou opoou metaddei katagrˆfei p.q. se optikì
dsko. H metatrop enì analogikoÔ s mato se ma duadik akolouja onomˆzetai
palmokwdik diamìrfwsh.



1.2     IDIOTHTES ANALOGIKWN SHMATWN

Sthn enìthta aut parousiˆzontai merikè basikè idiìthte pou èqoun ta analogikˆ
s mata. Anˆloge idiìthte èqoun kai ta s mata diakritoÔ qrìnou.


1.2.1   Periodikˆ kai Mh Periodikˆ S mata

                      ()
àna analogikì s ma x t lègetai periodikì, ìtan upˆrqei èna jetikì arijmì T gia
                   ()= ( + )
ton opoo isqÔei x t  x t T gia kˆje tim tou t. Sto Sq ma 1.3 èqei sqediaste èna
periodikì s ma. O stajerì arijmì T lègetai perodo . H elaqsth dunat perodo
enai gnwst w jemeli¸dh perodo kai sumbolzetai me T0 . Sthn prˆxh pollè forè
anaferìmaste apl¸ sthn perodo kai ennooÔme th jemeli¸dh.
4                                                                  Eisagwg       sta S mata        Kefˆlaio 1




                                           x(t)




           -2T                 -T                 0                    T                2T              t

                          Sq ma 1.3     Periodikì s ma suneqoÔ              qrìnou.



    Parˆdeigma periodikoÔ s mato enai to hmitonoeidè s ma

                                       x(t) = A sin(!t + )                                            (1.2.1)

me perodo T  =2 =!. To ! enai gnwstì w kuklik                           suqnìthta   kai enai   !   = 2f ,
ìpou f h suqnìthta tou hmtonou.
   àna ˆllo periodikì s ma enai to migadikì s ma

                                           y(t) = Aej!t                                                (1.2.2)

me thn dia perodo T     =2
                       =!. An kai ta migadikˆ s mata den èqoun fusik upìstash,
enai “elkustikˆ” apì ˆpoyh majhmatikoÔ formalismoÔ, epeid aplousteÔoun thn
ˆlgebra twn prˆxewn. Gia parˆdeigma, pollaplasiasmì dÔo ekjetik¸n shmˆtwn
antistoiqe apl¸ sthn prìsjesh twn ekjet¸n tou . Prˆgmati, an y1 t              Aej!1 t       () =
kai y2 t()=     j!   t
             Ae , tìte y1 t y2 t A e
                   2                    2   (
                                    ( ) ( ) =
                                          j   !1 + !2 ) t . Sto Parˆrthma A upˆrqei ma
sÔntomh parousash twn migadik¸n arijm¸n kai twn idiot twn tou .


1.2.2   Aitiatˆ kai Mh Aitiatˆ S mata

àna s ma   x(t) lègetai aitiatì, eˆn enai mhdenikì gia arnhtikè                       timè tou qrìnou t,
dhlad
                                       x(t) = 0       gia    t<0                                       (1.2.3)

Sthn antjeth perptwsh, to s ma lègetai              mh aitiatì.      Sto Sq ma 1.4 eikonzontai èna
aitiatì kai èna mh aitiatì s ma.

              x(t)                                          x(t)




                     0                      t                      0                          t
                             (á)                                           (â)

         Sq ma 1.4       Parˆdeigma (a) aitiatoÔ s mato            kai (b) mh aitiatoÔ s mato .
Enìthta 1.2         Idiìthte    Analogik¸n Shmˆtwn                                                        5



1.2.3    S mata Peperasmèna kai S mata Peperasmènh                       kai €peirh           Diˆrkeia

               ()
àna s ma x t lègetai peperasmèno an x t <         j ( )j 1
                                              , gia kˆje tim tou qrìnou t. àna
         ()
s ma x t lègetai s ma peperasmènh diˆrkeia an
                                                  
                                         x(t) =       0; t  T1
                                                      0; t  T2                                      (1.2.4)


                    (             )
ìpou T1 kai T2 , T1 < T2 , enai peperasmènoi arijmo. An T1 gnei so me to meon
ˆpeiro kai T2 gnei so me to ˆpeiro, tìte to s ma èqei ˆpeirh diˆrkeia.



1.2.4    €rtia kai Perittˆ s mata

àna s ma      x(t) lègetai ˆrtio         parousiˆzei ˆrtia summetra an

                                x( t) = x(t);             1 < t < +1                                 (1.2.5)

Antjeta, lègetai       perittì       parousiˆzei peritt summetra an

                                x( t) = x(t);              1 < t < +1                                (1.2.6)

To s ma sto Sq ma 1.5a parousiˆzei ˆrtia summetra kai to s ma sto Sq ma 1.5b

                      x(t)                                            x(t)


                                                                              0                  t
                           0                  t
                          (á)                                                (â)

Sq ma 1.5       S mata suneqoÔ         qrìnou ta opoa parousiˆzoun (a) ˆrtia summetra kai (b)

peritt   summetra.


peritt summetra. Kˆje s ma migadikì pragmatikì mpore na ekfrasje w ˆjroi-
                                  ()
sma enì ˆrtiou (even), xe t , kai enì perittoÔ (odd) s mato , xo t ,                ()
                                          x(t) = xe (t) + xo (t)                                     (1.2.7)

ìpou
                xe (t) =
                             1 [x(t) + x ( t)℄           xo (t) =
                                                                     1 [x(t)       x ( t)℄
                             2                                       2                               (1.2.8)

me   ? dhl¸netai o suzug          migadikì arijmì .
6                                                                       Eisagwg        sta S mata           Kefˆlaio 1




Parˆdeigma 1.2.1
        Dnetai to s ma
                                                       
                                           x(t) =               3t;    t<0
                                                           t;          t0                                      (1.2.9)


        Na ekfrˆsete to s ma w        ˆjroisma enì          ˆrtiou kai enì            perittoÔ s mato .

        LÔsh       To ˆrtio s ma   xe (t) enai
                                          1                     
                     1
           xe (t) = [x(t) + x( t)℄ = 1 [t + 3t℄; t  0 = 2t;2t; tt <
                                           2 [  3 t t℄ ; t < 0                0
                     2                     2                                 0                               (1.2.10)



        en¸ to perittì s ma xo (t) enai
                                           1
                       1
             xo (t) = [x(t) x( t)℄ = 21 [[t 3t3+t℄;t℄; tt <    0 =) xo (t) = t
                       2                      2               0                                              (1.2.11)



        Sto Sq ma 1.6 eikonzontai to s ma x(t), to xe (t) kai to xo (t). Apì ti                             grafikè
        parastˆsei     twn shmˆtwn aut¸n fanetai ìti


                                             x(t) = xe (t) + xo (t)                                           (1.2.12)




           x(t)                                    xe(t)                                    xï(t)
                                                                                          -t
         -3t             t                   -2t                2t
                                                                                                0               t
                  0          t                         0                     t
                 (á)                                  (â)                                        (ã)

        Sq ma 1.6      Grafikè   parastˆsei       gia ta s mata (a)              x(t), (b) xe (t) kai (g) xo (t).

1.2.5    Energeiakˆ S mata - S mata IsqÔo

Gia kˆje analogikì s ma          x(t), h enèrgeia tou s               mato       Ex, dnetai apì th sqèsh
                                                       Z T
                                      Ex = Tlim
                                             !1
                                                                jx(t)j2 dt                                    (1.2.13)
                                                            T
        j ( )j
ìpou x t enai to mètro tou s mato . Gia kˆje s ma diakritoÔ qrìnou                                           x(n),   h
                  E
enèrgeiˆ tou x , dnetai apì th sqèsh
                                                     1
                                                     X
                                          Ex =                 jx(n)j2                                        (1.2.14)
                                                   n=      1
Enìthta 1.2        Idiìthte   Analogik¸n Shmˆtwn                                                7



        j ( )j
ìpou x n enai to mètro tou s mato kai TÆ enai h perodo deigmatolhya .
   àna s ma qarakthrzetai w energeiakì s ma an

                                      0 < Ex < 1                                          (1.2.15)

H   mèsh isqÔ    Px, tou analogikoÔ s mato x(t), dnetai apì th sqèsh
                              Px = Tlim   1 Z T jx(t)j2 dt
                                     !1 2T T
                                                                                          (1.2.16)

An to s ma enai periodikì, tìte h mèsh isqÔ tou               Px dnetai apì th sqèsh
                                    Px = T1
                                                Z
                                                        jx(t)j2 dt                        (1.2.17)
                                            0   <T0 >
H mèsh isqÔ      Px, tou s     mato diakritoÔ qrìnou         x(n), dnetai apì th sqèsh

                                Px = Nlim   1              N
                                                           X
                                                                jx(n)j2
                                       !1 2N + 1
                                                                                          (1.2.18)
                                                        n= N
An to s ma enai periodikì, tìte h mèsh isqÔ tou               Px dnetai apì th sqèsh
                                                     0 1
                                      Px = N1
                                                    NX
                                                           jx(n)j2                        (1.2.19)
                                                0 n=0
     àna s ma qarakthrzetai w          s ma isqÔo      an

                                          0 < Px < 1                              (1.2.20)

Shmei¸netai ìti gia pragmatikˆ s         mata jx(t)j2 = x2 (t) (blèpe Parˆrthma A).


1.2.6    Aitiokratikˆ kai Tuqaa - Stoqastikˆ S mata

ätan oi timè pou parnei èna s ma se kˆje qronik stigm orzontai qwr abebaiìth-
ta, to s ma qarakthrzetai w aitiokratikì s ma nomoteleiakì s ma. àna tètoio s -
ma, gia parˆdeigma, enai to sunhmtono (Sq ma 1.7a). Sthn prˆxh, ìmw , sunantˆme
pollˆ s mata, ìpw o jermikì jìrubo , sta opoa h tim se opoiad pote qronik
stigm den mpore na prokajoriste me bebaiìthta prin emfanistoÔn. Ta s mata autˆ
onomˆzontai tuqaa stoqastikˆ s mata (Sq ma 1.7b). Gia na epexergastoÔme tètoiou
edou s mata anagkastikˆ katafeÔgoume sth jewra Pijanot twn kai Statistik .
Sto biblo autì ja perioristoÔme mìno sta aitiokratikˆ s mata.
8                                                                Eisagwg        sta S mata                Kefˆlaio 1




          x(t)=A cos(2 ð f0 t + ö)
                                                               x(t)
               A
          Acos(ö)

                0                                t                0
                                   T0                                                                      t
               -A
                           (á)                                                     (â)

        Sq ma 1.7   Parˆdeigma (a) nomoteleiakoÔ s mato               kai (b) stoqastikoÔ s mato .



1.3     METATROPES SHMATOS WS PROS TON QRONO

Pollè forè sthn prˆxh parousiˆzontai s mata ta opoa sqetzontai metaxÔ tou me
allag th anexˆrthth metablht , dhlad tou qrìnou. Sth sunèqeia anafèrontai
oi basikè metatropè s mato w pro to qrìno.


1.3.1    Anˆklash

àna s ma     y(t) apotele thn anˆklash tou s            mato     x(t) w         pro    t = 0 an
                                                y(t) = x( t)                                                   (1.3.1)

H metatrop th anˆklash èqei w apotèlesma thn enallag metaxÔ “pareljìnto ”
                                                          ()
kai “mèllonto ” enì s mato . An to s ma x t enai h èxodo enì magnhtof¸nou,
                 ( )
tìte to s ma x t enai h èxodo tou idou magnhtof¸nou, ìtan autì peristrèfetai
antjeta. Sto Sq ma 1.8 èqei sqediaste èna s ma suneqoÔ qrìnou kai h anˆklas
tou w pro t      =0
                 .

                        x(t)                                          x(- t)



                               0            t                             0                    t

                           (á)                                           (â)

        Sq ma 1.8   (a) àna s ma suneqoÔ          qrìnou kai (b) h anˆklas             tou w       pro   t = 0.

1.3.2    Allag      Klmaka        Qrìnou

To s ma     x1 (t) apotele ma qronik          sustol   tou s mato            x(t), an
                                        x1 (t) = x(at) me a > 1                                                (1.3.2)
Enìthta 1.3            Metatropè      S mato    w   pro    to Qrìno                                                     9



To s ma      x2 (t) apotele ma qronik             diastol      tou s mato          x(t), an
                                        x2 (t) = x(at) me 0 < a < 1                                                (1.3.3)

                            ()
    An to s ma x t enai h èxodo enì magnhtof¸nou, tìte to s ma x t enai h                                 (2 )
èxodo tou idou magnhtof¸nou, ìtan autì peristrèfetai me diplˆsia taqÔthta kai
 ( 2)
x t= enai h èxodo , ìtan autì peristrèfetai me upodiplˆsia taqÔthta. Sto Sq ma
1.9 èqoun sqediaste h qronik sustol kai diastol enì s mato .

           x(t)                           x(2 t)                                     x(t/2)




    -t 0          0    t0         t        t0 0 t0                 t       -2 t0              0               2 t0 t
                                           2          2
              (á)                               (â)                                               (ã)

        Sq ma 1.9       (a) S ma, (b) h qronik            sustol       tou kai (g) h qronik        diastol    tou.


1.3.3      Qronik      Metatìpish

àna s ma          y(t) enai ma qronikˆ metatopismènh katˆ t0 morf                       tou s mato          x(t) an
                                                   y(t) = x(t t0 )                                                 (1.3.4)

                                                            ()
Sto Sq ma 1.10 èqei sqediaste èna s ma x t kai h qronikˆ metatopismènh morf tou.
H qronik metatìpish enai ma polÔ sunhjismènh metabol sthn prˆxh. Se peript¸-
sei metˆdosh enì s mato èqoume qronikè kajuster sei , oi opoe exart¸ntai apì
ti idiìthte tou mèsou metˆdosh . Gia parˆdeigma, se èna thlepikoinwniakì sÔsthma
to s ma pou lambˆnei o dèkth enai qronikˆ kajusterhmèno se sqèsh me autì pou
ekpèmpetai apì ton pompì.

                       x(t)                                              x(t-t0)



                              0            t                                  0      t0                 t

                            (á)                                                (â)

            Sq ma 1.10           (a) To s ma   x(t) kai (b) h qronikˆ metatopismènh morf                    tou.

Parˆdeigma 1.3.1
        Dnetai to s ma                               8
                                                      < 2t + 2; 1  t < 0
                                          x(t) =        2 t; 0  t < 2                                             (1.3.5)
                                                      :
                                                        0;      alli¸
10                                                               Eisagwg     sta S mata        Kefˆlaio 1




        Na sqediˆsete to s ma     y(t) = x( t).
        LÔsh   To s ma   x(t) eikonzetai sto Sq ma 1.11a. To s ma y(t) apotele thn anˆklash
        tou s mato    x(t). Ja prosdiorsoume th sunˆrthsh tou s mato y(t)
                                                  8
                                                  <  2( t) + 2; 1  t < 0
                             y(t) = x( t)     =      2 ( t); 0  t < 2
                                                 :
                                                 8
                                                      0;         alli¸

                                                 < 2t + 2; 1  t > 0
                                             = : 2 + t; 0  t > 2
                                                 8
                                                     0;        alli¸

                                                 < t + 2;      2t<0
                                             = : 2 2t; 0  t < 1                                  (1.3.6)
                                                     0;      alli¸


        H grafik    parˆstash tou s       mato y (t) = x( t) dnetai sto Sq ma 1.11b.


                      x(t)                                      y(t)=x(-t)
                         2                                               2
                   2 t+2          2-t                              t+2         2-2t

                      -1 0          2     t                      -2         0 1           t
                         (á)                                               (â)

Sq ma 1.11     H grafik        parˆstash (a) tou s mato            x(t)   kai (b) tou s mato    y(t)   sto

Parˆdeigma 1.3.1




1.4     STOIQEIWDH SHMATA

H anˆlush enì s mato se aploÔstera s mata, twn opown h sumperiforˆ enai ete
gnwst ete eukolìtero na melethje, apotele basik mejodologa sthn epexergasa
s mato . Sth sunèqeia ja orsoume ènan arijmì stoiqeiwd¸n shmˆtwn pou pazoun
ènan idiatero rìlo sth jewra shmˆtwn, w ergalea gia th melèth poluplokìterwn
shmˆtwn.


1.4.1    Migadikì ekjetikì s ma suneqoÔ                qrìnou

To   migadikì ekjetikì s ma suneqoÔ           qrìnou   orzetai apì th sqèsh

                                              x(t) =     est                                    (1.4.1)

ìpou    s =  + j! ètsi x(t) =           et  ej!t kai èqei ti      akìlouje idiìthte :
Enìthta 1.4             Stoiqei¸dh S mata                                                                     11



    1.   Enai antistrèyimo ( est ) 1 = 1  e                    st .
    2.
                           d ( est ) =  sest .
         Enai diaforsimo dt

    Ma shmantik kathgora ekjetik¸n shmˆtwn suneqoÔ qrìnou prokÔptei an to
s enai pragmatikì arijmì , s          ( = )
                                    opìte to x t                       ()=
                                                      et onomˆzetai pragmatikì
ekjetikì s ma, kai parousiˆzei asumptwtik sumperiforˆ anˆloga me ti timè tou 
(blèpe Sq ma 1.12).

              x(t)                              x(t)                                 x(t)


                c                                          c                            c

                    0              t                   0                  t              0           t
                (á)                                        (â)                          (ã)

    Sq ma 1.12          To pragmatikì ekjetikì s ma (a) gia              < 0, (b) gia  > 0 kai gia  = 0.
    Ma ˆllh shmantik kathgora ekjetik¸n shmˆtwn suneqoÔ qrìnou prokÔptei an
to s enai fantastikì arijmì (s             =
                                    j!0 ), dhlad , x t                   ()=
                                                       ej!0 t . To s ma x t ej!0 t                ()=
enai periodikì me perodo T , ìtan

     !0 = 0, tìte x(t) = 1, to opoo mpore na jewrhje periodikì gia kˆje T .
     !0 =
         6 0, tìte h jemeli¸dh perodo T0 , dhlad h mikrìterh tim tou T , enai
      T0 = 2=j!0 j. Prˆgmati, apì ton orismì isqÔei:
                ej!0 t = ej!0 (t+T ) ) ej!0 t = ej!0 t ej!0 T ) ej!0 T = 1 )
              os(!0 T ) + j sin(!0 T ) = 1 ) !0T = 2k ) T0 = 2=j!0 j
         ìpou qrhsimopoi jhke h sqèsh tou Euler ej        = os  + j sin .
    To gnwstì sunhmitonoeidè s              ma x(t) = A os(!0 t + ') (blèpe Sq ma 1.13) enai,
epsh , periodikì me jemeli¸dh analogik perodo             T0 ,
                                                     jemeli¸dh analogik kuklik
suqnìthta !0 kai jemeli¸dh analogik suqnìthta            f0 ìpou f0 = 1=T0 kai !0 = 2f0 .
    To sunhmitonoeidè s ma sqetzetai ˆmesa me to migadikì ekjetikì s ma. Prˆg-
mati, an qrhsimopoi soume th sqèsh tou Euler, mporoÔme na ekfrˆsoume to migadikì
ekjetikì s ma me th bo jeia hmitonoeid¸n shmˆtwn th ida jemeli¸dou periìdou
apì th sqèsh
                     ej (!0 t+')        = os( + ) + sin( + )
                                    !0 t ' j !0 t '                       (1.4.2)
MporoÔme, profan¸ , na grˆyoume

           os(!0t + ') = <e[ej(!0 t+') ℄ kai sin(!0t + ') = =m[ej(!0 t+') ℄                              (1.4.3)
12                                                               Eisagwg   sta S mata          Kefˆlaio 1




ìpou   <e[℄ sumbolzei to pragmatikì kai =m[℄ to fantastikì mèro                       migadikoÔ arij-
moÔ.

           x(t)=A cos(2 ð f0 t + ö)

                          T0     2ð
                 A               ù0
           Acos(ö)

                                       T0              t
                                                                 Sq ma 1.13          To sunhmitonoeidè
                -A
                                                                 s ma suneqoÔ        qrìnou.


    H sqèsh tou Euler antistrèfetai kai ètsi mporoÔme na ekfrˆsoume to hmtono
to sunhmtono me th bo jeia ekjetik¸n migadik¸n ìrwn


               os(!0t) = e
                               j!0 t   +e   j!0 t
                                                           sin(!0t) = e
                                                                       j!0 t     e    j!0 t
                                       2            kai
                                                                               2j                (1.4.4)


    To migadikì ekjetikì s ma ej!0 t , ìpw to (sun)hmitonoeidè s ma    !0 t , !0 t ,    os( ) sin( )
enai gnwstˆ w s mata mia suqnìthta        s mata apl   suqnìthta . äpw ja doÔme, ta
s mata autˆ qrhsimopoioÔntai gia na perigrˆyoun ta qarakthristikˆ poll¸n fusik¸n
diadikasi¸n.
    Sto Sq ma 1.14 dnontai tra paradegmata sunhmitonoeid¸n shmˆtwn me diafore-
tik kuklik suqnìthta kai perodo. ParathroÔme ìti, ìtan h kuklik suqnìthta
auxˆnei, !1 < !2 < !3 , h jemeli¸dh perodo elatt¸netai, T1 > T2 > T3 , kai
auxˆnei o rujmì twn talant¸sewn tou s mato , dhlad auxˆnei o rujmì metabol
tou s mato . àna s ma qamhl suqnìthta metabˆlletai me argì rujmì se antjesh me
èna s ma uyhl     suqnìthta pou metabˆlletai me gr goro rujmì.
    H genik perptwsh migadikoÔ ekjetikoÔ s mato suneqoÔ qrìnou enai

                x(t) =      est;      ìpou         = j jej ;   kai   s =  + j!0               (1.4.5)

ètsi
                        x(t) = j j ej e(+j!0 )t = j j et ej (!0 t+)                          (1.4.6)

Me th bo jeia th sqèsh tou Euler èqoume:

             x(t)    = j j et os(!0t + ) + j j j et sin(!0t + )
                     = j j et os(!0t + ) + j j j et os(!0t +                       =2)      (1.4.7)
Enìthta 1.4            Stoiqei¸dh S mata                                                                 13


                            x1(t)= cos(ù1 t )


                                           T1             t


                           x2(t)= cos(ù2 t )


                                   T2                     t


                           x3(t)= cos(ù3 t )

                                                              Sq ma 1.14      H sumperiforˆ tou

                              T3                      t       sunhmitìnou gia diaforetikè          ku-

                                                              klikè   suqnìthte    !1 < !2 < !3 .

         Gia   =0to pragmatikì kai to fantastikì mèro (tm ma) enai (sun)hmitonoeid
          s mata (Sq ma 1.15a).

                      0
          Gia  > ta antstoiqa (sun)hmitonoeid s mata pollaplasiˆzontai me ènan
                                                     ( )
          auxanìmeno ekjetikì parˆgonta et (Sq ma 1.15b).

                      0
          Gia  < ta antstoiqa (sun)hmitonoeid s mata pollaplasiˆzontai me ènan
                                   ( )
          ekjetikì parˆgonta et pou fjnei (Sq ma 1.15g). Ta s mata autˆ enai gnw-
          stˆ w fjnonta hmitonoeid s mata kai emfanzontai sti fjnouse armonikè
          mhqanikè    hlektrikè talant¸sei ìpw ja doÔme.

    Sto Sq ma 1.15 oi diakekommène grammè antistoiqoÔn sti sunart sei                            j j et
kai apoteloÔn thn peribˆllousa th kampÔlh talˆntwsh .


     ℜe x(t) = c cos(ù0 t+è)            ℜe x(t) = c eót cos(ù0 t+è)   ℜe x(t) = c eót cos(ù0 t+è)

                                           c eót                                         c eót
                                                     c
                                   t                              t                                   t
                                             c eót                                         c eót
                 (á)                                 ( â)                         (ã)

Sq ma 1.15        Grafik    anaparˆstash tou pragmatikoÔ mèrou tou migadikoÔ ekjetikoÔ s ma-

to    (a) gia    = 0, (b) gia  > 0 kai (g) gia  < 0.
14                                                                    Eisagwg      sta S mata         Kefˆlaio 1




1.4.2     Migadikì ekjetikì s ma diakritoÔ qrìnou

To   migadikì ekjetikì s ma diakritoÔ qrìnou                orzetai apì th sqèsh

                                                   x(n) =       n                                      (1.4.8)

ìpou      kai      enai genikˆ migadiko arijmo (enallaktikˆ orzetai apì th x                  (n) =  e n
ìpou       =e      ).

                                   x(n)                                    x(n)



                         (a)                   n                                    (â)                 n

                                 x(n)                                       x(n)


                                               n                                                        n

                           (ã)                                                     (ä)

Sq ma 1.16         To pragmatikì ekjetikì s ma diakritoÔ qrìnou (a) gia                   > 1, (b) gia 0 < < 1,
(g) gia     <      1 kai (d) gia 1 <       <0.

     1.   An kai enai pragmatiko arijmo, èqoume ti grafikè parastˆsei tou Sq -
          mato 1.16
     2.   An enai fantastikì arijmì          j 0 kai( =         )          =
                                                           Aej , tìte x n Aej 0 n .            ( )=
          To s ma autì sundèetai me to (sun)hmitonoeidè s ma diakritoÔ qrìnou x n                        ( )=
          A  os(       + )
                 0 n  me th bo jeia th sqèsh tou Euler. Prˆgmati,
                                                     A
                               A   os(    0 n + ) = 2 ej ej        0n   + A2 e   j e j 0 n

          ìpou     0 enai h jemeli¸dh         yhfiak    kuklik       suqnìthta.

     3.   H genik perptwsh             =j j   ej kai      =j j     ej 0 dnei
                        x(n)       = j jj jej( 0 n+)
                                   = j jj jn os( 0 n + ) + j j jj jn sin(                 0 n + )     (1.4.9)

    Sto Sq ma 1.17 eikonzontai to pragmatikì mèro tou migadikoÔ ekjetikoÔ s mato
diakritoÔ qrìnou, gia ti peript¸sei ìpou a < kai a > .      jj 1            jj 1
    An to n den èqei diastˆsei , tìte h yhfiak kuklik suqnìthta 0 kai h gwna 
èqoun diastˆsei gwna (rad).
Enìthta 1.4        Stoiqei¸dh S mata                                                                  15



               ℜe x(t)                                                           ℜe x(t)
                                 c an                          c an

                                             n                                                    n

                             c an                                   c an
                    (á)                                                    (â)

Sq ma 1.17     To pragmatikì mèro       tou migadikoÔ ekjetikoÔ s mato           diakritoÔ qrìnou (a) gia

j j < 1, kai (b) gia j j > 1.
1.4.3   Idiìthte    twn ekjetik¸n shmˆtwn

   1.   H pr¸th idiìthta aforˆ thn periodikìthta tou migadikoÔ ekjetikoÔ s mato
        diakritoÔ qrìnou, w pro th suqnìthta. Ta migadikˆ ekjetikˆ s mata suneqoÔ
        qrìnou, ej!1 t kai ej!2 t , an !1        6=
                                           !2 enai diaforetikˆ s mata. To migadikì
        ekjetikì s ma diakritoÔ qrìnou, me kuklik suqnìthta 0                      +2
                                                                    enai to dio me
        to antstoiqo th kuklik suqnìthta       0 . Prˆgmati,

                                    ej ( 0 +2)n = ej 2n ej   0n   = ej    0n

        àtsi, to ekjetikì s ma diakritoÔ qrìnou me kuklik suqnìthta 0 enai to dio
        me ta ekjetikˆ s mata pou èqoun kuklikè suqnìthte       0 ; 0 ; :::      +2           +4
        kai gia to lìgo autì to migadikì ekjetikì s ma diakritoÔ qrìnou qreiˆzetai na
        perigrafe sto diˆsthma kuklik¸n suqnot twn          0<   0            2
                                                                              0 < .        
        Sto ekjetikì s ma suneqoÔ qrìnou parathroÔme ìti ìso auxˆnei h w tìso
        auxˆnei kai o rujmì twn talant¸sewn. Sta ekjetikˆ s mata diakritoÔ qrìnou,
        ìso to 0 auxˆnei apì 0 mèqri thn tim  , èqoume s mata me rujmì talˆntwsh
        pou epsh auxˆnetai (Sq ma 1.18). An to 0 auxˆnetai apì thn tim  mè-
        qri thn tim      2
                       , èqoume t¸ra mewsh tou rujmoÔ talˆntwsh . àtsi, s mata
        diakritoÔ qrìnou, ta opoa parousiˆzoun mikroÔ rujmoÔ metabol (qamhlè
        suqnìthte ), apoteloÔntai apì suqnìthte pou brskontai sth perioq tou 0 kai
        se kˆje ˆrtio pollaplˆsio tou  . Antjeta, s mata diakritoÔ qrìnou, ta opoa
        parousiˆzoun megˆlou rujmoÔ metabol (uyhlè suqnìthte ), apoteloÔntai
        apì suqnìthte sthn perioq tou  kai se kˆje perittì pollaplˆsio tou  .
   2.   H deÔterh idiìthta aforˆ thn periodikìthta tou migadikoÔ ekjetikoÔ s mato
        diakritoÔ qrìnou, w pro th metablht n. An to ej 0 n enai periodikì me
                         0
        perodo N > , prèpei

              ej 0 (n+N ) = ej   0n   =) ej      0N   = 1 =) os(      0 N ) + j sin( 0 N ) = 1
16                                                           Eisagwg   sta S mata          Kefˆlaio 1




     x(n)=cos(0n)=cos(2ðn)                                  x(n)=cos (ð n = cos (158ð n(
                                                                      8 (
               (á)                                                       (â)




         x(n)=cos (ð n = cos (74ð n(                             x(n)=cos (ð n = cos (32ð n(
                                                                           2 (
                   4 (
                    (ã)                                                     ( ä)




                                            x(n)=cos(ðn)
                                                 (å)
Sq ma 1.18        Hmitonoeid    s mata diakritoÔ qrìnou gia suqnìthte     (a) 0 kai 2p, (b) p/8 kai

15p/8, (g) p/4 kai 7p/4, (d) p/2 kai 3p/2 kai (e) p.



         dhlad , to       0N   prèpei na enai pollaplˆsio tou 2p ètsi

                                                         0
                                           0 N = 2k =) 2     = Nk                         (1.4.10)


         ParathroÔme ìti to migadikì ekjetikì s ma diakritoÔ qrìnou den enai genikˆ
                                               2
         periodikì, enai periodikì an 0 =  enai rhtì arijmì .

     àqoume, loipìn, gia ta migadikˆ ekjetikˆ s mata diakritoÔ qrìnou

      An x(n) enai periodikì me jemeli¸dh perodo N , h jemeli¸dh suqnìthta enai
       2=N .
      Gia na enai periodikì prèpei 0=2 = k=N . An oi k kai N enai pr¸toi metaxÔ
         tou , tìte h jemeli¸dh perodo enai        N.
        H jemeli¸dh perodo           mpore na grafe N   = k(2= 0 ).
        Ta migadikˆ ekjetikˆ s mata suneqoÔ qrìnou pou èqoun kuklikè suqnìthte
         pollaplˆsie th jemeli¸dou !0        =T0 (armonikè ), ejk(2=T0 )t , enai di-
                                                   =2
Enìthta 1.4        Stoiqei¸dh S mata                                                             17



        aforetikˆ, dhlad
                                          2          2
                                       ejk T t 6= ejm T t         k 6= m
       Den isqÔei ìmw to dio gia ta diakritoÔ qrìnou, ìpou lìgw th ej ( 0 +2)n                 =
        ej 0 n ta s mata fk n ejk(2=N )n ; k
                             ( )=                             = 0 1
                                                     ; ; ::: enai ta dia gia timè
        tou k pou diafèroun pollaplˆsio tou N . Prˆgmati,

                        fk+N n ej (k+N ) N n ej 2n ejk N n fk n
                                          2            2
                               ( )=                      =                 = ()
    ParathroÔme ìti upˆrqoun mìno N diaforetikˆ migadikˆ ekjetikˆ s mata diakri-
toÔ qrìnou twn opown oi suqnìthte enai pollaplˆsia th jemeli¸dou . Ta s mata
autˆ orzoun to sÔnolo A       =f ( )               ()         ()
                               f0 n ; f1 n ; f2 n ; :::; fN 1 n . An fk n den( )g           ()
an kei sto A, tìte enai dio me èna apì autˆ, dhlad fN n                ( )= ( )
                                                               f0 n ; f 1 n                  ( )=
        ()
fN 1 n kai oÔtw kajex .
              ()
    àstw x n h akolouja diakritoÔ qrìnou, h opoa proèrqetai apì th deigmatolh-
ya tou ekjetikoÔ s mato ej!0 t se shmea ta opoa isapèqoun katˆ qronikˆ diast -
mata sa me TÆ
                             x n ej!0 nTÆ ej (!0 TÆ )n
                                   ( )=                  =
An 0 enai h yhfiak kuklik suqnìthta tìte x n                ( ) = ej   0 n . Sugkrnonta ti dÔo ek-
               ()
frˆsei tou x n èqoume th sqèsh metaxÔ analogik                    kai yhfiak     kuklik   suqnìth-
ta
                                               0 = !0 TÆ                                    (1.4.11)
To analogikì s ma x t    ( ) = os( )
                               !0 t enai gia kˆje tim th !0 periodikì. To s -
ma diakritoÔ qrìnou x n   ( ) = os( )
                                   0 t enai periodikì mìno ìtan 0 =  k=N            2 =
        2 =                                                                 ()
!0 TÆ =  k=N . ParathroÔme ìti to s ma diakritoÔ qrìnou x n , to opoo prokÔptei
apì to periodikì analogikì s ma x t( ) = os( )
                                             !0 t , enai periodikì an o lìgo th pe-
riìdou deigmatolhya TÆ pro thn perodo T0 tou analogikoÔ s mato enai rhtì
arijmì , dhlad
                                               TÆ
                                               T0
                                                    = Nk                                    (1.4.12)

Prˆgmati, an deigmatolhpt soume to periodikì analogikì s ma x t                  t( ) = os(2 )
me periìdo TÆ      = 1 12
                   = , prokÔptei to s ma diakritoÔ qrìnou x n                  ( ) = os(2 12)
                                                                             n= ,
(blèpe Sq ma 1.19a), to opoo enai periodikì, afoÔ ikanopoietai h sunj kh (1.4.12).
ParathroÔme ìti h perodo tou analogikoÔ s mato , grammoskiasmènh perioq , sum-
pptei me thn perodo tou s mato diakritoÔ qrìnou. Se anˆloga sumperˆsmata
katal goume ìtan h perodo deigmatolhya enai TÆ                   = 4 31
                                                           = (blèpe Sq ma 1.19b).
Sthn perptwsh aut h perodo tou s mato diakritoÔ qrìnou enai sh me tèsseri
periìdou tou analogikoÔ s mato . Antjeta, an h perodo enai TÆ            = , to   = 1 12
                            ()                               ()
s ma diakritoÔ qrìnou x n , se antjesh me to x t , den enai periodikì (blèpe Sq ma
1.19g).
18                                                                        Eisagwg      sta S mata       Kefˆlaio 1




                •••                                                 •••
                                                                              x(n)=cos (2ð n(
                                                                                               12

                                        (á)

                 •••                                                 •••

                                                                              x(n)=cos (8ð n(
                       12                                      31                              31


                                        (â)

                   •••                                              •••
                                                                               x(n)=cos ( 12
                                                                                           1 n
                                                                                              (
                                        (ã)

Sq ma 1.19      Hmitonoeid       s mata diakritoÔ qrìnou, (a) kai (b) periodikˆ (g) mh periodikì.



1.4.4   H sunˆrthsh monadiaou b mato                      suneqoÔ         qrìnou

Ma eidik morf s mato enai h                 sunˆrthsh monadiaou b mato                      suneqoÔ qrìnou, h
opoa orzetai w                                      
                                          u(t) =          0;   t<0
                                                          1;   t>0                                       (1.4.13)

kai èqei th morf tou Sq mato 1.20a.

                   u(t)                                                   uÄ(t)
                         1                                                    1


                            0                 t                                   0     Ä           t
                                (á)                                                   (â)

Sq ma 1.20      (a) H sunˆrthsh monadiaou b mato                    (suneqoÔ          qrìnou) kai (b) h suneq

prosèggish th   sunˆrthsh         monadiaou b mato .


                       ()
    H sunˆrthsh u t enai asuneq kai den orzetai sto                                 t = 0.   àna ˆllo trìpo
                                  ()
na doÔme th sunˆrthsh u t enai w ìrio th
                                                  8
                                                  < 0; t < 0
                                      u (t) =      1 t; 0 < t < 
                                                  : 
                                                                                                         (1.4.14)
                                                    1; t  
Enìthta 1.4      Stoiqei¸dh S mata                                                                       19



H sunˆrthsh u    (t) fanetai sto Sq         ma 1.20b. ParathroÔme ìti u       (t) = lim!0 u(t).
1.4.5    H kroustik     sunˆrthsh suneqoÔ              qrìnou         sunˆrthsh dèlta

Idiatero endiafèron parousiˆzei h parˆgwgo th sunˆrthsh                        u (t)
                                                       8
                                       du (t)         <  0; t < 0
                         Æ (t)                  =:       1
                                         dt                ; 0 < t <                           (1.4.15)
                                                          0; t > 
h opoa den orzetai sta shmea asunèqeia                0 kai  kai fanetai sto Sq         ma 1.21a.

                      äÄ(t)                                             ä(t)
                         1                                                1
                         Ä


                          0 Ä                 t                            0             t
                          (á)                                             (â)

      Sq ma 1.21 (a) H parˆgwgo        th    sunˆrthsh      u(t) kai (b) h sunˆrthsh dèlta Æ(t).
                                                  ()
    ParathroÔme ìti to embadì th Æ t enai so me th monˆda gia kˆje tim th                             
                          ()
kai ìti h sunˆrthsh Æ t enai sh me to mhdèn èxw apì to diˆsthma    t    . ätan   0 
!0     h qronik diˆrkeia tou palmoÔ elatt¸netai, kai auxˆnetai to plˆto tou, en¸
to embadì paramènei stajerì kai so me th monˆda.
    Sto ìrio   !0   to eÔro tou palmoÔ tenei sto mhdèn kai to plˆto tenei sto
ˆpeiro. Orzoume th sunˆrthsh Æ t w     ()
                                        Æ(t) = lim Æ (t)                                        (1.4.16)
                                               !0
H   Æ(t) onomˆzetai sunˆrthsh dèlta
                                 sunˆrthsh dirac     kroustik sunˆrthsh.
   ParathroÔme ìti h kroustik sunˆrthsh enai sh me thn parˆgwgo th sunˆrthsh
monadiaou b mato .
                                                         du(t)
                                              Æ(t) =                                             (1.4.17)
                                                          dt
      àna genikìtero orismì th              Æ(t) enai
                                       Æ(t) = 0;             t 6= 0                              (1.4.18)

kai                            Z   1
                                       x(t)  Æ(t t0 ) dt = x(t0 )                               (1.4.19)
                                   1
20                                                               Eisagwg   sta S mata         Kefˆlaio 1




ìpou   x(t)    enai suneq    sunˆrthsh sto t0 . H (1.4.19) anafèretai kai w idiìthta
olsjhsh      th kroustik     sunˆrthsh . Apì thn (1.4.19) parathroÔme ìti, an x t   ,          ( )=1
                                        Z   1
                                                 Æ(t) dt = 1                                    (1.4.20)
                                             1
                        ()
   H sunˆrthsh Æ t grafikˆ paristˆnetai ìpw sto Sq ma 1.21b. To mètro tou dia-
nÔsmato , to opoo qrhsimopoioÔme gia na apod¸soume th sunˆrthsh dèlta, epilègetai
¸ste na enai so me to embadì th , dhlad so me 1.
   Ma basik idiìthta th sunˆrthsh dèlta enai

                                            Æ(t) = Æ( t)
Ma ˆllh qr simh idiìthta th         Æ(t) enai h idiìthta th          allag      klmaka qrìnou

                                              1
                                   Æ( t) = Æ(t);                 >0                             (1.4.21)


Parˆdeigma 1.4.1
       Na exetˆsete an ta parakˆtw s mata enai periodikˆ              ìqi. An to s ma enai periodikì,
       na upologiste h jemeli¸dh     suqnìthtˆ tou.

         1.   x(t) = 3 os(5t + =4)
         2.   x(t) = 2ej(t 1)
              x(t) = 1
                     P          (t 2n)2
         3.            n= 1 e
         4.   x(t) = ( os(2t))u(t)
       LÔsh


         1. Exetˆzoume an upˆrqei jetikì          arijmì   T   gia ton opoo   x(t + T ) = x(t) gia kˆje
              tim              t
                     tou qrìnou . àtsi èqoume


                     x(t + T ) = x(t) =) 3  os(5t + 5T + =4) = 3 os(5t + =4)                  (1.4.22)


              Gnwrzoume ìmw ìti an    os  = os , tìte '   = 2k, kai epomènw             prokÔptei
              ìti:


                (5t + 5T + =4) + (5t + =4) = 2k =) T = (2k)=5 2t                     =10   (1.4.23)




                        (5t + 5T + =4) (5t + =4) = 2k =) T = (2k)=5                         (1.4.24)

              Apì thn (1.4.23) den prokÔptei stajer            tim   gia thn perodo. Apì thn (1.4.24)
              parathroÔme ìti to s ma enai periodikì me jemeli¸dh perodo              T0   = 2=5 kai
              jemeli¸dh suqnìthta   f0 = 5=2.
Enìthta 1.4              Stoiqei¸dh S mata                                                                                       21



         2. Me ìmoio trìpo èqoume


                                x(t + T ) = x(t) ) 2ej(t+T 1) = 2ej(t 1) ) ejT                             =1
                                          os(T ) + j sin(T ) = 1 ) T = 2k ) T = 2k
                ParathroÔme ìti to s ma enai periodikì me jemeli¸dh perodo                                       T0   = 2 kai
                jemeli¸dh suqnìthta f0 = 1=2.
         3.     H qronikˆ metatopismènh katˆ T                 morf         tou s mato

                                                                    1
                                                                    X
                                                                                e (t 2n)
                                                                                         2
                                                          x(t) =                                                            (1.4.25)
                                                                   n=       1
                      x(t + T ) = 1         e (t+T 2n) jètonta T = 2k èqoume x(t + 2k) =
                                   P                   2
                enai
                P1                    n = 1
                   n= 1 e
                            [(t 2(n k)℄2 me allag metablht n k = m to s ma apoktˆ th
                morf
                                                        X1
                                                           e (t 2m)
                                                                    2
                                          x(t + 2k) =                                  (1.4.26)
                                                      m= 1
                Sugkrnonta ti (1.4.25) kai (1.4.26) parathroÔme ìti x(t + 2k ) = x(t), ˆra to
                s ma enai periodikì me perodo T = 2k . H jemeli¸dh perodo tou s mato
                enai T0 = 2 kai h jemeli¸dh suqnìthta f0 = 1=2.

         4. ParathroÔme ìti to s ma
                                                                   
                                          x(t) = (   os(2t))u(t) = 0os(2
                                                                     ;
                                                                          t);                    t>0
                                                                                                  alli¸
                                                                                                                            (1.4.27)


                den enai periodikì.


Parˆdeigma 1.4.2
      An  x(t) enai to s ma pou dnetai sto Parˆdeigma 1.3.1 (1.3.5), na upologistoÔn ta
         1. y1 (t) = x(t)u(t)

         2. y2 (t) = x(t)Æ (t 1)
              x(t)                                   y1(t)                                   y2(t)
                2                                         2                                        2

       2 t+2                 2- t                                  2- t                            1

           -1        0   1     2      t              -1    0   1        2         t          -1        0   1   2        t

              Sq ma 1.22            Grafikè    parastˆsei      gia ta s mata           x(t), y1 (t) kai y2 (t).
      LÔsh

         1. Me th bo jeia th sqèsh orismoÔ th                           sunˆrthsh    u(t) parathroÔme
                                                                                                     ìti to s ma

                y1 (t) enai to aitiatì tm       ma tou s mato
                                                                                                  2
                                                                          x(t), dhlad , y1 (t) = 0;  t;  0t<2                         .
                                                                                                         alli¸
22                                                                        Eisagwg        sta S mata           Kefˆlaio 1




        2. To s ma   y2 (t) enai h sunˆrthsh dèlta qronikˆ metatopismènh katˆ 1 me plˆto
             x(1) = 1, dhlad , y2 (t) = x(1)Æ(t 1).
     Sto Sq ma 1.22 eikonzontai ta s mata              x(t), y1 (t) kai y2 (t).
Parˆdeigma 1.4.3

     Na anaptuqje èna tuqao analogikì s ma se ˆjroisma apì olisj sei                                 th    kroustik
     sunˆrthsh .



                       x(t)                                          x(t)

                                                            x(t)

                                                 t                   -Ä 0 Ä 2Ä           kÄ       t
                              (a1)
                                                                           (a2)
                                                                                x(-2Ä)äÄ(t+2Ä)Ä
                                                                                x(-2Ä)


                                                                   -2Ä      0
                                                                                (â)
                                                                                                  t
                                                                                x(-Ä)äÄ(t+Ä)Ä
                                                                                x(Ä)



                                                                     -Ä 0
                                                                                 (ã)              t
                                                                                x(0)äÄ(t)Ä
                                                                         x(0)



                                                                            0 Ä                   t
                                                                                (ä)

Sq ma 1.23    Anˆptugma s mato suneqoÔ qrìnou se olisj sei th kroustik                                      sunˆrthsh .


     LÔsh     àstw to tuqao analogikì s ma                 x(t) tou Sq mato 1:23a1. JewroÔme to kli-
     makwt      morf     s ma        x^(t), tou Sq   mato    1:23a2, to opoo proseggzei to s ma x(t).
     Upenjumzoume ìti h     Æ(t t0) enai èna palmì                           me arq      th qronik     stigm    t0 , me
     diˆrkeia    kai plˆto so me èna. O palmì , tou Sq                          mato    1.23b, me arq       th qronik
     stigm    t = 2 kai Ôyo so me thn tim tou s mato                            thn dia qronik     stigm ,   x(    2)
     ekfrˆzetai apì thn

                                               x(    2)Æ(t + 2)                                             (1.4.28)


     Me anˆlogo trìpo ekfrˆzontai kai oi ˆlloi palmo, oi opooi prosdiorzontai apì to
Enìthta 1.4          Stoiqei¸dh S mata                                                                                      23



      s ma    x^(t) (blèpe Sq        ma 1.23g kai d). àtsi to s ma                x^(t) ekfrˆzetai apì thn exswsh
                                                      1
                                                      X
                                            x^(t) =                x(k)Æ (t k)                                    (1.4.29)
                                                      k=       1
      An     ! 0, to s    ma       x^(t) ! x(t), ètsi
                                                               1
                                                               X
                                       x(t) = lim
                                                 !0
                                                                       x(k)Æ (t k)                                (1.4.30)
                                                       k=          1
      ätan     ! 0, to k gnetai h suneq metablht  , to parapˆnw ˆjroisma grˆfetai
      w     olokl rwma kai epeid Æ(t) = lim!0 Æ(t), to s ma x(t) dnetai apì thn exswsh
                                        Z   1                                Z   1
                           x(t) =                x( )Æ(t  ) d         =           x( )Æ(         t) d           (1.4.31)
                                             1                                   1
      To parˆdeigma autì anadeiknÔei mia fusik                           proèktash th              (1.4.19) kai ja ma   fane
      qr simh sto epìmeno kefˆlaio.

Parˆdeigma 1.4.4
      Dnetai to s ma tou Sq mato                 1.24a. Na sqediˆsete ta s mata   x+ (t) = x(t)u(t) kai
      x (t) = x( t)u(t). Parathr                              +
                                                  ste ìti ta x (t) kai x (t) enai aitiatˆ s mata kai to
                    x(t) mpore na ekfraste w
      mh aitiatì s ma                                                    ˆjroisma twn dÔo aut¸n shmˆtwn me th
      bo jeia th      sqèsh
                                                  x(t) = x+ (t) + x              ( t)                                 (1.4.32)



                        x(t)                                                            x(-t)
                          1                                                                1



       -2       -1             0            1              t                 -1                0         1        2     t
                           (a)                                                             ( â)
                  x(t) u(t)                                                      x(-t)u(t)
                          1                                                               1



       -2       -1             0            1          t                     -1                0         1        2     t
                              (ã)                                                          (ä)

                        Sq ma 1.24              Ta s mata tou Paradegmato                      1.4.4.

      LÔsh      Sto Sq ma 1.24a eikonzetai to s ma            x(t), kai sto Sq ma 1.24b h anˆklas tou
      x( t).    To aitiatì tm ma tou s mato               x(t), x+ (t) = x(t)u(t) eikonzetai sto Sq ma
      1.24g kai to aitiatì tm ma tou s                 mato x( t), x (t) = x( t)u(t) eikonzetai sto
      Sq ma 1.24d.
24                                                                          Eisagwg   sta S mata           Kefˆlaio 1




        ParathroÔme apì ta diagrˆmmata ìti to s ma               x(t) enai so me to ˆjroisma tou s           mato
        x+ (t) kai th        anˆklash    x       ( t) tou s mato x (t), dhlad , enai
                                                   x(t) = x+ (t) + x ( t)

1.4.6    O orjog¸nio             palmì


O orjog¸nio palmì monadiaou plˆtou me monadiaa qronik diˆrkeia sumbolzetai
w    ( )
     t kai dnetai apì to majhmatikì tÔpo
                                                          
                                                           tj < 12
                                             (t) = 10;; jalli¸                                             (1.4.33)


O orjog¸nio palmì ekfrˆzetai w diaforˆ dÔo katˆllhla olisjhmènwn bhmatik¸n
sunart sewn. Prˆgmati,
                                                                     
                               (t) = u          u t
                                                       1  t+
                                                             1
                                                       2     2                                              (1.4.34)


Sto Sq      ma 1.25 upˆrqei h grafik parˆstash tou A(t=T1 ), dhlad                            , enì orjog¸niou
palmoÔ qronik           diˆrkeia        T1 kai plˆtou A.

               A Ð ( Tt1 (
                        A


                                                          Sq ma      1.25      O   orjog¸nio       palmì    qronik
                T1           0    T1         t
                2                 2                       diˆrkeia    T1 kai plˆtou A.



1.4.7    O trigwnikì             palmì


O trigwnikì palmì monadiaou plˆtou sumbolzetai w                                     (t) kai dnetai apì to
majhmatikì tÔpo
                                                  8
                                                  <   t + 1;        1t<0
                                       (t) = :          t + 1;    0t<1                                    (1.4.35)
                                                      0;           alli¸

Sto Sq ma 1.26 upˆrqei h grafik parˆstash trigwnikoÔ palmoÔ.
Enìthta 1.4         Stoiqei¸dh S mata                                                                25


                   Ë(t)
                     1



              -1          0      1     t                  Sq ma 1.26   O trigwnikì   palmì   (t).

1.4.8   H sunˆrthsh klsh


H   sunˆrthsh klsh           sumbolzetai w   r(t) kai dnetai apì to majhmatikì tÔpo
                                                    
                                           r(t) =       t; t  0
                                                        0; t < 0                              (1.4.36)


H sunˆrthsh klsh ekfrˆzetai kai

                                               r(t) = tu(t)                                   (1.4.37)

Sto Sq ma 1.27 upˆrqei h grafik parˆstash th sunˆrthsh klsh .

                   r(t)




                          0            t                  Sq ma 1.27   H sunˆrthsh klsh     r(t).


1.4.9   H sunˆrthsh pros mou


H   sunˆrthsh pros mou          sumbolzetai w sgn(t) kai dnetai apì to majhmatikì tÔpo
                                               
                                       sgn(t) = 1;1; tt >< 00                      (1.4.38)


Sto Sq ma 1.28 upˆrqei h grafik parˆstash th sunˆrthsh pros mou.

               sgn(t)
                    1

                                       t
                          -1                            Sq ma 1.28   H sunˆrthsh pros mou    sgn(t).
26                                                                      Eisagwg   sta S mata         Kefˆlaio 1




1.4.10     Monadiaa bhmatik                akolouja - Monadiao b ma diakritoÔ qrìnou

H monadiaa bhmatik akolouja to monadiao b ma diakritoÔ qrìnou lambˆnetai apì
th sunˆrthsh monadiaou b mato , an antikatast soume to t me to n kai upologsoume
autì mìno gia akèraie timè tou qrìnou. àtsi, èqoume
                                                      
                                            u(n) =         0;    n<0
                                                           1;    n0                                  (1.4.39)


Sto Sq ma 1.29 èqoume th grafik                      parˆstash tou monadiaou b mato diakritoÔ
qrìnou.

                u(n)


           -4    -2     0   2       4        n
                                                      Sq ma 1.29         H monadiaa bhmatik       akolouja.




1.4.11     To monadiao degma - Kroustik                      akolouja

To   monadiao degma           h   kroustik     akolouja      orzetai me th sqèsh
                                                     
                                            Æ(n) =        1;    n=0
                                                          0;    alli¸
                                                                                                      (1.4.40)


Sto Sq ma 1.30 èqoume th grafik parˆstash th kroustik akolouja . H monadi-
aa bhmatik akolouja sundèetai me th kroustik akolouja me th sqèsh

                                                       1
                                                       X
                                             u(n) =            Æ (n k )                               (1.4.41)
                                                       k=0
en¸ h kroustik akolouja sundèetai me th monadiaa bhmatik akolouja me th sqèsh

                                            Æ(n) = u(n) u(n              1)                           (1.4.42)

                     ä(n)


                -4     -2   0   2       4        n
                                                                     Sq ma 1.30       H kroustik    akolouja.



Parˆdeigma 1.4.5
         Na anaptuqje to s ma diakritoÔ qrìnou                 x(n), tou Sq   mato   1.31a, se ˆjroisma apì
         olisj sei      monadiaou degmato .
Enìthta 1.4         Stoiqei¸dh S mata                                                                27



                  x(n)

                                          -2                   2       4         n     (a)
                               -4                     0
              x (-2)ä(n+2)

                                                                                 n     (â)
                               -4         -2          0         2      4
              x (-1)ä(n+1)

                                                                                 n     (ã)
                               -4         -2         0          2      4

                x(0) ä(n)
                                                                                       (ä)
                               -4         -2         0          2      4         n

               x(1) ä(n-1)

                                                                                 n     (å)
                               -4         -2         0          2      4

               x(2) ä(n-2)

                                                                                 n     (óô)
                               -4         -2          0         2      4

  Sq ma 1.31      Anˆptugma s mato             diakritoÔ qrìnou se olisj sei   monadiaou degmato .



      LÔsh      Upenjumzoume ìti       Æ(n n0 ) enai h akolouja th opoa ìla ta stoiqea enai
      mhdenikˆ, ektì        apì to stoiqeo gian = n0 , to opoo enai so me èna. H akolouja tou
      Sq mato 1.31b, th         opoa ìla ta stoiqea enai sa me mhdèn, ektì apì to stoiqeo th
      qronik     stigm   n=         2, to opoo enai so me x( 2), ekfrˆzetai apì th
                                                  x( 2)Æ(n + 2)
      Me anˆlogo trìpo ekfrˆzontai kai oi akolouje                 sta Sq mata 1.31g èw     st. àtsi to
      s ma diakritoÔ qrìnou          x(n) tou Sq     mato   1.31a, mpore na ekfraste w

                                                      1
                                                      X
                                           x(n) =             x(k)Æ(n k)                        (1.4.43)
                                                     k=   1

    SÔnoyh Kefalaou
    Sto kefˆlaio autì dìjhke o orismì th ènnoia “s ma" kai h majhmatik th
èkfrash. Katatˆxame ta s mata se trei kathgore , ta analogikˆ s mata, ta s mata
diakritoÔ qrìnou kai ta yhfiakˆ s mata. Perigrˆyame ti basikè idiìthte pou èqoun
ta analogikˆ kai yhfiakˆ s mata, pou apoteloÔn to antikemeno autoÔ tou biblou,
kai anafèrame ti metabolè pou ufstatai èna s ma w pro to qrìno.
28                                                             Eisagwg   sta S mata   Kefˆlaio 1




    Epsh , sto kefˆlaio autì perigrˆyame to migadikì ekjetikì s ma kai to hmito-
noeidè s ma. Anafèrame dÔo shmantikè sunart sei , th sunˆrthsh monadiaou b -
mato kai th sunˆrthsh dèlta. Tèlo , anafèrame th sunˆrthsh tou orjog¸niou pal-
moÔ, thn trigwnik sunˆrthsh, th sunˆrthsh klsh kai th sunˆrthsh pros mou.




1.5    PROBLHMATA

 1.1   Poiˆ apì ta s mata enai periodikˆ;
         1.   x1 (t) = sin(10t)
         2.   x2 (t) = sin(20t)
         3.   x3 (t) = sin(31t)
         4.   x4 (t) = x1 (t) + x2 (t)
         5.   x5 (t) = x1 (t) + x3 (t)
 1.2   Dnetai to s ma,                     8
                                            < 2t + 2; 1  t < 0
                                  x(t) =      2 t; 0  t < 2
                                            :
                                              0;      alli¸
       Na sqediˆsete ta s mata
         1.   y1 (t) = x(t + 1)
         2.   y2 (t) = x(2t)
         3.   y3 (t) = x(t=2)
         4.   y4 (t) = x(1 t)
         5.   y5 (t) = x(2t 1)
 1.3   Na sqediasjoÔn ta s mata
         1.   x1 (t) = (2t + 6)
         2.   x2 (t) = (2t 1)
         3.   x3 (t) = r( 0; 5t + 2)
         4.   x4 (t) = sin (2(t 3))
 1.4   Dnetai to s ma                      8
                                            <   t;            0t<1
                                   x(t) =            t + 2;   1t<2
                                            :
                                                0;            alli¸
       Na sqediasjoÔn ta s mata
Enìthta 1.5                 Probl mata                                                                                     29



            y1 (t) = xo (t)u(t)
               1.

         2. y2 (t) = xe (t)u(t)

       ìpou xo (t) enai to perittì mèro                   tou s mato     x(t) kai xe (t) enai to ˆrtio mèro
       tou.

 1.5   Na exetˆsete an ta parakˆtw s mata enai periodikˆ                                  ìqi. An to s ma enai
       periodikì, na upologiste h jemeli¸dh suqnìthtˆ tou.
               1.   x1 (t) = 2 os(3t + =4)
               2.   x2 (t) = ej (t 1)
               3.   x3 (n) = os(8n=7 + 2)
               4.   x4 (n) = ej (n=8 )
               5.   x5 (n) = sin2 (t =6)
               6.   x6 (n) = os(n2 =8)
               7.   x7 (n) = os(n=4) os(n=4)
               8.   x8 (n) = 2 os(n=4) + sin(n=8)                  2 os(n=2           =6)
                             P
               9.   x9 (t) = 1   n= 1 e
                                        (t 3n)2
 1.6   Na exetaste an ta s mata enai energeiakˆ s mata                                   s mata isqÔo kai na
       upologiste h enèrgeiˆ tou h isqÔ tou .
               1.   x1 (t) =  e t u(t);                  >0
               2.   x2 (t) = A os(!0 t + )
               3.   x3 (t) = Aej (!0 t+)
 1.7   Na sqediasjoÔn ta s mata.
               1.   x(t) = 2Æ (t) + 3Æ (t           1) + 5Æ(t 2)  = 1
               2.   y(t) = u(t + 2) u(t              1)
 1.8   Dnetai to s ma              x(t) tou Sq     mato 1.32.

    x(t)                                        g(t)                    y(t)                                    z(t)
       1                                                                                                               1
                                                       1                       1


  -1       0        1   t      -4    -3   -2   -1     0     t   -2   -1    0       1 t      -4   -3   -2   -1      0       t

                                Sq ma 1.32          Ta s mata tou Probl mato             1.8.
30                                                           Eisagwg   sta S mata       Kefˆlaio 1




         1.   Na ekfrˆsete to s ma     x(t) me th bo jeia th bhmatik           sunˆrthsh    u(t).
         2.   Na ekfrˆsete ta s     mata g (t), y (t) kai z (t) tou Sq mato    1.32 me th bo jeia
                             ()
              tou s mato x t .

 1.9   Qrhsimopoi¸nta ti metatropè s mato w pro to qrìno, na gnei h grafik
       parˆstash se sunˆrthsh me to qrìno tou s mato x t    t      ìpou( ) = (2 3)
                                                                           t                 ( )
       enai o trigwnikì palmì

1.10   Dnetai to s ma     x(t) tou Sq      mato 1.33.

          x(t)
        2Volts
              1

         -1    0   1   2     3    t (sec)           Sq ma 1.33    To s ma tou Probl mato     1.10.



         1.   Na ekfraste to s ma          x(t) me th bo   jeia th sunˆrthsh klsh kai tou
              orjog¸niou palmoÔ.
         2.   Na breje h enèrgeia tou s mato .

1.11   Na breje h parˆgwgo twn shmˆtwn
         1.   tou orjog¸niou palmoÔ (t)
         2.   tou trigwnikoÔ palmoÔ (t)
         3.   th sunˆtrhsh pros mou sgn(t).
       kai na gnei h grafik parˆstash twn antstoiqwn parag¸gwn.



     Bibliografa

1.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
1.2    A. Mˆrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
 sei   Tziìla 2012.

1.3     S. Haykin, B. Veen, “Signal and Systems”, John          & Wiley Sons, Inc. 2003
1.4    A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
 Hall Inc., N. Y., 1983.
1.5.   R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals             & Systems Continuous and
 Discrete”, Prentice Hall, 1998.
                                                                 ÊÅÖÁËÁÉÏ 2

                           ÅÉÓÁÃÙÃÇ ÓÔÁ ÓÕÓÔÇÌÁÔÁ




    Skopì tou kefalaou autoÔ enai na d¸sei ma genik eikìna tou ti enai sÔsthma,
na katatˆxei ta sust mata anˆloga me ton arijmì kai to edo twn epitrepìmenwn
eisìdwn kai exìdwn kai na perigrˆyei ti basikè idiìthtè tou . Sto kefˆlaio autì ja
perigrafe h mèjodo prosdiorismoÔ th exìdou enì sust mato , ìtan gnwrzoume thn
esodì tou, kaj¸ kai thn èxodì tou ìtan h esodì tou diegeretai apì th sunˆrthsh
dèlta. Sth sunèqeia ja dexoume ìti se ma eidik kathgora susthmˆtwn, ìtan h
esodo enai to migadikì ekjetikì s ma kuklik suqnìthta !0 , tìte kai h antstoiqh
èxodo enai, epsh , èna migadikì ekjetikì s ma me thn dia kuklik suqnìthta, to
plˆto kai h fˆsh tou opoou èqoun uposte ma allag pou prokale to sÔsthma.
Tèlo , ja efarmìsoume ta parapˆnw se aplˆ hlektrikˆ kai mhqanikˆ sust mata.




   Eisagwg


    Sto prohgoÔmeno kefˆlaio asqolhj kame me basikoÔ orismoÔ kai ènnoie pou
aforoÔn sta s mata. Sto kefˆlaio autì ja asqolhjoÔme me ta sust mata. To
perieqìmeno th ènnoia tou sust mato enai genikì. Suqnˆ qrhsimopoioÔme th lè-
xh “sÔsthma” gia na anaferjoÔme se èna “sÔnolo dom¸n” kai “leitourgi¸n”. Eme
ìmw ja estiˆsoume to endiafèron ma se ma eidik shmasa th ènnoia tou susth-
mˆto , aut n pou èqei ˆmesh sqèsh me ta s mata. Sugkekrimèna, sth Jewra Susth-
mˆtwn sÔsthma enai h ontìthta ekenh pou epexergˆzetai, metabˆllei, katagrˆfei,
  metaddei s mata. Gia parˆdeigma, èna sÔsthma yhfiak katagraf         qou meta-
trèpei èna akoustikì s ma se mia seirˆ apì arijmoÔ (bits) tou opoou katagrˆfei,
p.q., se optikì dsko. Antjeta, to CD player enai èna sÔsthma to opoo diabˆzei
tou arijmoÔ , oi opooi enai apojhkeumènoi ston optikì dsko, kai anaparˆgei to
hqhtikì s ma to opoo mporoÔme na akoÔsoume. àna sÔsthma epikoinwna metafèrei
plhrofora, p.q. to s ma fwn , apì èna shmeo tou q¸rou, pou lègetai phg , se èna
ˆllo shmeo, pou enai o proorismì qr sh th .
32                                                       Eisagwg   sta Sust mata           Kefˆlaio 2




2.1     ORISMOS SUSTHMATOS - KATHGORIES SUSTHMATWN


W     sÔsthma orzoume, thn ontìthta ekenh h opoa epenerg¸nta           se èna s ma      x(t) èqei
w     apotèlesma èna ˆllo s ma    y(t).
                                    Apì majhmatik ˆpoyh, èna sÔsthma mpore na
jewrhje w èna metasqhmatismì             S                                        ()
                                      pou metasqhmatzei èna s ma, x t , se èna ˆllo
s ma y t ( ) = Sf ( )g
                x t . H drˆsh enì sust mato perigrˆfetai sqhmatikˆ sto Sq ma
                         ()
2.1. To arqikì s ma x t , to opoo diegerei to sÔsthma, lègetai s ma eisìdou aplˆ
esodo tou sust mato , en¸ to apotèlesma sth diadikasa diègersh , dhlad to s ma
 ()
y t lègetai s ma exìdou aplˆ èxodo tou sust mato .
         Åßóïäïò   Óýóôçìá     ¸îïäïò                     Sq ma 2.1     Sqhmatik        perigraf
           x(t)       S         y(t)                      sust mato .

   O parapˆnw orismì enai polÔ genikì kai mpore na perigrˆyei pollˆ fusikˆ
sust mata, ìpw : hlektrikˆ kukl¸mata (p.q. radiìfwno), mhqanikˆ sust mata (p.q.
autoknhto, èna rompotikì braqona), èna epikoinwniakì kanˆli, ènan hlektronikì
upologist kai pollˆ ˆlla.
   Anˆloga me ton arijmì kai to edo twn epitrepìmenwn eisìdwn kai exìdwn, ta
sust mata diakrnontai se:

     1. Sust mata ma    eisìdou - ma     exìdou      SISO (Single-Input, Single-Output). Ta
        pio aplˆ sust mata ma eisìdou - ma exìdou enai o bajmwtì pollaplasi-
        ast y t()= ()
                    ax t kai to sÔsthma kajustèrhsh y t x t t0 .   ()= (            )
     2. Sust mata me pollè     eisìdou        kai ma èxodo    pou enai gnwstˆ w sust mata
        MISO (Multi-Input, Single-Output). àna tètoio sÔsthma enai o ajroist           dÔo
          perissìterwn shmˆtwn     y(t)       = x1(t) + x2 ( )t kai o pollaplasiast y t       ()=
          ( ) ( )
        x1 t x2 t .
     3. Sust mata me pollè    eisìdou     kai pollè    exìdou    , gnwstˆ w sust mata MIMO
        (Multi-Input, Multi -Output).

   Anˆloga me th fÔsh twn epitrepìmenwn eisìdwn kai exìdwn, ta sust mata diakr-
nontai w ex

     1. Sust mata suneqoÔ   qrìnou  analogikˆ sust mata, ìtan ta s mata eisìdou kai
        ta s mata exìdou enai analogikˆ s mata. ätan ta s mata eisìdou kai exìdou
        enai s mata diakritoÔ qrìnou, tìte ta sust mata qarakthrzontai w sust -
        mata diakritoÔ qrìnou.

     2. Aitiokratikˆ sust mata,ìtan ta s mata eisìdou kai exìdou enai aitiokratikˆ
        s mata. ätan ta s mata eisìdou kai exìdou enai stoqastikˆ s mata, ta sust -
        mata qarakthrzontai w stoqastikˆ sust mata.
Enìthta 2.1         Orismì   Sust mato    - Kathgore    Susthmˆtwn                                                33



    àna parˆdeigma analogikoÔ kai sugqrìnw stoqastikoÔ sust mato enai to gnw-
stì kÔklwma anìrjwsh kai exomˆlunsh th enallassìmenh tˆsh tou Sq mato
2.2, sto opoo to s ma eisìdou enai h efarmozìmenh tˆsh eis t kai s ma exìdou h        ()
anaptussìmenh tˆsh sta ˆkra th antstash R, ex t .                       ()
               D
  õåéó(t)                R               C      õåî(t)
                                                                   Sq ma 2.2         Parˆdeigma analogikoÔ

                                                                   sust mato .

    àna sÔsthma epikoinwna enai èna stoqastikì sÔsthma efìson h esodì tou kai
h èxodì tou enai stoqastikˆ s mata.
    Upˆrqoun, epsh , sust mata ta opoa metasqhmatzoun analogikè eisìdou se
diakritè exìdou kai antijètw . Tètoia sust mata enai gnwstˆ w ubridikˆ sust -
mata. O analogoyhfiakì metatropèa (A/D Analog to Digital converter), o opoo
metatrèpei èna analogikì s ma se yhfiakì kai o yhfioanalogikì metatropèa (D/A),
enai ubridikˆ sust mata.
    Sth sunèqeia ja prosdiorsoume thn exswsh h opoa perigrˆfei th sqèsh metaxÔ
tou s mato eisìdou kai tou s mato exìdou enì hlektrikoÔ kai enì mhqanikoÔ
sust mato .
    Se èna hlektrikì kÔklwma gnwrzoume ìti h tˆsh R t sta ˆkra mia wmik           ()
antstash R, pou diarrèetai apì reÔma èntash i t , enai               ()
                                             R (t) = R i(t)                                                 (2.1.1)

H tˆsh L     (t) sta ˆkra phnou, autepagwg                   L,     pou diarrèetai apì reÔma èntash
()
i t enai
                                                              di(t)
                                             L (t) = L                                                      (2.1.2)
                                                               dt
kai h èntash tou reÔmato fìrtish enì puknwt , qwrhtikìthta                                    C enai
                                                         dC (t)
                                             i(t) = C                                                        (2.1.3)
                                                           dt
ìpou C     (t) enai h tˆsh sta ˆkra tou puknwt               .

Parˆdeigma 2.1.1
       Na diatupwje h sqèsh th          tˆsh   eisìdou        eis   (t) kai th    tˆsh      exìdou    (t)
                                                                                                        ex
                                                                                                               gia to
       kÔklwma tou Sq mato       2.3.

       LÔsh        Efarmìzonta   to deÔtero kanìna tou                Kirchhoff     sto brìqo tou kukl¸mato
       èqoume
                                             Ri(t) +  (t) = 
                                                         ex             eis   (t)                              (2.1.4)
34                                                                              Eisagwg       sta Sust mata        Kefˆlaio 2




                       R

                               i(t)
           õåéó(t)                                C     õåî(t)
                                                                                Sq ma 2.3           To kÔklwma tou

                                                                                Paradegmato         2.1.1.



       Lambˆnonta              upìyh thn (2.1.3), h (2.1.4) grˆfetai


                                                        d (t)
                                                  RC
                                                          dt
                                                            ex
                                                               +  (t) =  ex           eis   (t)                     (2.1.5)


       H (2.1.5) enai ma            diaforik        exswsh me stajeroÔ            suntelestè       , h opoa perigrˆfei th
       sqèsh metaxÔ eisìdou kai exìdou tou sust mato . H exswsh èqei th genik                                     morf


                                                            dy(t)
                                                        
                                                             dt
                                                                  + y(t) = x(t)                                       (2.1.6)



       H   tˆxh   tou sust mato              prosdiorzetai apì th megalÔterh parˆgwgo th                       exìdou    y(t),
       h opoa emfanzetai sth diaforik                       exswsh. àtsi, h (2.1.6) perigrˆfei èna sÔsthma
       pr¸th      tˆxh     .

Se èna mhqanikì sÔsthma gnwrzoume ìti isqÔei o jemeli¸dh nìmo th mhqanik

                                        X                             X          d2 x
                                              Fk = ma                      Fk = m 2                                   (2.1.7)
                                         k                             k
                                                                                 dt
ìpou Fk enai oi dunˆmei oi opoe askoÔntai sth mˆza m, x h jèsh th kai a h
epitˆquns th .
    O nìmo tou Hook, o opoo dnei to mètro th dÔnamh Fel pou asketai apì èna
elat rio, w sunˆrthsh th metabol tou m kou tou katˆ x, enai

                                                            F    el   = kx                                            (2.1.8)

ìpou k enai h stajerˆ tou elathrou.
   Epsh , gnwrzoume ìti h dÔnamh h opoa antidrˆ sthn knhsh enì s¸mato (dÔ-
namh apìsbesh ) enai anˆlogh th taqÔthtˆ tou,  , kai dnetai apì th sqèsh

                                                                                        dx
                                         F   ap   =     b F           ap   =     b
                                                                                        dt
                                                                                                                      (2.1.9)

ìpou   b enai h stajerˆ apìsbesh                      tou sust mato .

Parˆdeigma 2.1.2
       Na diatupwje h sqèsh metaxÔ efarmozìmenh                                 dÔnamh        F (t) kai metatìpish x(t) gia
       th mˆza       m tou Sq         mato   2.4.
Enìthta 2.2            Sundèsei          Susthmˆtwn                                                                    35



                           x(t)                  k
              F(t)                  Fåë(t)
                           m
                                                                                  Sq ma 2.4     To mhqanikì sÔsth-
              Fáð(t)
                                                                                  ma gia to Parˆdeigma 2.1.2.




      LÔsh        Efarmìzonta                to jemeli¸dh nìmo th              mhqanik    gia th mˆza   m èqoume
                                                      F       F   ap       Fel
                                                                                 = ma                             (2.1.10)


      Qrhsimopoi¸nta                ti    (2.1.8) kai (2.1.9) parnoume


                                   dx              d2 x            d2 x b dx k     1
                       F       b             kx = m 2                 2 +     +  x= F                             (2.1.11)
                                   dt              dt              dt     m dt m   m
      h opoa enai mia diaforik                 exswsh me stajeroÔ suntelestè                kai perigrˆfei to gram-
      mikì talantwt                me apìsbesh. Sth diaforik                     exswsh (2.1.11) perièqetai h deÔterh
      parˆgwgo         th      exìdou me apotèlesma, to sÔsthma, me esodo th dÔnamh                         F   kai èxodo
      thn apomˆkrunsh               x na enai    deÔterh     tˆxh     .




2.2   SUNDESEIS SUSTHMATWN


Se pollè peript¸sei , h anˆlush enì polÔplokou sust mato dieukolÔnetai shma-
ntikˆ an doÔme to sÔsthma w apotèlesma diasÔndesh ligìtero polÔplokwn susth-
mˆtwn.
    Oi pio basikè sundèsei metaxÔ susthmˆtwn enai h seiriak , h parˆllhlh, h
meikt kai h sÔndesh me anatrofodìthsh    anˆdrash (Sq ma 2.5).
    H sqhmatik anaparˆstash dÔo susthmˆtwn ta opoa èqoun sundeje seiriakˆ
fanetai sto Sq ma 2.5a. ParathroÔme ìti, ìtan dÔo sust mata 1 kai 2 sundèontai                 S        S
                                         S                                 S
seiriakˆ, me to sÔsthma 1 na prohgetai tou 2 , h èxodo tou 1 enai esodo tou                  S
S2 . Ma shmantik diadikasa, h opoa sqetzetai me th seiriak sÔndesh, enai h
antistrof sust mato , gia thn opoa ja mil soume sthn Enìthta 2.3.3.
     H sqhmatik anaparˆstash dÔo susthmˆtwn, ta opoa èqoun sundeje parˆllh-
la, fanetai sto Sq ma 2.5b. ParathroÔme ìti h dia esodo trofodote kai ta
dÔo sust mata. Autˆ leitourgoÔn tautìqrona kai oi dÔo epimèrou èxodoi ajro-
zontai kai parˆgoun thn èxodo th parˆllhlh sÔndesh twn dÔo susthmˆtwn. H
ulopohsh enì sust mato , to opoo perigrˆfetai apì th sqèsh eisìdou-exìdou:
 ( )=  ( )+ (                           )
y t a x t x t t0 , gnetai me thn parˆllhlh sÔndesh enì bajmwtoÔ sust -
mato kai enì sust mato pou prokale kajustèrhsh katˆ t0 .
    Sth meikt sÔndesh, Sq ma 2.5g, èqoume ta sust mata 1 kai 2 , ta opoa èqoun            S        S
                                                          S
sundeje parˆllhla, kai to sÔsthma 3 , to opoo èqei sundeje seiriakˆ.
36                                                     Eisagwg     sta Sust mata      Kefˆlaio 2




                 Åßóïäïò       Óýóôçìá               Óýóôçìá        ¸îïäïò
                    x(t)          S1                    S2           y(t)
                                             (á)

                                           Óýóôçìá
                                              S1
                    Åßóïäïò                                           ¸îïäïò
                       x(t)                                           y(t)
                                           Óýóôçìá
                                              S2
                                             (â)

                                   Óýóôçìá
                                      S1
              Åßóïäïò                                         Óýóôçìá        ¸îïäïò
                 x(t)                                            S3           y(t)
                                   Óýóôçìá
                                      S2
                                             (ã)

                    Åßóïäïò                Óýóôçìá            ¸îïäïò
                        x(t)                  S1               y(t)

                                           Óýóôçìá
                                              S2
                                             (ä)

Sq ma 2.5     (a) Seiriak   sÔndesh dÔo susthmˆtwn, (b) parˆllhlh sÔndesh dÔo susthmˆtwn

(g) meikt   sÔndesh susthmˆtwn kai (d) sÔndesh me anatrofodìthsh.




    To sÔsthma autìmath plo ghsh enì oq mato dèqetai w esodo ma troqiˆ
thn opoa jèloume na diagrˆyei to ìqhma. To sÔsthma parakolouje thn troqiˆ
pou èqei to ìqhma, sugkrnei th jèsh tou oq mato me thn epijumht jèsh, dhlad
prosdiorzei to sfˆlma kai, ìtan exwteriko parˆgonte prokaloÔn parèklish apì
thn prokajorismènh troqiˆ, probanei sti anagkae rujmsei , ¸ste to ìqhma na
akolouje thn prodiagegrammènh troqiˆ. To parapˆnw sÔsthma mpore na parasta-
                                   S         S
je sqhmatikˆ me ta sust mata 1 kai 2 ta opoa èqoun sundeje me anatrofodìthsh.
                                                 S    S
Sto Sq ma 2.5d fanetai h sÔndesh twn 1 kai 2 me anatrofodìthsh. ParathroÔme
ìti anatrofodotoÔme thn èxodo tou sust mato               S                    S
                                                   1 sto sÔsthma 2 kai, afoÔ thn
epexergastoÔme me ton elegkt     2 ,   S
                                     thn sugkrnoume me to s ma anaforˆ x t kai         ()
qrhsimopoioÔme to apotèlesma th sÔgkrish gia na odhg soume to sÔsthma 1 . Me            S
                               S                              ()
ˆlla lìgia, to sÔsthma 2 tropopoie thn èxodo y t me trìpo ¸ste na mpore na
sugkrije me to epijumhtì s ma eisìdou.
Enìthta 2.3        Idiìthte   Susthmˆtwn                                                         37



2.3       IDIOTHTES SUSTHMATWN


Sthn enìthta aut parousiˆzontai merikè basikè idiìthte pou èqoun ta sust ma-
ta. Prin anafèroume ti idiìthte twn susthmˆtwn enai skìpimo na perigrˆyoume
ma basik ènnoia, h opoa pollè forè paralepetai sta egqeirdia. Ja lème ìti
èna sÔsthma brsketai se katˆstash hrema th qronik stigm t0 , eˆn autì den èqei
uposte diègersh apì ˆllo s ma gia kˆje qronik stigm t < t0 . Apì fusik ˆpoyh,
èna sÔsthma pou enai se katˆstash hrema se dedomènh qronik stigm t0 , shmanei
ìti den eqe apojhkeumènh enèrgeia th qronik stigm t  t0 .        =
2.3.1     Grammikìthta

àna sÔsthma pou enai se arqik hrema ja lègetai grammikì                    sÔsthma   (GS), an, kai
                                       ()        ()
mìno an, dojèntwn dÔo shmˆtwn x1 t kai x2 t isqÔei:

                   Sfa  x1(t) + b  x2(t)g = a  Sfx1(t)g + b  Sfx2(t)g                    (2.3.1)

ìpou a kai b stajerè . Dhlad h apìkrish tou sust mato se ma esodo, pou enai o
grammikì sunduasmì dÔo shmˆtwn, isoÔtai me ton antstoiqo grammikì sunduasmì
twn apokrsewn tou sust mato sto kajèna apì ta s mata autˆ. Sto Sq ma 2.6
perigrˆfetai sqhmatikˆ h idiìthta th grammikìthta dÔo susthmˆtwn.

 Åßóïäïé                                                Åßóïäïé
  x1(t)  a                                                      Ãñáììéêü        a
                                                        x1(t)
                                       ¸îïäïò                   Óýóôçìá                    ¸îïäïò
                              Ãñáììéêü    y(t)                                                y(t)
                              Óýóôçìá
                                                        x2(t)   Ãñáììéêü
  x2(t)     b                                                   Óýóôçìá        b


              Sq ma 2.6   Sqhmatik      perigraf   th   grammikìthta   enì   sust mato .


   H parapˆnw idiìthta genikeÔetai gia opoiod pote grammikì sunduasmì pepera-
smènou arijmoÔ shmˆtwn eisìdou. Genkeush th (2.3.1) odhge sthn akìloujh sqèsh:

                                 S fPk ak xk (t)g = Pk ak yk (t)                             (2.3.2)

ìpou yk   (t) enai èxodo     tou sust mato , ìtan h esodo enai to xk         (t).
2.3.2     Aitiìthta

                                                                               ( )
àna sÔsthma enai aitiatì, an h èxodì tou th qronik stigm t0 , y t0 , exartˆtai apì
ti timè tou s mato eisìdou, x t , gia t ()         
                                           t0 . Dhlad , gia kˆje s ma eisìdou x t ,             ()
                          ()
h antstoiqh èxodo y t exartˆtai mìno apì thn paroÔsa kai prohgoÔmene timè
38                                                 Eisagwg       sta Sust mata       Kefˆlaio 2




th eisìdou. Me ˆlla lìgia, èna sÔsthma enai aitiatì, an oi metabolè sthn èxodo
(apotèlesma) tou sust mato potè den prohgoÔntai twn metabol¸n pou epiteloÔntai
sthn esodo tou sust mato (aita).
   Ta sust mata ta opoa perigrˆfontai apì ti exis¸sei


        y(t) = a  x(t);     y(t) = b  x(t 1) kai y(t) =
                                                          1 Z t
                                                                x( )d                (2.3.3)
                                                          C             1
enai aitiatˆ, en¸ to sÔsthma diakritoÔ qrìnou upologismoÔ mèsh tim                  pou peri-
grˆfetai apì thn exswsh


                             y(n) =
                                        1 X    M
                                      2M + 1 k= M x(n            k)                    (2.3.4)


enai mh aitiatì sÔsthma.


2.3.3   Antistrèyima kai mh antistrèyima sust mata

àna sÔsthma lègetai antistrèyimo, an h gn¸sh th exìdou kajistˆ efiktì ton upolo-
gismì tou s mato eisìdou. H diadikasa antistrof enì sust mato         sunstataiS
ston prosdiorismì enì sust mato , to opoo sundeìmeno se seirˆ me to sÔsthma ,              S
                                                                 S
parèqei sthn èxodì tou to s ma eisìdou tou sust mato . H antistrof parousiˆze-
tai se pollè efarmogè sti opoe enai epijumht h afaresh th epdrash enì
sust mato pˆnw se èna s ma. Se èna epikoinwniakì sÔsthma, to opoo èqei stìqo thn
anˆkthsh tou metadidìmenou s mato apì to lambanìmeno s ma, o dèkth apotele
èna antistrofèa tou kanalioÔ, pou katapolemˆ ta diˆfora fainìmena diataraq¸n. Ta
sust mata ta opoa perigrˆfontai apì ti sqèsei
                                                        n
                                                        X
                           y(t) =    x(t) kai y(n) =            x(k)                  (2.3.5)
                                                        k=   1
enai antistrèyima kai èqoun w antstrofa ta sust mata me sqèsei eisìdou-exìdou

                               1
                       y(t) = x(t) kai y(n) = x(n) x(n                  1)             (2.3.6)

antstoiqa. Se antjesh, to sÔsthma

                                       y(t) = x2 (t)                                   (2.3.7)

den enai antistrèyimo, giat kˆje tim th exìdou mpore na proèrqetai apì dÔo di-
aforetikè timè th eisìdou.
Enìthta 2.3              Idiìthte    Susthmˆtwn                                                                      39



2.3.4   Sust mata Statikˆ kai Dunamikˆ

àna sÔsthma kaletai statikì sÔsthma qwr mn mh, eˆn gia kˆje s ma eisìdou h
antstoiqh èxodo , gia kˆje qronik stigm , exartˆtai mìno apì thn tim th eisìdou
thn dia qronik stigm (Sq ma 27a). H wmik antstash enai èna parˆdeigma sust -
mato qwr mn mh, afoÔ h tˆsh sta ˆkra th R t (èxodo ) kˆje qronik stigm ()
                                                          ()
exartˆtai apì thn èntash tou reÔmato i t (esodo ) apì thn opoa diarrèetai thn
dia qronik stigm .
                                  R t R i t           ()=  ()           (2.3.8)


          x(t)                                                            y(t)
                                                   Óôáôéêü
                                                   óýóôçìá
                     0    t0           t                                         0   t0                 t
                                                       (a)
              x(t)                                                        y(t)
                                                   Äõíáìéêü
                                                   óýóôçìá
                     0     t0          t                                         0   t0                 t
                                                        (â)

Sq ma 2.7       H esodo            kai h èxodo   (a) enì       statikoÔ sust mato        kai (b) enì       dunamikoÔ

sust mato .


    Eˆn èna sÔsthma den enai statikì, kaletai dunamikì sÔsthma me mn mh (Sq ma
2.7b). O puknwt , an jewrhje w sÔsthma me èxodo thn tˆsh sta ˆkra tou, C t ,                                      ()
                                                       ()
kai esodo to reÔma pou to fortzei i t , enai èna sÔsthma me mn mh, afoÔ h tˆsh
kˆje qronik stigm enai apotèlesma tou ìlou istorikoÔ th sunˆrthsh i t                                      ()
                                            C (t) =
                                                     1 Z t
                                                           i( )d                                               (2.3.9)
                                                     C           1
2.3.5   Qronikˆ Anallowta Sust mata

àna sÔsthma lègetai qronikˆ anallowto (QA) (ametˆblhto) an, kai mìno an, qronikè
olisj sei tou s mato eisìdou metafrˆzontai se antstoiqe qronikè olisj sei
                                                  ()
sthn èxodo. Me ˆlla lìgia, an y t enai h èxodo se èna s ma eisìdou x t , tìte                              ()
                (           )                               (        )
gia esodo x t t0 parˆgetai h èxodo y t t0 . Dhlad , to s ma exìdou paramènei
to dio, anexˆrthta apì to poia qronik stigm diegeroume thn esodo. To mìno pou
ufstatai enai h antstoiqh qronik metatìpish. Sto Sq ma 2.8 dnetai èna parˆdeigma
shmˆtwn eisìdou-exìdou enì qronikˆ anallowtou sust mato .
40                                                                Eisagwg     sta Sust mata          Kefˆlaio 2




               x(t)                                                    y(t)
                                               ×ñïíéêÜ
                                              áíáëëïßùôï
                    0 t1             t         óýóôçìá
                                                                              0 t1                   t

          x(t-t0)                                                   y(t-t0)
                                                ×ñïíéêÜ
                                               áíáëëïßùôï
                      0     t1+t0    t          óýóôçìá                       0      t1+t0           t
                          (a)                                                          (â)

        Sq ma 2.8          (a) H esodo   kai (b) h èxodo   enì   sust mato          qronikˆ anallowtou.



2.3.6    Eustˆjeia

àna sÔsthma lègetai ìti enai FEFE eustajè (Eustˆjeia Fragmènh Eisìdou Frag-
mènh Exìdou) (Bounded Input Bounded Output (BIBO) stable), an kai mìnon an gia
kˆje fragmènh esodo h èxodì tou paramènei fragmènh. Me ˆlla lìgia, èna sÔsthma
lègetai FEFE - eustajè , an gia kˆje jetikì arijmì M1 <   gia ton opoo isqÔei    1
                                                 jx(t)j  M1                                             (2.3.10)

upˆrqei jetikì arijmì               M2 < 1 gia ton opoo isqÔei
                                                 jy(t)j  M2                                             (2.3.11)

ParathroÔme ìti h apaths ma gia eustˆjeia enì sust mato tautzetai me thn
apathsh ta s mata eisìdou kai exìdou na paramènoun peperasmèna se plˆto (Sq -
ma 2.9).

        ÖñáãìÝíç                                                                             ÖñáãìÝíç
         åßóïäïò                                ÅõóôáèÝò                                      Ýîïäïò
        x(t) M1                                 óýóôçìá                                      y(t) M1

                                                   (a)

        ÖñáãìÝíç
         åßóïäïò                                  Ìç                                         Ìç öñáãìÝíç
                                                åõóôáèÝò                                       Ýîïäïò
        x(t)    M1                              óýóôçìá
                                                   (â)

Sq ma 2.9        (a) SÔsthma eustajè         kai (b) sÔsthma mh eustajè , h èxodo            tenei sto ˆpeiro.
Enìthta 2.4          Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                      41




Parˆdeigma 2.3.1
        To sÔsthma to opoo perigrˆfetai apì thn parakˆtw sqèsh eisìdou         x(t) exìdou y(t)
                                                               d
                                           y(t) = S fx(t)g =      x(t)                    (2.3.12)
                                                               dt
        anafèretai w    diaforist    . Na exetˆsete, an to sÔsthma enai grammikì, qronikˆ anal-
        lowto, aitiatì kai antistrèyimo.

        LÔsh       An to s ma      x1 (t) enai h esodo tou diaforist , tìte h èxodo tou enai h
        parˆgwgo    x_ 1 (t) tou s mato eisìdou. Omow , an x2 (t) enai to s ma eisìdou, h èxodo
        enai h parˆgwgo x     _ 2 (t). An h esodo tou sust mato enai o grammikì sunduasmì
        ax1 (t) + bx2 (t), tìte h èxodo enai
                                   d
                                  dt 1
                                      [ax (t) + bx2(t)℄ = a dtd x1(t) + b dtd x2 (t)       (2.3.13)


        ParathroÔme ìti to sÔsthma enai grammikì. O diaforist           enai qronikˆ anallowto
        sÔsthma, afoÔ
                                          d            d
                                             x(t t0 ) = x(t)                              (2.3.14)
                                          dt           dt    t=t t0
        O diaforist     enai aitiatì sÔsthma afoÔ h èxodì tou exartˆtai mìno apì thn paroÔsa
        tim   th   eisìdou tou.   O diaforist        den antistrèfetai, giat dÔo s mata ta opoa
        diafèroun katˆ ma stajerˆ èqoun thn dia parˆgwgo.




2.4     SQESH METAXU EISODOU - EXODOU SUSTHMATOS


Sthn enìthta aut ja diatup¸soume ma basik sqèsh th jewra susthmˆtwn. Me
th bo jeia th sqèsh aut     ja mporoÔme na prosdiorzoume thn èxodo y t enì              ()
                                                                   ()
grammikoÔ sust mato , an gnwrzoume a) thn esodo x t tou sust mato kai b) thn
apìkrish tou sust mato , ìtan autì diegeretai apì th sunˆrthsh Æ t .           ()
2.4.1    Grammikˆ qronikˆ anallowta sust mata suneqoÔ                   qrìnou. -
         To olokl rwma th           sunèlixh

Apì to Parˆdeigma 1.4.3 gnwrzoume ìti kˆje s ma suneqoÔ qrìnou mpore na proseg-
giste, ìpw sto Sq ma 2.9a, apì èna s ma th morf
                                           1
                                           X
                                x^(t) =            x(k)Æ (t k)                         (2.4.1)
                                          k=   1
              ^ ()
   àstw h0 t h èxodo tou upì melèth grammikoÔ sust mato , ìtan h esodo enai o
              ()
palmì Æ t . Lìgw th grammikìthta , ìtan h esodo tou sust mato enai o palmì
42                                                             Eisagwg   sta Sust mata              Kefˆlaio 2




                                      x(t)
                  x(t)

                          0Ä         kÄ       t              (a)
             x(0)ä(t)Ä                                                               x(0)h0(t)Ä
                   x(0)
                                                         Ãñáììéêü
                                                         óýóôçìá
                          0Ä                  t              (â)                 0                   t
        x(Ä)ä(t-Ä)Ä                                                                  x(Ä)hÄ(t)Ä
                    x(Ä)
                                                         Ãñáììéêü
                                                         óýóôçìá
                          0Ä                  t               (ã)                0Ä                  t
      x(kÄ)ä(t-kÄ)Ä                                                                  x(kÄ)hkÄ(t)Ä

                                                         Ãñáììéêü
                   x(kÄ)                                 óýóôçìá
                          0          kÄ       t             (ä)                  0            kÄ     t
                   x(t)                                                   y(t)
                                                         Ãñáììéêü
                                                         óýóôçìá
                          0                   t               (å)
                                                                                 0                   t
                   x(t)                                                   y(t)
                                                         Ãñáììéêü
                                                         óýóôçìá
                          0                  t             (óô)                  0                   t

Sq ma 2.10     H grafik         ermhnea th       apìkrish    enì   grammikoÔ qronikˆ metaballìmenou

sust mato , ìpw    aut        ekfrˆzetai apì thn Exswsh (2.4.6).



x(0)Æ (t)4, h èxodo  tou enai h x h0 t     (0)^ ( )
                                          (blèpe Sq ma 2.10b). Genikˆ, an hk                            ^ (t)
enai h apìkrish tou grammikoÔ sust mato sthn esodo Æ t k , dhlad ,       (           )
                                      h^ k (t) = S fÆ (t k)g                                          (2.4.2)

                    ( ) (
tìte gia esodo x k Æ t k             )
                                  , h èxodo ja enai x k                 ( )h^ k (t) (blèpe Sq ma
2.10d).
    An efarmoste sthn esodo tou sust mato to s ma x                     ^(t), tìte h èxodì tou ja
enai                               (                                                   )
                                                     1
                                                     X
                    y^(t) = S fx^(t)g = S                    x(k)Æ (t k)                             (2.4.3)
                                                    k=   1
Gia thn pleionìthta twn shmˆtwn kai twn susthmˆtwn pou sunantˆme sthn prˆxh, h
Enìthta 2.4         Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                              43



grammikìthta isqÔei kai gia ˆpeirou ìrou . àtsi, h (2.4.3) gnetai
                                      1
                                      X
                           y^(t) =            x(k)S fÆ (t k)g                                 (2.4.4)
                                     k=   1
ètsi apì thn (2.4.4) kai me th bo jeia th (2.4.2), h èxodo tou sust mato dnetai apì
                                              1
                                                       x(k)h^ k (t)
                                              X
                                 y^(t) =                                                          (2.4.5)
                                           k=      1
                                                         ^( )
Sto Sq ma 2.10e èqei sqediaste h èxodo y t tou sust mato , ìtan h esodì tou
                ^( )
enai to s ma x t . H èxodo tou sust mato , lìgw th idiìthta th grammikìthta ,
enai sh me to ˆjroisma twn epimèrou exìdwn tou sust mato , pou eikonzontai sta
Sq mata 2.10b-d.
    ParathroÔme ìti gia na prosdiorsoume thn èxodo enì                      grammikoÔ sust mato       gia
opoiod pote s ma eisìdou me th bo jeia th                  sqèsh     (2.4.5), qreiazìmaste thn    h^ k (t)
gia kˆje tim    k.
               tou
                                 ^(t) ! x(t), dhlad , x(t) = lim!1 P1k= 1 x(k)-
    An  ! 0, Æ (t) ! Æ (t) kai x
Æ (t k). àtsi, an h esodo tou sust mato enai to s ma x(t), h èxodo tou
sust mato ja enai
                                                           1
                                                                    x(k)h^ k (t)
                                                           X
                       y(t) =   lim y^(t) = lim                                                  (2.4.6)
                                !1           !1          k=    1
                                                             ()
Sto Sq ma 2.10st èqei sqediaste h esodo x t , pou enai to ìrio th klimakwt
                        ^( )                        ()
morf sunˆrthsh x t , kai h èxodo y t , h opoa enai to ìrio th y t .                 ^( )
               ()
   àstw h t h èxodo tou sust mato pou parˆgetai apì thn esodo Æ t           ,              (          )
dhlad ,
                              h t        ( ) = Sf (
                                         Æt                        )g    (2.4.7)
    An h qronikdiˆrkeia         
                          twn palm¸n mikranei kai tenei sto mhdèn,      , to               !0
k gnetai h suneq metablht  k           ( ! )
                                      , to ˆjroisma sto dexiì mèlo th (2.4.6)
grˆfetai w olokl rwma kai h èxodo tou sust mato dnetai apì th sqèsh
                                               Z   1
                                    y(t) =              x( )h ( )d                            (2.4.8)
                                                   1
   An to grammikì sÔsthma enai kai qronikˆ anallowto, tìte h apìkrish tou sust -
          ()                                            ( )
mato h t , ìtan autì diegeretai apì th Æ t  , enai dia me thn h t  h0 t allˆ     () ()
qronikˆ metatopismènh katˆ  , dhlad h t               ()= (            )
                                               h t  . àtsi, h èxodo tou sust -
mato dnetai apì th sqèsh
                                           Z    1
                                 y(t) =                x( )h(t  )d                             (2.4.9)
                                                   1
44                                                                   Eisagwg     sta Sust mata         Kefˆlaio 2




H (2.4.9) enai gnwst kai w              olokl rwma th           sunèlixh       , kai sumbolzetai w

                                            y(t) = h(t) ? x(t)                                          (2.4.10)

     ParathroÔme ìti se èna GQA sÔsthma arke h gn¸sh mia                               mìno sunˆrthsh , th
h(t), gia na perigrafe pl rw h sqèsh metaxÔ tou s mato eisìdou x(t) kai tou s mato
exìdou y (t) tou sust mato me th bo jeia tou oloklhr¸mato th sunèlixh . H prˆxh h
opoa sunduˆzei dÔo s mata x(t) kai h(t) gia to sqhmatismì tou s mato y (t) kaletai
sunèlixh.
                       ()
   H sunˆrthsh h t , h opoa enai h èxodo tou sust mato , ìtan autì diegeretai
apì th sunˆrthsh Æ t   ()
                                ht        Æt  ( ) = S f ( )g            (2.4.11)
kaletai kroustik apìkrish tou sust mato .
   H (2.4.9) grˆfetai kai lgo diaforetikˆ. Allˆzonta ti metablhtè enai polÔ
eÔkolo na doÔme ìti mporoÔme na grˆyoume
                                              Z   1
                                     y(t) =             h( )x(t  )d                                  (2.4.12)
                                                  1
 Parˆdeigma 2.4.1

       Na dexete ìti èna GQA sÔsthma enai FEFE eustajè , an h kroustik                           apìkris   tou
       enai apìluta oloklhr¸simh, dhlad , an
                                              Z   1
                                                        jh(t)j dt < +1                                   (2.4.13)
                                                  1
       LÔsh       JewroÔme ìti h esodo       enì       GQA sust mato             enai fragmènh, dhlad ,

                                                  jx( )j  M < 1                                        (2.4.14)

       ìpou   M   ma jetik    stajerˆ. H èxodo         tou sust mato           dnetai apì to olokl rwma th
       sunèlixh
                                                    Z   1
                                           y(t) =            x( )h(t  )d                              (2.4.15)
                                                         1
       apì thn opoa sunepˆgetai ìti
                                 Z   1                                  Z   1
                     jy(t)j =            x( )h(t  )d                        jx( )j jh(t  )j d
                                     1                                      1
                                                                        Z   1
                                                                               M jh(t  )j d           (2.4.16)
                                                                            1
       Metˆ thn allag         metablht     èqoume
                                                             Z   1
                                            jy(t)j  M               jh( )j d                          (2.4.17)
                                                                 1
Enìthta 2.4         Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                                          45



        kai lìgw th   (2.4.13) èpetai ìti h èxodo         tou sust mato          enai epsh       fragmènh, opìte
        to sÔsthma enai FEFE eustajè . Mpore na apodeiqje ìti h sunj kh aut                               enai kai
        anagkaa.

Parˆdeigma 2.4.2
        Na upologiste h kroustik        apìkrish tou sust mato                 mèsh    tim



                                             y(t) =
                                                      1   Z t
                                                                  x( )d                                     (2.4.18)
                                                      T t T
        LÔsh   H kroustik      apìkrish tou sust mato mèsh tim                , h(t), enai sh me thn èxodo
        tou sust mato      an autì diegerje apì th sunˆrthsh           Æ(t), dhlad ,

                             h(t) =
                                      1 Z t Æ( )d = 1 Z t du( )
                                      T t T           T t T
                                                    = 1 [u(t) u(t T
                                                                                            T )℄
                                                                                        !
                                                           = T1            t       T
                                                                                    2                         (2.4.19)
                                                                                T
        ìpou lˆbame upìyh ìti     Æ( )d   = du( ) kai (t) enai o orjog¸nio                    palmì .




2.4.2    Idiìthte     th   Sunèlixh

H sunèlixh èqei ti akìlouje idiìthte :
    Antimetajetik          idiìthta


                                  h1 (t) ? h2 (t) = h2 (t) ? h1 (t)                                          (2.4.20)

H apìdeixh th parapˆnw idiìthta aporrèei apì ton orismì th sunèlixh . Prˆgmati,
allˆzonta th metablht t        èqoume=
                                                      Z   1
                       h1 (t) ? h2 (t)        =                 h1 ( )h2 (t  ) d
                                                      Z
                                                          1
                                            t  ='        1
                                              =                 h1 (t )h2 () d
                                                      Z
                                                          1
                                                          1
                                              =                 h2 ()h1 (t ) d
                                                           1
                                              =       h2 (t) ? h1 (t)                                        (2.4.21)

H fusik shmasa th idiìthta aut fanetai sto Sq ma 2.11, apì to opoo parath-
roÔme ìti, an dÔo sust mata enai sundedemèna se seirˆ mporoÔme na enallˆxoume th
seirˆ sÔndes tou .
46                                                         Eisagwg    sta Sust mata            Kefˆlaio 2




      x(t)      h1(t)        h2(t)        y(t)           x(t)        h2(t)           h1(t)     y(t)

        Sq ma 2.11      H fusik      shmasa th    antimetajetik     idiìthta    th    sunèlixh .




     Prosetairistik       idiìthta


                          h2 (t) ? [h1 (t) ? x(t)℄ = [h2 (t) ? h1 (t)℄ x(t)                        (2.4.22)

H apìdeixh th idiìthta akolouje thn dia porea me thn prohgoÔmenh. H fusik
shmasa th prosetairistik idiìthta fanetai sto Sq ma 2.12. ParathroÔme ìti,
ìtan dÔo sust mata sundèontai se seirˆ, mporoÔn na antikatastajoÔn me èna tr-
to sÔsthma, to opoo èqei kroustik apìkrish sh me th sunèlixh twn kroustik¸n
apokrsewn twn dÔo susthmˆtwn pou èqoun sundeje se seirˆ.

        x(t)     h1(t)         h2(t)        y(t)           x(t)        h1(t) * h2(t)         y(t)

       Sq ma 2.12       H fusik    shmasa th      prosetairistik    idiìthta    th     sunèlixh .



     Epimeristik     idiìthta


                    [h1 (t) + h2 (t)℄ ? x(t) = h1 (t) ? x(t) + h2 (t) ? x(t)                       (2.4.23)

H apìdeixh aporrèei ˆmesa apì tou orismoÔ . H fusik shmasa th epimeristik
idiìthta fanetai sto Sq ma 2.13. Lìgw th epimeristik idiìthta , an dÔo sust -
mata èqoun sundeje parˆllhla, tìte mporoÔn na antikatastajoÔn apì èna trto
sÔsthma, tou opoou h kroustik apìkrish enai sh me to ˆjroisma twn kroustik¸n
apokrse¸n tou .

                     h1(t)
        x(t)                              y(t)            x(t)       h1(t) + h2(t)           y(t)
                     h2(t)

         Sq ma 2.13      H fusik      shmasa th    epimeristik     idiìthta    th    sunèlixh .


     Tautotik    idiìthta

                                         h(t) ? Æ(t) = h(t)                                        (2.4.24)

H tautotik idiìthta enai apìrroia tou orismoÔ th kroustik                       apìkrish sust ma-
to .
Enìthta 2.4        Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                                  47



2.4.3    Grafikì      prosdiorismì       th     sunèlixh


Gia na upologsoume thn èxodo enì GQA sust mato me th bo jeia tou oloklhr¸-
mato th sunèlixh
                                            Z   1
                                   y(t) =           x( )h(t  )d                                  (2.4.25)
                                                1
gia kˆje qronik stigm         t akoloujoÔme ta b           mata:

   1.   B ma: Anˆklash. Antistrèfoume thn kroustik                       apìkrish, dhlad         prosdior-
                      ( )
        zoume thn h  .
   2.   B ma: Qronik      Metatìpish.       Metatopzoume thn            h(  )   katˆ   t   kai ètsi pros-
        diorzoume thn   h(t  ).
   3.   B ma:   Pollaplasiasmì      . Prosdiorsoume to ginìmeno             x( )  h(t  ).
   4.   B ma: Olokl rwsh Embadomètrhsh. Oloklhr¸noume to ginìmeno autì ( upo-
        logsoume to embadì tou s mato tou dhmiourgetai apì th grafik parˆstash
        tou ginomènou kai tou ˆxona tou qrìnou  ). To apotèlesma ja enai so me thn
                                    ()
        èxodo tou sust mato y t thn antstoiqh qronik stigm t.
   5.   B ma: Epanˆlhyh. Ta b mata autˆ epanalambˆnontai gia ti diˆfore timè tou
        qrìnou.

Efarmìzoume ta parapˆnw sto parˆdeigma pou akolouje.

Parˆdeigma 2.4.3
        Na upologiste, h èxodo     enì     grammikoÔ qronikˆ anallowtou sust mato                 pou èqei
        kroustik   apìkrish
                                                
                                      h(t) =        1     t;     0t1
                                                    0;           alli¸
                                                                                                     (2.4.26)


        an h esodo   tou enai to s ma:

                                                    
                                          x(t) =         1; 0  t  2
                                                         0; alli¸                                    (2.4.27)




        LÔsh    To GQA sÔsthma kai h esodì tou perigrˆfontai sto Sq ma 2.14a. Sto Sq ma
        2.14b dnetai h kroustik    apìkrish tou sust mato .

        Sto Sq ma 2.14g enai h katoptrik        morf      th    kroustik    apìkrish        tou sust mato ,
        h(  ). Sto Sq ma 2.14d h katoptrik morf th kroustik apìkrish èqei metatopis-
        te katˆ t < 0, h(t  ). ParathroÔme ìti to ginìmeno h(t  )  x( ) enai so me mhdèn
        gia kˆje tim tou qrìnou t mikrìterh tou mhdenì . àtsi, h èxodo tou sust mato enai


                                            y(t) = 0       gia   t<0                                 (2.4.28)
48                                                                                               Eisagwg    sta Sust mata                 Kefˆlaio 2




     x(t)                                                                                        y(t)=x(t)* h(t)
       1
                                                    ÃXA
                                                   óýóôçìá                                                                                 (a)
        0                  2          t                                                      0                          t
                                                  h(ô)
                                                      1                                                     1-ô, 0≤ô<1
                                                                                                  h(ô)=
                                                                                                            0, áëëßùò
                                                                                                                                            (â)
                                                          0             1                                          ô
                                                 h(-ô)
                                                              1                                             1+ô, -1<ô≤0
                                                                                                  h(-ô)=
                                                                                                            0,   áëëßùò
                                                                                                                                            (ã)
                                            -1            0                                                        ô
                                                                                      x(ô)                  1-t+ô, t-1<ô≤t
                               h(t-ô)                 1
                                                                                                  h(t-ô)=
             t<0                                                                                            0,   áëëßùò
                                                                                                                                            (ä)
                                t-1          t            0                       2                                ô
                                                                             x(ô)
                                                      1
                                                   1- t
             t<0<1
                                          h(t-ô)                                                                                            (å)
                                                 t-1 0 t                          2                                ô
                                                                                  x(ô)
                                                      1
              1<t<2                                           h(t-ô)
                                                                                                                                            ( óô )
                                                          0 t-1               t 2                                   ô
                                                                  x(ô)                 h(t-ô)
                                                      1
              2<t<3                                3- t
                                                                                                                                            (æ)
                                                          0                 t-1 2 t                                ô
                                                                  x(ô)                 h(t-ô)
                                                      1
              3<t                                                                                                                           (ç)
                                                          0                       2    t-1       t                  ô

Sq ma 2.14         O grafikì               prosdiorismì                      th    exìdou enì        GQA sust mato                me th bo jeia tou

oloklhr¸mato              th   sunèlixh .


            Sto Sq ma 2.14e h katoptrik                             morf          th    kroustik       apìkrish              èqei metatopiste katˆ
            0  t < 1. Qrhsimopoi¸nta                              ti       (2.4.26) kai (2.4.27) h èxodo                   tou sust mato    dnetai
            apì th sqèsh

                      Z   1                                                 Z t                                 2
             y(t) =            x( )  h(t  ) d                   =             1  (1 t +  ) d = t t2                  gia   0  t < 1 (2.4.29)
                           1                                                 0
            kai enai sh me to embadì tou grammoskiasmènou trapezou sto Sq ma 2.14e.

            Sto Sq ma 2.14st h katoptrik                            morf           th kroustik            apìkrish èqei metatopiste katˆ
Enìthta 2.4          Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                                                       49



        1     t <   2.   Qrhsimopoi¸nta                    ti     (2.4.26) kai (2.4.27) brskoume ìti h èxodo                tou
        sust mato      enai sh me



                                                                                   = 21 ;
                                             Z t
                             y(t) =                     1  (1      t +  ) d                gia      1t<2              (2.4.30)
                                                t   1
        kai enai sh me to embadì tou grammoskiasmènou trig¸nou sto Sq ma 2.14st.

        Sto Sq ma 2.14z h katoptrik                      morf       th     kroustik          apìkrish èqei metatopiste katˆ
        2  t < 3. H èxodo            tou sust mato                dnetai t¸ra apì th sqèsh

                                  2
                                                                      = 21 (3 t)2 ;
                            Z
                  y(t) =                  1  (1        t +  ) d                            gia      2t<3              (2.4.31)
                              t       1
        h opoa enai sh me to embadì tou grammoskiasmènou trig¸nou tou Sq mato                                         2.14z.

        Tèlo , ìpw parathroÔme sto Sq ma 2.14h, to ginìmeno                                       h(t  )x( ) enai so me mhdèn
        gia kˆje tim      tou qrìnou            t megalÔterh              sh apì 3. àtsi, h èxodo tou sust mato enai


                                                           y(t) = 0;         gia     3t                                  (2.4.32)


        H èxodo , loipìn, tou sust mato                          enai:
                                                            8
                                                            >
                                                            >     t t2 =2;            0t1
                                                y(t) =
                                                            <
                                                                  1=2;                1t2
                                                            >
                                                            >     (3 t)2 =2;          2t3                               (2.4.33)
                                                            :
                                                                  0;                   alli¸

        Sto Sq ma 2.15 èqoume sqediˆsei thn esodo kai thn èxodo tou GQA sust mato .



   x(t)                                                                                     y(t)
     1                                                                                        1
                                                                                              2
                                                              ÃXA
                                                             óýóôçìá
        0       1    2            3         t                                                      0     1      2    3       t
                 (a)                                                                                         (â)

Sq ma 2.15       (a) H esodo             kai (b) h èxodo            tou GQA sust mato                 tou Paradegmato    2.4.3.


2.4.4       Grammikˆ qronikˆ anallowta sust mata diakritoÔ qrìnou. -
            To ˆjroisma th            sunèlixh

Sto Parˆdeigma 1.4.5 dexame ìti kˆje s ma diakritoÔ qrìnou mpore na analuje se
ˆjroisma apì olisj sei monadiaou degmato
                                                                 1
                                                                 X
                                                x(n) =                    x(k)Æ(n k)                                     (2.4.34)
                                                             k=     1
50                                                                             Eisagwg      sta Sust mata                 Kefˆlaio 2




H èxodo enì grammikoÔ sust mato dnetai apì th
                                    (   1                                 )        1
                                        X                                          X
     y(n) = S fx(n)g = S                            x(k)Æ(n k)                 =            x(k)S fÆ(n k)g                 (2.4.35)
                                        k=      1                                  k=   1
ìpou qrhsimopoi jhke h idiìthta th grammikìthta tou sust mato . An gia kˆje
              ()
akèraio k , hk n enai h èxodo tou sust mato pou parˆgetai apì thn esodo Æ n k ,                                          (      )
dhlad hk n ( ) = Sf (                   )g
                    Æ n k , tìte h oikogèneia twn shmˆtwn apìkrish
                                             fhk (n)g ;              1<k<1                                                 (2.4.36)

metafèrei ìlh thn plhrofora pou qreiazìmaste gia na kajorsoume thn èxodo pou
parˆgetai apì èna s ma peperasmènh èktash me th bo jeia th
                                                              1
                                                              X
                                                y(n) =                   x(k)hk (n)                                        (2.4.37)
                                                            k=       1
Diafwtzoume thn teleutaa sqèsh me to akìloujo parˆdeigma.
Parˆdeigma 2.4.4
       JewroÔme to grammikì sÔsthma                       S to opoo trofodotetai me to s                ma   x(n), pou peri-
       grˆfetai sto Sq ma 2.16.


                     x(n)
                                                                                            Óýóôçìá
                                                                           x(n)                S                  y(n)
                    -1
               -2           0       1       2       3        n


             Sq ma 2.16         Grammikì sÔsthma diakritoÔ qrìnou kai h esodo                                 tou.
       Oi apokrsei                           h 1 (n); h0 (n) kai h1 (n), gia eisìdou Æ(n +
                         tou grammikoÔ sust mato
       1); Æ(n); kai Æ(n 1) antstoiqa, èqoun sqediaste sto Sq ma 2.17. P1  H apìkrish tou
       grammikoÔ sust mato , ìpw aut ekfrˆzetai apì th sqèsh y (n) =        k= 1 x(k )hk (n)
       prosdiorzetai grafikˆ sto Sq ma 2.18.


               h-1(n)                                     h0(n)                                h1(n)

                            2                                        1                               -1
             -3 -2 -1 0 1       3       n               -3 -2 -1 0       2 3       n         -3 -2        1 2 3       n


Sq ma 2.17    Oi apokrsei tou grammikoÔ sust mato gia eisìdou                                   Æ(n +1), Æ(n) kai Æ(n           1).
     ätan to sÔsthma enai kai qronikˆ anallowto, tìte

                                                    hk (n) = h0 (n k)                                                      (2.4.38)
Enìthta 2.4          Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                                    51



dhlad , ìpw h Æ n         (        )                         ()
                     k enai mia qronik olsjhsh th Æ n ètsi kai h apìkrish
  ()                                                      ()
hk n enai mia qronik olsjhsh th apìkrish h0 n , thn opoa gia eukola thn
sumbolzoume me h n , h n     ( ) ( ( )  ( ) = S f ( )g)
                             h0 n       Æ n . àtsi, h èxodo tou sust mato
dnetai apì th sqèsh
                        1
                        X                                         1
                                                                  X
            y(n) =                 x(k)h(n k)          y(n) =              h(k)x(n k)                    (2.4.39)
                     k=       1                                   k=   1
H (2.4.39) enai gnwst w                ˆjroisma th    sunèlixh   .

           x(-1) ä(n+1)                                                          x(-1) h-1(n)
                                                   Ãñáììéêü
            -1                                     óýóôçìá                        -1        1
     -2          0   1         2    3      n                               -2                   2    3        n


              x(0) ä(n)                                                           x(0) h0(n)
                                                   Ãñáììéêü
                                                   óýóôçìá                                  1
      -2    -1   0   1         2    3      n                               -2    -1             2    3        n


             x(1) ä(n-1)                                                          x(1) h1(n)
                                                   Ãñáììéêü
                                                   óýóôçìá                       -1
      -2    -1   0    1        2    3      n                               -2               1   2    3        n
                                                                                           +1
                     +1
             x(n)= Ók=-1 x(k) ä(n-k)                                              y(n)=Ók=-1 x(k) hk(n)
                                                   Ãñáììéêü
            -1                                     óýóôçìá                       -1         1
      -2         0   1         2    3      n                               -2                   2    3        n


Sq ma 2.18         H grafik         ermhnea th    apìkrish   enì      grammikoÔ sust mato , ìpw            aut

ekfrˆzetai apì to ˆjroisma th             sunèlixh .


    H sumperiforˆ enì grammikoÔ qronikˆ anallowtou sust mato qarakthrzetai
                   ()
apì to s ma h n , to opoo kaletai apìkrish monadiaou degmato kroustik apìkri-
sh. Me ˆlla lìgia se èna GQA sÔsthma arke h gn¸sh ma kai mìno sunˆrthsh th
                                   ()
kroustik apìkrish h n gia na perigrafe pl rw h sqèsh eisìdou x n kai exìdou                    ()
 ()
y n tou sust mato apì to ˆjroisma th sunèlixh .
                                                              ()
    H prˆxh h opoa sunduˆzei dÔo s mata x n kai h n gia to sqhmatismì tou      ()
              ()
s mato y n , kaletai sunèlixh kai sumbolzetai w

                                               y(n) = h(n) ? x(n)                                        (2.4.40)
52                                                           Eisagwg   sta Sust mata   Kefˆlaio 2




H sqèsh eisìdou - exìdou aitiat¸n GQA susthmˆtwn diakritoÔ qrìnou enai
                                            n
                                            X
                                y(n) =                x(k)h(n k)                        (2.4.41)
                                            k=   1
      ( )=0
afoÔ h n      ; n< .     0
   An h esodo enai aitiatì s ma, h èxodo dnetai se kˆje qronik stigm                n apì to
peperasmèno ˆjroisma
                                  n
                                  X
                         y(n) =         x(k)h(n k);             0n<1                   (2.4.42)
                                  k=0
 Parˆdeigma 2.4.5

     Na upologiste h èxodo       enì    grammikoÔ qronikˆ anallowtou sust mato       diakritoÔ
     qrìnou pou èqei kroustik      apìkrish
                                                 
                                       h(n) =
                                                       n;    0n6
                                                     0;      alli¸
                                                                                         (2.4.43)


     ìtan h esodì    tou enai to s ma
                                                 
                                        x(n) =        1; 0  n  4
                                                      0; alli¸                           (2.4.44)



     LÔsh      To GQA sÔsthma kai h esodo tou perigrˆfontai sto Sq ma 2.19a. Sto Sq ma
     2.19b dnetai h kroustik    apìkrish tou sust mato . Sto Sq ma 2.19g enai h katoptrik
     morf     th kroustik                         h( k). Sto Sq ma 2.19d h katoptrik
                              apìkrish tou sust mato
     morf     th   kroustik   apìkrish                     n < 0, h(n k).
                                            èqei metatopiste katˆ

     1) Apì to Sq ma 2.19d parathroÔme ìti gia n < 0 to ginìmeno x(k )h(n k) enai so
     me mhdèn gia kˆje tim tou n mikrìterh tou mhdenì . àtsi, h èxodo tou sust mato
     enai:
                                                     y(n) = 0                            (2.4.45)


     2) Apì to Sq ma 2.19e parathroÔme ìti gia    0  n  4 to ginìmeno x(k)h(n         k) enai:
                                                      
                                            k) = 0; ; 0alli¸
                                                          kn
                                                  n k
                              x(k)h(n                                                    (2.4.46)


     ètsi, h èxodo    tou sust mato     enai

                                             n                         n
                                             X               n k=r     X
                                y(n)    =             n k       =            r
                                             k=0                       r=0
                                                       n+1
                                        = 11                                             (2.4.47)
Enìthta 2.4           Sqèsh MetaxÔ Eisìdou-Exìdou Sust mato                                                                                53


              x(n)                                                                          y(n)=x(n) * y(n)
                                                          Ã×Á
                                                         óýóôçìá                                                                     (a)
       -2 -1 0 1 2 3 4 5 6                   n                                                                               n
                                                                 h(k)
                        -8    -6        -4       -2   0 1 2 3 4 5 6 7 8                            k                                  (â)

                                                         h(-k)
                                                                                                                                     (ã)
                        -8     -6       -4       -2 -1 0 1 2 3 4 5 6 7 8                          k
                     h(n-k)                                                         x(k)                               n<0
                                                                                                                                     (ä)
              n-6              n                      0                     4                                                    k
                                                 h(n-k)                                                                0<n<4
                                                                                                                                     (å)
                                        n-6           0            n        4                                                    k

                                                                 h(n-k)                                                4<n<6
                                                                                                                                     ( óô )
                                                  n-6 0                     4 n                                                  k

                                                                                h(n-k)                                 6 < n < 10
                                                                                                                                     (æ)
                                                         0        n-6       4               n
                                                                                                                                 k
                                                  x(k)                                           h(n-k)                10 < n
                                                                                                                                     (ç)
                                                         0                  4         n-6                 n                      k

Sq ma 2.19          O grafikì       prosdiorismì                   th       exìdou enì            GQA diakritoÔ sust mato              me th

bo jeia tou ajrosmato             th    sunèlixh . Sta sq mata e, st kai z den èqei sqediasje to s ma

eisìdou. H skiasmènh perioq                  prosdiorzei thn perioq                            sthn opoa    x(k) 6= 0.

      3) Apì to Sq ma 2.19st parathroÔme ìti gia                                     4 < n  6 h èxodo             tou sust mato enai:




                                                  4
                                                  X                                 4
                                                                                    X                              4
                              y(n)           =               n k        =       n                1 k = an
                                                  k=0                               k=0                        1
                                                    n        4          n+1
                                             =           1                                                                           (2.4.48)
54                                                                         Eisagwg        sta Sust mata             Kefˆlaio 2




        4) Apì to Sq ma 2.19z parathroÔme ìti gia                        6 < n  10 h èxodo             tou sust mato enai:

                             4                                    10Xn                    10Xn
            y(n)    =
                             X
                                        n k    k n+6=r
                                                     =                    6   r   =   6               1 r = 6 10      n

                            k=n     6                             r=0                     r=0                      1
                             16     n     7
                    =           1                                                                                       (2.4.49)


        5) Apì to Sq ma 2.19h parathroÔme ìti gia                     10 < n h èxodo                tou sust mato      enai:


                                                                 y(n) = 0                                               (2.4.50)




2.5     APOKRISH GRAMMIKWN SUSTHMATWN SE EKJETIKES EISODOUS


2.5.1       Suneq       perptwsh

Gnwrzoume ìti h esodo x t kai hRèxodo
                                   1 x
                                         ()                   y(t) enì GQA sust mato sundèontai me to
olokl rwma th sunèlixh y t          1     ( )=               ( )h(t  )d . An h esodo tou sust mato
enai to ekjetikì migadikì s ma
                                                         x(t) = Aest                             (2.5.1)

ìpou    s migadikì          arijmì , tìte h èxodo enai
                    Z   1                                Z   1                                  Z   1
     y(t)    =              h(t  )x( )d           =            h( )x(t  )d           =             h( )Aest e   s d
                    Z
                        1                        
                                                              1                                      1
                         1
             =                  h( )e   s d       Aest                                                               (2.5.2)
                            1
Telikˆ,
                                                     y(t) = H (s)Aest                                                   (2.5.3)

ìpou                                                      Z   1
                                              H (s) =              h( )e     s d                                     (2.5.4)
                                                              1
        ()
To H s enai èna migadikì arijmì gia thn tim s tou ekjetikoÔ s mato . Eˆn
apeleujer¸soume to s kai to af soume na metabˆlletai, tìte to H s enai ma mi-                             ()
gadik sunˆrthsh th migadik metablht s kai orzei, ìpw ja doÔme sto Kefˆlaio
6, to Metasqhmatismì Laplace th kroustik      apìkrish tou sust mato h t kai                                            ()
kaletai sunˆrthsh metaforˆ tou sust mato .
    An s     =
           j!0 , dhlad , h esodo tou sust mato enai to s ma
                                                      x(t) = Aej!0 t                                                    (2.5.5)
Enìthta 2.5      Apìkrish Grammik¸n Susthmˆtwn se Ekjetikè    Eisìdou              55



h èxodo tou sust mato      y(t) enai
                                   y(t) = H (!0 )Aej!0 t                       (2.5.6)

ìpou                                      Z   1
                                H (!) =           h(t)e   j!t dt               (2.5.7)
                                              1
        ()
To H ! enai èna migadikì arijmì gia thn tim ! tou ekjetikoÔ s mato . Eˆn h !
                         ()
metabˆlletai, tìte to H ! enai ma migadik sunˆrthsh th pragmatik metablht
                    ()
!. H sunˆrthsh H ! exartˆtai epsh kai apì thn kroustik apìkrish tou sust -
         ()                                           ()
mato h t . äpw ja doÔme sto Kefˆlaio 3, h H ! orzei to Metasqhmatismì Fourier
th kroustik     apìkrish tou sust mato kai onomˆzetai apìkrish suqnìthta tou
sust mato . H apìkrish suqnìthta tou sust mato grˆfetai w migadik sunˆrthsh
me th morf :
                            H!         H ! ej arg H (!)
                                   ( ) = j ( )j                         (2.5.8)
        j ( )j
ìpou H ! onomˆzetai apìkrish plˆtou kai              arg ( )
                                               H ! apìkrish fˆsh tou sust -
mato . àtsi, h èxodo tou sust mato , an to s ma eisìdou enai x t Aej (!0 t+) ,
                                                                         ()=
enai:

                       y (t)   = jH (!0 )jej arg H (!0 )  Aej(!0 t+)
                               = jH (!0 )jAej(!0 t++arg H (!0 ))              (2.5.9)

ParathroÔme ìti:
   1.   An h esodo enì GQA sust mato enai to migadikì ekjetikì s ma me kuklik
        suqnìthta !0 , h èxodì tou enai epsh migadikì ekjetikì s ma me thn dia
        kuklik suqnìthta !0 .
   2.   To plˆto th exìdou enai so me to ginìmeno tou plˆtou th eisìdou ep to
        mètro th apìkrish suqnìthta tou sust mato upologismènou sthn kuklik
                                  j ( )j
        suqnìthta !0 , dhlad , A H !0 .
   3.   H fˆsh th exìdou tou sust mato enai metatopismènh w pro th fˆsh th
        eisìdou kai prosdiorzetai w ˆjroisma th fˆsh tou s mato eisìdou kai th
        fˆsh th apìkrish suqnìthta prosdiorismènh sthn kuklik suqnìthta !0
        tou s mato eisìdou.
    Me ˆlla lìgia, èna grammikì sÔsthma metabˆllei to mètro kai th fˆsh tou s ma-
to eisìdou, allˆ ìqi thn kuklik suqnìthtˆ tou. H diat rhsh th kuklik suqnìth-
ta apotele ma basik idiìthta twn grammik¸n susthmˆtwn. Anakefalai¸nonta ,
sumperanoume ìti, an sthn esodo enì grammikoÔ sust mato efarmoste s ma to
opoo apoteletai apì ˆjroisma shmˆtwn apl¸n suqnot twn, tìte kai h èxodì tou
ja apoteletai apì upèrjesh twn diwn shmˆtwn me diaforetikì plˆto kai metatopi-
smènwn katˆ fˆsh.
56                                                             Eisagwg     sta Sust mata         Kefˆlaio 2




     An h esodo tou sust mato enai

                                      x(t) = A        os(!0t + )                                 (2.5.10)

me ìmoio trìpo brskoume ìti h èxodo tou sust mato enai

                        y(t) = jH (!0 )jA       os(!0t +  + arg H (!0 ))                         (2.5.11)

gia thn opoa isqÔoun anˆloge parathr sei , ìpw kai sthn perptwsh ìpou h esodo
tou sust mato enai to migadikì ekjetikì s ma.
    Apì ta parapˆnw anadeiknÔetai h fusik shmasa th apìkrish suqnìthtwn kai
dikaiologetai to ìnomˆ th w apìkrish suqnìthta tou sust mato .
    Lìgw th basik idiìthta th diat rhsh th suqnìthta , pou èqoun ta GQA
sust mata, ìtan diegerontai apì migadikˆ ekjetikˆ s mata, ìpw ja doÔme sto epìme-
no kefˆlaio, enai epijumhtì sthn prospˆjeiˆ ma na broÔme thn apìkrish enì GQA
sust mato se tuqao s ma na prosdiorsoume trìpou anˆptuxh enì tuqaou s ma-
to se ˆjroisma ekjetik¸n migadik¸n shmˆtwn. àtsi, ekmetalleuìmenoi thn idiìthta
th grammikìthta prokÔptei ìti h èxodo tou sust mato ja enai sh me to ˆjroisma
twn ekjetik¸n aut¸n migadik¸n shmˆtwn me ti die suqnìthte , twn opown to plˆ-
to kai h fˆsh èqoun uposte thn allˆgh pou prokale to sÔsthma se kˆje ekjetikì
migadikì s ma, anˆloga me th suqnìthtˆ tou, kai h opoa prosdiorzetai apì to mètro
kai th fˆsh th apìkrish suqnìthta tou sust mato gia th suqnìthta aut . Me ton
trìpo autì ja èqoume th dunatìthta na epexergastoÔme s mata polÔplokh morf
me th bo jeia twn aploustèrwn aut¸n ekjetik¸n shmˆtwn.


2.5.2    Diakrit    perptwsh


                                  ()                       ()
Gnwrzoume ìti h esodo x n kai h èxodo y n enì diakritoÔ GQA sust mato
                                                 P1
sundèontai me to ˆjroisma th sunèlixh y n                 ()=
                                                   k= 1 h k x n k . An h              ( ) (     )
esodo tou sust mato enai to ekjetikì migadikì s ma apl suqnìthta

                                              x(n) = z n                                          (2.5.12)

ìpou    z = rej    migadik metablht , tìte h èxodo enai

                             1                            "   1                       #
                             X                                X
                    y(n) =            h(k)    zn k   =                h(k)  z   k        zn
                             k=   1                           k=   1
telikˆ
                                        y(n) = H (z )  z n                                       (2.5.13)
Enìthta 2.5         Apìkrish Grammik¸n Susthmˆtwn se Ekjetikè         Eisìdou                              57



ìpou
                                                1
                                                X
                                    H (z ) =            h(k)  z     k                              (2.5.14)
                                               k=   1
   ParathroÔme ìti h èxodo lambˆnetai apì to dio ekjetikì s ma eisìdou dia-
                     ()                         ()
bajmismèno me H z . H sunˆrthsh H z , ìpw ja doÔme sto Kefˆlaio 7, enai o
Metasqhmatismì z th kroustik apìkrish kai kaletai sunˆrthsh metaforˆ tou
sust mato .
   An jèsoume z      =
                  ej , dhlad , h esodo tou sust mato enai to s ma
                                            x(n) = ej      n                                        (2.5.15)

h èxodo tou sust mato           y(n) dnetai apì th
                                         y(n) = H ( )ej        n                                    (2.5.16)

ìpou
                                               1
                                               X
                                   H(    )=             h(k)  e    j k                             (2.5.17)
                                              k=    1
H sunˆrthsh H       ( )
                   exartˆtai apì thn kuklik yhfiak suqnìthta kai apì th sunˆrth-
sh pou perigrˆfei thn kroustik apìkrish tou sust mato . äpw ja doÔme sto Ke-
fˆlaio 5, h H     ( )
                apotele to Metasqhmatismì Fourier diakritoÔ qrìnou th kroustik
apìkrish tou sust mato kai onomˆzetai apìkrish suqnìthta tou sust mato .
   H diat rhsh th suqnìthta apotele, epsh , basik idiìthta twn grammik¸n
susthmˆtwn diakritoÔ qrìnou.

Parˆdeigma 2.5.1
       Me th bo jeia th       (2.5.6), na upologiste h apìkrish suqnìthta             tou kukl¸mato       tou
       Sq mato     2.20, tou opoou h esodo    enai h tˆsh       in (t) kai èxodo    h tˆsh   o (t).
                          R

                       i(t)
         õin(t)                      C     õo(t)
                                                               Sq ma 2.20       To kÔklwma tou

                                                               Paradegmato     2.5.1.



       LÔsh       Efarmìzonta     to deÔtero kanìna tou        Kirchhoff    sto brìqo tou kukl¸mato
       èqoume
                                           Ri(t) + o (t) = in (t)                                  (2.5.18)

       Lambˆnonta     upìyh thn (2.1.3) h (2.5.18) grˆfetai

                                           d (t)
                                         RC o + o (t) = in (t)                                     (2.5.19)
                                             dt
58                                                                 Eisagwg   sta Sust mata      Kefˆlaio 2




     An h esodo    tou sust mato      enai


                                                in (t) = ej!t                                      (2.5.20)


     tìte, sÔmfwna me th (2.5.6), h èxodo         tou kukl¸mato              enai


                                              o(t) = H (!)ej!t                                     (2.5.21)


     Kai epeid
                                            do (t)
                                              dt
                                                      = H (!)j!ej!t                                 (2.5.22)


     h (2.5.19) dnei
                                RCH (!)j!ej!t + H (!)ej!t = ej!t                                    (2.5.23)

     apì thn opoa upologzetai h apìkrish suqnìthta                     tou sust mato


                                             H (!) =
                                                               1
                                                           1 + jRC!                                 (2.5.24)



Sto parˆdeigma pou akolouje anadeiknÔetai h fusik shmasa th apìkrish suqnìth-
ta enì sust mato .
Parˆdeigma 2.5.2
     H apìkrish suqnìthta       enì   sust mato            enai


                                            H (!) =
                                                                   2
                                                                   p
                                                           2+j 3!                                  (2.5.25)



     Na upologiste h èxodo     tou sust mato , an h esodo                  enai to s ma


                                                 x(t) = 4ej2t                                       (2.5.26)


     kai na gnoun oi grafikè      parastˆsei         tou pragmatikoÔ mèrou            tou s mato   eisìdou
     kai tou s mato     exìdou tou sust mato           se sunˆrthsh me to qrìno.

     LÔsh    Gnwrzoume ìti, an h esodo GQA sust mato enai èna migadikì ekjetikì s ma
     x(t) = Aej!0 t , h èxodo   tou sust mato          dnetai apì th sqèsh


                                y(t) = jH (!0 )jAej(!0 t++arg H (!0 ))                             (2.5.27)


     H kuklik    suqnìthta tou s mato          eisìdou       x(t)      = Aej!0 t enai !0 = 2. H apìkrish
     suqnìthta     tou sust mato      gia   !0 = 2 enai
                                                       1 (1
                                                      2p                         p
                                H (2) =              =                       j    3)
                                              2+j 32 4                                             (2.5.28)



     h opoa se polik    morf    grˆfetai

                                                      1 
                                               H (2) = e j 3
                                                             2                                      (2.5.29)
Enìthta 2.5           Apìkrish Grammik¸n Susthmˆtwn se Ekjetikè         Eisìdou                              59



         àtsi, h èxodo      tou sust mato      enai

                                            1 
                                      y(t) = e j 3       4ej2t = 2e j(2t 3 )
                                                2                                                    (2.5.30)


         Gia to pragmatikì mèro       th    eisìdou kai th    exìdou èqoume antstoiqa

                                                <e [x(t)℄ = 4 os(2t)                                 (2.5.31)
                                                                       
                                             <e [y(t)℄ = 2 os 2t 3                                   (2.5.32)

         ParathroÔme ìti h èxodo            èqei thn dia suqnìthta me thn esodo, plˆto            so me to
         1/2 tou plˆtou      th   eisìdou kai diaforˆ fˆsh         me thn esodo sh me          =3, dhlad   ,
         parousiˆzei qronik       kajustèrhsh katˆ       t = T (=2) = =6. Sto Sq            ma 2.21 èqei
         sqediaste to pragmatikì mèro          tou s mato    eisìdou kai exìdou tou sust mato , sto
         opoo parathroÔme ti       allagè     pou epibˆllei to sÔsthma sto plˆto           kai th fˆsh tou
         s mato   eisìdou.



  Re[ x(t)]                                                        Re[ y(t)]
                                                                                  Ät= ð
                                                                                      6
     4                                                                4
                                                                      2
     0
                  ð          2ð        t               H(ù)           0
                                                                                  ð         2ð           t
                                                                     -2
    -4                                                               -4
                      (a)                                                             (â)

Sq ma 2.21     To pragmatikì mèro (a) tou s mato eisìdou kai (b) tou s mato exìdou gia to

sÔsthma tou Paradegmato           2.5.2.


    SÔnoyh Kefalaou
                                                                    \
    Sto kefˆlaio autì dìjhke h ermhnea th ènnoia sÔsthma" kai h majhmatik th
èkfrash. Anafèrame tou trìpou sÔndesh susthmˆtwn kai perigrˆyame ti basikè
idiìthte twn susthmˆtwn.
    Parathr same ìti gia na perigrafe pl rw h sqèsh eisìdou-exìdou enì GQA
sust mato , me th bo jeia tou oloklhr¸mato th sunèlixh ( tou ajrosmato th
sunèlixh ), arke h gn¸sh th kroustik apìkrish tou sust mato .
    Edame ìti, an h esodo enì GQA sust mato enai èna s ma apl suqnìthta ,
tìte kai h antstoiqh èxodo enai s ma th dia suqnìthta , to opoo èqei uposte al-
lag , pou epibˆllei to sÔsthma sto plˆto kai th fˆsh tou kai h opoa prosdiorzetai
apì th sunˆrthsh apìkrish suqnìthta tou sust mato .
    Tèlo , rjame se ma pr¸th gnwrima me thn ènnoia tou MetasqhmatismoÔ Fouri-
er, tou MetasqhmatismoÔ Laplace kai tou MetasqhmatismoÔ z , oi opooi ja ma a-
pasqol soun se epìmena kefˆlaia.
60                                                                       Eisagwg        sta Sust mata             Kefˆlaio 2




2.6     PROBLHMATA

 2.1   Na breje h sqèsh th tˆsh eisìdou                             in (t) kai th         tˆsh exìdou       o (t) gia to
       kÔklwma tou Sq mato 2.22.
                                L


              õin(t)        i(t)
                                                   R       õo(t)
                                                                        Sq ma 2.22               To kÔklwma tou Probl -

                                                                        mato     2.1.


 2.2   To sÔsthma to opoo perigrˆfetai apì thn parakˆtw sqèsh eisìdou x                                       (t), exìdou
       y(t)
                                                               y(t) = jx(t)j                                              (2.6.1)

       anafèretai w sÔsthma pl rou anìrjwsh . Na exetˆsete an to sÔsthma enai
       grammikì, qronikˆ anallowto kai aitiatì.
 2.3   Na dexete ìti to sÔsthma, sto opoo h sqèsh eisìdou                                     x(t) kai exìdou y(t) enai
                                                            y(t) = x2 (t)                                                 (2.6.2)

       enai mh grammikì sÔsthma.
 2.4   H èxodo enì grammikoÔ qronikˆ anallowtou sust mato (Sq ma 2.23b) enai o
       trigwnikì palmì tou Sq mato 2.23g, ìtan h esodo enai o orjog¸nio palmì
       tou Sq mato 2.23a. Na breje h èxodo tou sust mato ìtan h esodo enai to
                   ()
       s ma x1 t tou Sq mato 2.24a to s ma x2 t tou Sq mato 2.24b.         ()
      x(t)                                                                         y(t)
        1                                                                               1
                                                            ÃXA
                                                           óýóôçìá
         0         1        2          3       t                                            0         1   2       3         t
                  (a)                                          (â)                                    (ã)

         Sq ma 2.23             H esodo       kai h èxodo       tou GQA sust mato               sto Prìblhma 2.4


        x1(t)                                                                  x2(t)
              1                                                                    2
                                                                                   1
              0         1        2         3           4   t
             -1                                                                    0              1     2     3       t
                                 (a)                                                                  (â)

                  Sq ma 2.24           Oi esodoi tou GQA sust mato                sto Prìblhma 2.4
Enìthta 2.6       Probl mata                                                              61



 2.5   To sÔsthma to opoo perigrˆfetai apì thn parakˆtw sqèsh eisìdou x          (t), exìdou
       y(t)                                           Z t
                               y(t) = S fx(t)g =                x( )d               (2.6.3)
                                                          1
       anafèretai w oloklhrwt . Na exetˆsete an to sÔsthma enai grammikì, qronikˆ
       anallowto, aitiatì kai na prosdioriste h kroustik apìkris tou.
 2.6   To sÔsthma to opoo perigrˆfetai apì thn parakˆtw sqèsh eisìdou x          (t), exìdou
       y(t)
                               y(t) = S fx(t)g = x(t)           os(!0 t)              (2.6.4)

       anafèretai w diamorfwt . Na exetˆsete an to sÔsthma enai grammikì, qronikˆ
       anallowto kai aitiatì kai na prosdioriste h kroustik tou apìkrish.
 2.7   H kroustik apìkrish tou kukl¸mato           RC se seirˆ sto Sq      ma 2.3 enai

                                               1
                                   h(t) = e  u(t)
                                                      t
                                                                                      (2.6.5)
                                         
       ìpou  =   RC h stajerˆ qrìnou. An  = 1se ,               na upologiste h èxodo tou
       sust mato , ìtan h esodì tou enai to s ma

                                   x(t) = u(t) u(t              2)                    (2.6.6)


 2.8   H kroustik apìkrish enì GQA sust mato enai

                                   h(t) = u(t) u(t              2)                    (2.6.7)

       Me th bo jeia tou oloklhr¸mato th sunèlixh na upologsete thn èxodo tou
       sust mato , ìtan h esodo enai

                                 x(t) = u(t      1)       u(t      2)                 (2.6.8)


 2.9   H kroustik apìkrish enì GQA sust mato enai

                                 h(t) = u(t      1)       u(t      3)                 (2.6.9)

       Me th bo jeia tou oloklhr¸mato th sunèlixh na upologsete thn èxodo tou
       sust mato , ìtan h esodì tou enai to s ma
                                        
                               x(t) =       sin(t); 0  t  2
                                            0;        alli¸
                                                                                     (2.6.10)
62                                                      Eisagwg   sta Sust mata     Kefˆlaio 2




2.10   An ta stoiqea tou kukl¸mato , pou perigrˆfetai sto Sq ma 2.20, enai R               =
       103  kai C        6 na upologiste h èxodì tou, ìtan h esodo tou enai to
                    = 10 F
       s ma
                                         p            
                                x(t) =       2 sin 1000t + 3                          (2.6.11)

2.11   H kroustik apìkrish enì GQA sust mato enai

                                    h(n) = (0; 9)n u(n)                                (2.6.12)

       Me th bo jeia tou ajrosmato th sunèlixh na upologsete thn èxodo tou
       sust mato , ìtan h esodo enai to diakritì s ma

                                 x(n) = u(n) u(n                4)                     (2.6.13)

2.12   H kroustik apìkrish enì GQA sust mato enai

                                     h(n) = [ 3; 2;        1℄                          (2.6.14)
                                                    "
       ìpou to bèlo pro ta pˆnw dhl¸nei to degma gia n               =0
                                                          . Me th bo jeia tou
       ajrosmato th sunèlixh na upologsete thn èxodo tou sust mato , ìtan h
       esodo enai to s ma
                                xn  ( )=[1 2 3 4℄
                                         ; ; ;                        (2.6.15)
                                                "
2.13   Na dexete ìti to sÔsthma to opoo perigrˆfetai apì th diaforik exswsh
                                dy(t)
                                 dt
                                      + 10y(t) + 5 = x(t)                              (2.6.16)

       den enai grammikì.



     Bibliografa

2.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
2.2    A. Mˆrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
 sei   Tziìla 2012.

2.3     S. Haykin, B. Veen, “Signal and Systems”, John       & Wiley Sons, Inc. 2003
2.4    A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
 Hall Inc., N. Y., 1983.
2.5.   R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals           & Systems Continuous and
 Discrete”, Prentice Hall, 1998.
                                                               ÊÅÖÁËÁÉÏ      3
            ÁÍÁÐÔÕÃÌÁ - ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ FOURIER
                    ÁÍÁËÏÃÉÊÙÍ ÓÇÌÁÔÙÍ




    Sthn prˆxh, pollè forè qreiˆzetai na prosdiorsoume thn èxodo enì sust -
mato , ìtan autì diegeretai apì èna s ma. Sto prohgoÔmeno kefˆlaio, edame ìti
h èxodo enì GQA sust mato perièqei ti die suqnìthte me to s ma eisìdou, me
diaforetikì, ìmw , mètro kai fˆsh. Sto kefˆlaio autì ja eisagˆgoume kai ja melet -
soume majhmatikˆ ergalea, ta opoa ma epitrèpoun na analÔoume èna sÔnjeto s ma
se s mata apl¸n suqnot twn. Ma tètoia prosèggish ma dieukolÔnei ¸ste na up-
ologsoume thn èxodo enì sust mato , to opoo diegeretai apì èna sÔnjeto s ma, me
th bo jeia twn apokrsewn tou sust mato sti epimèrou sunist¸se sugkekrimènwn
suqnot twn. Sth sunèqeia ja efarmìsoume ti mejìdou autè ¸ste na analÔsoume
èna arijmì shmˆtwn, ta opoa sunantˆme suqnˆ sthn prˆxh.

      Eisagwg
    Sto prohgoÔmeno kefˆlaio, edame ìti an h esodo enì GQA sust mato enai to
migadikì ekjetikì s ma to hmitonoeidè s ma, tìte h èxodì tou enai s ma th dia
suqnìthta me diaforetikì plˆto kai fˆsh. àtsi, parathr same ìti enai polÔ eÔko-
lo na prosdiorsoume thn èxodo tou GQA sust mato , ìtan to s ma pou efarmìzetai
sthn esodì tou analuje se s mata sugkekrimènh suqnìthta .
    Sto kefˆlaio autì ja anaptÔxoume kai ja melet soume trìpou anˆlush enì
s mato se s mata sugkekrimènh suqnìthta . àtsi, an to s ma autì diegerei èna
sÔsthma, ekmetalleuìmenoi thn idiìthta th grammikìthta , ja prosdiorzoume thn
èxodo tou sust mato w ˆjroisma shmˆtwn pou èqoun ti die suqnìthte me autè
pou perièqei to s ma eisìdou, twn opown to plˆto kai h fˆsh èqei uposte allag
pou prokale to sÔsthma.


3.1    H IDEA TOU QWROU TWN SHMATWN


H gènnhsh kai oi rze th jewra aut ofelontai sto Gˆllo Majhmatikì Jean Bap-
tiste Joseph Fourier (1768-1830), o opoo eis gage thn anˆlush mia sunˆrthsh se
sunart sei sugkekrimènwn suqnot twn gia na melet sei fainìmena diˆdosh th jer-
64                   Anˆptugma - Metasqhmatismì         Fourier Analogik¸n Shmˆtwn            Kefˆlaio 3




mìthta . H anˆlush mia sÔnjeth posìthta se aploÔstere sunist¸se , me skopì
h melèth enì probl mato na gnetai eukolìterh, enai ma genikìterh mejodolog-
a. Gia parˆdeigma, sth grammik ˆlgebra, èna diˆnusma analÔetai se mia bˆsh pou
perigrˆfei to q¸ro. Me aform thn parat rhsh aut a doÔme giat kai ìla ta s -
                                            [ ℄
mata pou orzontai se èna diˆsthma a; b mporoÔn na perigrafoÔn kai w dianÔsmata.
Prˆgmati, o grammikì sunduasmì dÔo h perissotèrwn s matwn dnei èna nèo s ma
sto dio diˆsthma. Epsh , o pollaplasiasmì enì s mato me mia stajer posìth-
ta dnei èna nèo s ma sto dio diˆsthma. Exetˆzonta ta s mata w dianÔsmata se
èna antstoiqo q¸ro ma anogetai o drìmo na analÔsoume èna s ma se ˆjroisma
aploustèrwn shmˆtwn, sto dianusmatikì q¸ro twn shmˆtwn sto diˆsthma a; b . E-                [ ℄
nai skìpimo ed¸ na jumhjoÔme merikè basikè ènnoie apì th grammik ˆlgebra kai
sth sunèqeia na orsoume antstoiqe ènnoie sta s mata.
    Gia parˆdeigma, èna diˆnusma sto q¸ro twn tri¸n diastˆsewn paristˆnetai me th
bo jeia twn probol¸n tou sta monadiaa dianÔsmata tou q¸rou, ta opoa apoteloÔn
th “bˆsh tou q¸rou. àtsi, to diˆnusma a mpore na ekfraste w

                                      a = a1 e1 + a2 e2 + a3 e3                                   (3.1.1)

ìpou e1 , e2 kai e2 enai ta monadiaa dianÔsmata sti trei basikè dieujÔnsei tou
q¸rou (Sq ma 3.1). To diˆnusma a mpore isodÔnama na parastaje me thn triˆda
                (
suntetagmènwn a1 ; a2 ; a3        )
                z

                e3            a

                         e2             y
                e1

         x                                               Sq ma 3.1    Anˆlush dianÔsmato .


   Sto q¸ro twn      n   diastˆsewn, o opoo èqei bˆsh            e1 ; e2 ; ::: ; en ,   kˆje diˆnusma
paristˆnetai w
                                                  n
                                                  X
                                            a=          ai ei                                     (3.1.2)
                                                  i=1
To diˆnusma   a paristˆnetai, isodÔnama, apì ti             suntetagmène      (a1 ; a2 ; :::; an ).
    H diˆstash tou q¸rou n, enai o arijmì twn monadiawn dianusmˆtwn ta opoa
enai anagkaa kai ikanˆ gia na ekfrˆsoun kˆje diˆnusma tou q¸rou. Ta dianÔsma-
ta a1 ; a2 ; :::; an enai anexˆrthta, an kanèna apì autˆ den mpore na ekfraste w
grammikì sunduasmì twn ˆllwn.
Enìthta 3.1       H Idèa tou Q¸rou twn Shmˆtwn                                                    65




Pn
     To                   dÔo dianusmˆtwn n diastˆsewn a
          eswterikì ginìmeno                                                   = Pni=1 aiei kai b =
     b e
  i=1 i i , sumbolzetai me     h      i
                            a; b kai orzetai apì th sqèsh
                                                         n
                                                         X
                                 ha; bi = aT  b =              ai bi                         (3.1.3)
                                                         i=1

ìpou aT enai to anˆstrofo diˆnusma tou a. To eswterikì ginìmeno èqei ti akìlouje
idiìthte

       Enai jetikˆ orismèno                   ha; ai > 0 ìtan a 6= 0 kai h0; 0i = 0
       Antimetajetik                           ha; bi = (hb; ai)?
       Epimeristik                             h(a + b); i = ha; i + hb; i
       Pollaplasiasmì me stajerˆ               h  a; bi =  ha; bi
upenjumzetai ìti me “?” dhl¸netai o suzug               migadikì . DÔo dianÔsmata enai         or-
              h
jog¸nia an, a; b   i=0.
   To mètro (norm) m ko enì dianÔsmato                 a sumbolzetai me k a k kai enai o mh
arnhtikì arijmì pou orzetai apì th sqèsh


                               k a k= ha; ai 12 =      Pn
                                                            i=1 ai
                                                                  2  12                      (3.1.4)

dhlad , to mètro enì dianÔsmato enai so me thn tetragwnik rza tou eswterikoÔ
ginomènou tou dianÔsmato me ton eautì tou.
                                 (                 )
    àna sÔnolo dianusmˆtwn a1 ; a2 ; :::; an kaletai orjokanonikì, an autˆ enai anˆ
dÔo orjog¸nia kai ìla èqoun mètro so me th monˆda, dhlad ,
                                                        
                         hak ; am i = Æ(k m) = 10;; kk ==6 m
                                                           m                                  (3.1.5)


                                                                           (
Gia ma orjokanonik bˆsh dianusmˆtwn oi suntetagmène a1 ; a2 ; :::; an enì di-            )
anÔsmato a enai oi probolè tou a se kˆje èna apì ta dianÔsmata bˆsh kai pros-
diorzontai apì th sqèsh

                                ai = ha; ei i      i = 1; 2; :::; n                           (3.1.6)

àtsi, to   a grˆfetai
                                            n
                                            X
                                       a=         ha; ei i ei                                 (3.1.7)
                                            i=1
66                    Anˆptugma - Metasqhmatismì           Fourier Analogik¸n Shmˆtwn                 Kefˆlaio 3




   Sth sunèqeia ja orsoume ti antstoiqe ènnoie gia ta s mata. To eswterikì
ginìmeno                      ()         ()
         dÔo shmˆtwn x t kai y t , ta opoa orzontai sto diˆsthma a; b , sum-                    [     ℄
                h ( ) ( )i
bolzetai me x t ; y t kai orzetai w
                                                     Z b
                                   hx(t); y(t)i =          x(t)y? (t)dt                                 (3.1.8)
                                                       a
           ()
ìpou y ? t enai to suzugè s ma tou           y(t). Enai eÔkolo na doÔme ìti o orismì                      autì
plhro ti akìlouje idiìthte

        Enai jetikˆ orismèno     hx(t); x(t)i  0 kai hx(t); x(t)i = 0 , x(t) = 0
     
     Antimetajetik                 hx(t); y(t)i = hy(t); x(t)i?
     
     Epimeristik                   hx(t) + y(t); z(t)i = hx(t); z(t)i + hy(t); z(t)i
     Pollaplasiasmì me stajerˆ h  x(t); y (t)i =  hx(t); y (t)i
     
DÔo s mata enai orjog¸nia an, hx(t); y (t)i = 0.
    àna migadikì q¸ro efodiasmèno me eswterikì ginìmeno kaletai kai (migadikì )
Eukledio  q¸ro . Se ènan Eukledio q¸ro to eswterikì ginìmeno orzei tautìqrona
kai to mètro (norm) enì s mato w thn tetragwnik rza tou eswterikoÔ ginomènou
tou s mato me ton eautì tou, dhlad ,
                                                                 qR
                           k x(t) k2 = hx(t); x(t)i 12 =            b
                                                                          a   jx(t)j2 dt                (3.1.9)

                jj ( ) k
Profan¸ , o x t 2 enai pˆnta èna mh arnhtikì pragmatikì arijmì .
   JewroÔme èna sÔnolo orjokanonik¸n shmˆtwn        n t ,n            f ( )g = 1 2
                                                              ; ; ::: P
                                                                      sto diˆsth-
     [ ℄                          h ()
ma a; b , gia ta opoa isqÔei k t ; m t   Æ k m kai èstw ìti h seirˆ 1
                                                  ( )i = (                )
                                                                        n=1 xn n                                   (t)
                             ()
sugklnei se èna s ma x t sto diˆsthma a; b , dhlad , [ ℄
                                                   1
                                                   X
                                        x(t) =           xn     n   (t)                                (3.1.10)
                                                   n=1
Tìte oi suntelestè     xn ikanopoioÔn th sqèsh
                                                           Z b
                            xn = hx(t);       n   (t)i =         x(t);         ?
                                                                               n   (t)dt               (3.1.11)
                                                            a
H apìdeixh th (3.1.11) enai profan , arke na pollaplasiˆsoume kai ta dÔo mèlh
th (3.1.10) diadoqikˆ me ti n t , n   ( ) =1 2
                                         ; ; ::: kai na oloklhr¸soume. ParathroÔme
ìti sto grammikì Eukledio q¸ro, pou dhmiourgoÔn ta s mata n t , n          ; ; :::             () =1 2
kai ta ìriˆ tou , h (3.1.10) enai to anˆptugma tou s mato x t w pro ta s mata             ()
Enìthta 3.1         H Idèa tou Q¸rou twn Shmˆtwn                                                         67



     ()
 n t kai xn den enai tpota ˆllo apì ti probolè tou x t se kˆje èna apì ta       ()
orjokanonikˆ s mata n t .    ()
   An sthn (3.1.8) jèsoume w ìria th olokl rwsh                           1
                                                     , o Eukledio q¸ro pou
                                           ( )
prokÔptei enai gnwstì kai w q¸ro L2 R , dhlad ,

                     L2 (R) = fx(t); t 2 ( 1; +1) :k x(t) k2 < +1g
To mètro      kk
               2 enai gnwstì kai w L2 -mètro. Profan¸ , sto q¸ro autì an koun
ìla ta s mata peperasmènh enèrgeia .
    Sti epìmene paragrˆfou ja asqolhjoÔme me sugkekrimèna orjokanonikˆ s ma-
ta kai anaptÔgmata th morf (3.1.10). Ma austhrˆ majhmatik melèth tou L2 R                              ( )
enai pèra apì ta plasia tou parìnto egqeiridou. O endiaferìmeno anagn¸sth
parapèmpetai sta sqetikˆ bibla th proteinìmenh bibliografa .


3.1.1     To sÔnolo twn orjog¸niwn analogik¸n ekjetik¸n periodik¸n shmˆtwn

äpw èqoume de sthn Parˆgrafo 1.4.1, to ekjetikì s ma ej!0 t enai periodikì me
jemeli¸dh perodo T        =2
                        =!0 . Ta ekjetikˆ s mata, pou èqoun kuklik suqnìth-
                            (
ta pollaplˆsia th !0 ejk!0 t ; me k                 = 0 1 2 )
                                         ; ; ; ::: , enai epsh periodikˆ me
jemeli¸dei periìdou Tk        =2
                            =k!0 , antstoiqa. ParathroÔme, ìti h perodo T                              =
2=!0 enai koin perodo gia ìla ta s mata ejk!0t ; me k ; ; ; :::, afoÔ        = 0 1 2
                                    T   = 2! = k  k!
                                                    2 = k  T
                                                               k
                                       0        0
   Ta ekjetikˆ s mata, ejk!0 t ; me k = 0; 1; 2; :::, se opoiod pote peperasmèno
qronikˆ diˆsthma [t0 ; t0 + T ℄, diˆrkeia T = 2=!0 , kaloÔntai armonikˆ susqetizìmena
ekjetikˆ s mata,    epeid oi jemeli¸dei kuklikè suqnìthtè tou enai akèraia pol-
laplˆsia th kuklik suqnìthta !0 kai sqhmatzoun èna orjog¸nio sÔnolo, dhlad ,
enai anˆ dÔo orjog¸nia. Prˆgmati, to eswterikì ginìmeno twn ekjetik¸n s matwn
ejk!0t kai ejm!0 t , enai
                                        Z T                               Z T
               hejk!0t; ejm!0 t i   =         ejk!0 t e jm!0 t dt     =         ej (k   m)!0 t dt
                                         0                                 0
An   k 6= m, tìte

 hejk!0t; ejm!0 t i = j (k 1m)! ej(k m)!0 t = j (k 1m)! ej(k m) 2T T e0 = 0
                                           T             h              i

                               0           0           0
En¸, an    k = m, enai
                                              Z T                         Z T
                    hejk!0t ; ejm!0 ti   =          ej (k m)!0 t dt   =         1dt = T             (3.1.12)
                                               0                           0
68                 Anˆptugma - Metasqhmatismì           Fourier Analogik¸n Shmˆtwn      Kefˆlaio 3




Telikˆ,
                            hejk!0t ; ejm!0 ti = T Æ(k m)                                   (3.1.13)

H apìdeixh ègine gia to diˆsthma        [0; T ℄.       Me ìmoio trìpo gnetai gia opoiod pote
diˆsthma me m ko T .


3.1.2   To sÔnolo twn orjog¸niwn analogik¸n trigwnometrik¸n periodik¸n
        shmˆtwn


äpw èqoume de sthn Parˆgrafo 1.4.1, ta s mata,      k!0 t kai   os(       ) sin(
                                                                   k!0 t me k           )         =
0 1 2
 ; ; ; ::: enai periodikˆ me jemeli¸dei periìdou Tk                       =2
                                                             =k!0 , antstoiqa.
                        =2
ParathroÔme, ìti h perodo T       =!0 enai koin perodo gia ìla ta s mata.
Ta s mata,   os( ) sin( ) 1
               k!0 t kai         1
                             k!0 t     < k < , se opoiod pote peperasmèno
                [ + ℄
qronikì diˆsthma t0 ; t0     =2
                         T diˆrkeia T       =!0 , kaloÔntai armonikˆ susqetizì-
mena kai sqhmatzoun èna orjog¸nio sÔnolo. Prˆgmati, to eswterikì ginìmeno twn
                   sin( ) sin( )
trigwnometrik¸n s matwn     k!0 t kai    m!0 t enai
                               Z T
 hsin(k!0t); sin(m!0t)i =            sin(k!0t)sin(m!0 t)dt
                                0Z
                            = 12                                         1 Z T os[(k + m)!0t℄dt
                                        T
                                            os[(k        m)!0 t℄dt
                                                                         2 0
                                    0
ParathroÔme ìti, an k  6=m ta oloklhr¸mata sto deÔtero mèlo th exswsh enai
sa me mhdèn, dedomènou ìti h olokl rwsh gnetai se ma perodo. Antjeta, gia
  = 6= 0
k m         to pr¸to olokl rwma enai so me T , en¸ to deÔtero enai so me mhdèn.
àtsi, to eswterikì ginìmeno twn    sin(            )
                                  k!0 t kai m!0 t , enai sin(       )
                       hsin(k!0 t); sin(m!0t)i = T2 Æ(k m)                                  (3.1.14)


Me ìmoio trìpo apodeiknÔontai kai oi sqèsei


                      h os(k!0 t); os(m!0t)i = T2 Æ(k m)                                    (3.1.15)


                  hsin(k!0t); os(m!0 t)i = 0;              gia kˆje    k kai m              (3.1.16)

H apìdeixh ègine gia to diˆsthma     [0; T ℄ kai me ìmoio trìpo gnetai gia opoiod             pote
diˆsthma me m ko T .
Enìthta 3.2            Anˆptugma     Fourier - Seirˆ Fourier                                                       69



3.2     ANAPTUGMA               FOURIER             - SEIRA              FOURIER

3.2.1   Ekjetik         seirˆ   Fourier
Sthn Enìthta 3.1.1, edame ìti ta ekjetikˆ stoiqei¸dh s mata, ejk!0 t , k ; ; ; :::,                      = 0 1 2
pou orzontai se opoiod pote peperasmèno qronikˆ diˆsthma diˆrkeia t0 ; t0      T,                          [ + ℄
ìpou !0    =2=T kai t0 pragmatikì arijmì , sqhmatzoun èna orjog¸nio sÔnolo.
                                 ()
àstw t¸ra èna s ma x t sto diˆsthma t0 ; t0                      [            + ℄
                                                     T , kai a upojèsoume ìti enai
dunatìn na anaptuqje se ˆjroisma ekjetik¸n stoiqeiwd¸n shmˆtwn,

                                                        1
                                                        X
                                            x(t) =                   ak ejk!0 t                                (3.2.1)
                                                        k=       1
H ( 3.2.1) apotele thn ekjetik seirˆ Fourier to anˆptugma Fourier tou s mato
 ()
x t . O upologismì twn suntelest¸n ak gnetai an pollaplasiˆsoume kai ta dÔo
mèlh th ( 3.2.1) me e jn!0 t

                                                        1
                                                        X
                                 x(t)e     jn!0 t   =                ak ejk!0 t e       jn!0 t                 (3.2.2)
                                                        k=       1
kai oloklhr¸soume apì             t0 èw t0 + T
               Z t0 +T                                       1
                                                             X                Z t0 +T
                             x(t)e    jn!0 t dt     =                    ak             ejk!0t e   jn!0 t dt
                  t0                                        k= 1               t0
                                                             1
                                                             X
                                                    =                    ak hejk!0 t ; ejn!0 t i               (3.2.3)
                                                            k=       1
Lìgw th (3.1.13) ìloi oi ìroi tou ajrosmato sto deÔtero mèlo th (3.2.3) enai
soi me to mhdèn, ektì apì ton ìro k                    =
                                      n, o opoo enai so me T . Apì thn (3.2.3),
èqoume loipìn ìti
        Z t0 +T                                                     Z t0 +T
                  x(t)e      jn!0 t dt   = T  an ,          an =
                                                                  1         x(t)e                  jn!0 t dt   (3.2.4)
          t0                                                      T             t0

àtsi, an upˆrqei to anˆptugma Fourier tou s mato                                x(t) qarakthrzetai apì to zeÔgo
twn exis¸sewn

                   +1
                   X
        x(t) =               ak ejk!0 t ; t 2 [t0 ; t0 + T ℄                        Exswsh sÔnjesh            (3.2.5)
                  k=     1
70                    Anˆptugma - Metasqhmatismì       Fourier Analogik¸n Shmˆtwn          Kefˆlaio 3




               ak =
                      1 Z t0 +T x(t)e     jk!0 t dt           Exswsh anˆlush                (3.2.6)
                      T   t0
Oi migadiko suntelestè ak kaloÔntai suntelestè Fourier fasmatikè grammè tou
 ()
x t kai orzoun to fˆsma tou s mato . H stajerˆ a0 enai h suneq          h stajerˆ
sunist¸sa tou fˆsmato . Kˆje ak antistoiqe sthn probol tou s mato x t pˆnw                ()
sthn k sth orjog¸nia sunist¸sa ejk!0 t , dhl¸nei to fasmatikì perieqìmeno tou x t                   ()
sth suqnìthta k!0 kai onomˆzetai k sth armonik sunist¸sa. Prèpei na toniste ìti to
                                                       [      + ℄
anˆptugma Fourier isqÔei mìno sto diˆsthma t0 ; t0 T kai to eÔro T kajorzei th
basik suqnìthta.
    Eˆn parathr soume thn ekjetik seirˆ Fourier (3.2.5), diapist¸noume ìti sto
ˆjroisma upˆrqoun kai arnhtikè timè tou k , oi opoe , bèbaia, antistoiqoÔn se arnh-
tikè suqnìthte gia ti opoe den upˆrqei fusik ènnoia. Oi arnhtikè suqnìthte
upeisèrqontai sto ˆjroisma epeid anaptÔssoume to s ma, pou enai ma pragmatik
sunˆrthsh, me th bo jeia migadik¸n sunart sewn, ejk!0 t . Ja epanèljoume sto shmeo
autì argìtera.


3.2.2   Trigwnometrik      seirˆ   Fourier

Sthn Enìthta 3.1.2, edame ìti ta periodikˆ trigwnometrikˆ s mata,     k!0 t kai     os(        )
sin(     ) 1
    k!0 t ,     1
               < k < , pou orzontai se opoiod pote peperasmèno qronikì diˆsth-
           [ + ℄
ma diˆrkeia t0 ; t0 T , ìpou !0     =2
                                   =T kai t0 pragmatikì arijmì , sqhmatzoun èna
                                                       ()                   [
orjog¸nio sÔnolo. àstw t¸ra ìti to s ma x t , sto diˆsthma t0 ; t0 T , anaptÔs-     + ℄
setai se ˆjroisma trigwnometrik¸n shmˆtwn pou to kajèna apì autˆ èqei jemeli¸dh
kuklik suqnìthta k!0 , dhlad ,

                                   1
                                   X                        1
                                                            X
                    x(t) = a0 +          bk   os(k!0t) +          k   sin(k!0t)              (3.2.7)
                                   k=1                      k=1

Ja upologsoume tou suntelestè th trigwnometrik                    seirˆ Fourier (3.2.7), a0 ,
                                                       ()
b1 ; b2 ; :::; kai 1 ; 2 ; :::, gia opoiod pote s ma x t gia to opoo upˆrqei èna tètoio anˆp-
tugma. Gia na prosdiorsoume th sqèsh me thn opoa upologzetai o a0 oloklhr¸noume
                           +
thn (3.2.7) apì t0 èw t0 T kai parathroÔme ìti ìla ta oloklhr¸mata sto deÔtero
mèlo , efìson h olokl rwsh gnetai se ma perodo, enai sa me to mhdèn, ektì apì
to pr¸to to opoo enai so me T . àtsi, o suntelest a0 dnetai apì thn
                                          Z t0 +T
                                   a0 =
                                        1         x(t)dt                                     (3.2.8)
                                              T   t0

kai enai so me th   mèsh tim   tou s mato .
Enìthta 3.2            Anˆptugma       Fourier - Seirˆ Fourier                                                     71



   O upologismì twn suntelest¸n, bk , gnetai an pollaplasiˆzoume kai ta dÔo mèlh
th (3.2.7) me      os(         )
               n!0 t kai oloklhr¸soume apì t0 èw t0 T , w ex                             +
         Z t0 +T                                                 Z t0 +T
                   x(t)    os(n!0t)dt                  =                    a0    os(n!0t)
          t0                                                      t0
                                                                 1
                                                                 X          Z t0 +T
                                                        +              bk              os(k!0t) os(n!0t)dt
                                                                 k=1         t0
                                                                 1
                                                                 X          Z t0 +T
                                                        +              bk             sin(k!0 t) os(n!0t)dt
                                                                 k=1         t0
                                                                 T
                                                       =         2 bn                                          (3.2.9)

ìpou allˆxame th seirˆ olokl rwsh kai ˆjroish . To pr¸to olokl rwma sto
deÔtero mèlo th (3.2.9) enai so me mhdèn. Epiplèon, lìgw th (3.1.16) ìla ta
oloklhr¸mata sto deÔtero ˆjroisma th (3.2.9) enai sa me mhdèn, en¸ lìgw th
(3.1.15) apì ta oloklhr¸mata sto pr¸to ˆjroisma, mìno to olokl rwma gia k          n                             =
                   2
enai so me T= , en¸ ìla ta ˆlla enai sa me mhdèn. àtsi, oi suntelestè bn dnontai
apì thn
                                Z t0 +T
                         bn =
                              2         x(t) os(n!0 t)dt;                          n = 1; 2; :::              (3.2.10)
                              T            t0
Me ìmoio trìpo brsketai ìti oi suntelestè                              n prosdiorzontai apì thn
                               Z t0 +T
                          n=
                             2         x(t)sin(n!0 t)dt;                           n = 1; 2; :::              (3.2.11)
                                   T       t0
Apì ta parapˆnw prokÔptei ìti h trigwnometrik anaparˆstash Fourier twn peri-
odik¸n shmˆtwn qarakthrzetai apì ti exis¸sei sÔnjesh kai anˆlush

                         1
                         X                                 1
                                                           X
      x(t) = a0 +              bk      os(k!0 t) +                k   sin(k!0 t);      t 2 [t0 ; t0 + T ℄     (3.2.12)
                         k=1                               k=1

                                                    Z t0 +T
                                    a0
                                                  1
                                                = T         x(t)dt
                                                     t0
                                                    Z t0 +T
                                    bk          = 2         x(t) os(k!0 t)dt                                  (3.2.13)
                                                   T    t0
                                                       Z t0 +T
                                       k        = T2                  x(t)sin(k!0 t)dt
                                                           t0
72                   Anˆptugma - Metasqhmatismì      Fourier Analogik¸n Shmˆtwn       Kefˆlaio 3




      Me th bo jeia gnwst      trigwnometrik         tautìthta èqoume
                   bk   os(k!0 t) + k sin(k!0t) = Ak os(k!0t + k )
ìpou                            q
                          Ak = b2k + 2k     kai      k =    tan   1    k
                                                                       bk
àtsi, to trigwnometrikì anˆptugma Fourier (3.2.12) mpore na grafe kai w
                                          1
                                          X
                            x(t) = a0 +         Ak    os(k!0t + k )                   (3.2.14)
                                          k=1
                                                  ()
Apì thn (3.2.14) parathroÔme ìti to s ma x t èqei analuje se èna ˆjroisma sunhm-
tonwn, kˆje èna apì ta opoa èqei diaforetikì plˆto kai fˆsh. Epsh , a shmeiwje
ìti ed¸ den upeisèrqontai arnhtikè suqnìthte . H suneisforˆ kˆje suqnìthta sto ˆ-
jroisma prosdiorzetai apì thn tim tou suntelest Ak , tou antstoiqou sunhmtonou.
An oi suntelestè twn ìrwn me qamhlè suqnìthte enai sqetikˆ megalÔteroi apì tou
suntelestè twn ìrwn me uyhlè suqnìthte , tìte h taqÔthta metabol tou s mato
w pro to qrìno enai mikr kai to s ma qarakthrzetai w s ma qamhl¸n suqnot twn.
Antjeta, an oi suntelestè twn ìrwn me qamhlè suqnìthte enai sqetikˆ mikrìteroi
apì tou suntelestè twn ìrwn me uyhlè suqnìthte , tìte h taqÔthta metabol tou
s mato w pro to qrìno enai megˆlh kai to s ma qarakthrzetai w s ma uyhl¸n
suqnot twn. Fusikˆ, oi ènnoie qamhl¸n     uyhl¸n suqnot twn enai ènnoie sqetikè
kai exart¸ntai apì thn kˆje efarmog .

3.2.3   Seirè   Fourier   periodik¸n shmˆtwn

Mèqri t¸ra orsame to anˆptugma se seirˆ Fourier enì s mato se èna diˆsthma
[t0; t0 + T ℄. àxw apì to diˆsthma autì h seirˆ Fourier den sugklnei kat' anˆgkh sto
s ma x(t). A doÔme ìmw ti gnetai, eˆn to s ma enai periodikì me perodo T , dhlad ,
x(t) = x(t + T ). To anˆptugma
                             P
                                Fourier tou x(t) se èna qronikì diˆsthma eÔrou T , so
me ma perodo, enai x(t) =          jk!0 t me ! = 2=T . Epeid ejk!0 t = ejk!0 (t+T ) , h
                                k ak e           0
seirˆ Fourier enai periodik me perodo sh me thn perodo tou s mato ,           ˆra sugklnei
sto  x(t) se ìlo to diˆsthma   1 < k < 1. To dio isqÔei kai gia thn trigwnometrik
seirˆ Fourier. Shmei¸noume ìti, ìtan to s ma enai periodikì, h olokl rwsh sti
exis¸sei anˆlush mpore na gnei se èna aujareto diˆsthma eÔrou T .

3.2.4   Ìparxh seirˆ      Fourier
To er¸thma pou t¸ra tjetai enai eˆn kai kˆtw apì poie propojèsei èna s ma
mpore na anaptuqje se seirˆ Fourier. Mèqri t¸ra apl¸ upojèsame ìti to anˆp-
tugma autì upˆrqei. ApodeiknÔetai ìti, an plhroÔntai orismène sunj ke upˆrqei to
anˆptugma enì s mato se seirˆ Fourier.
Enìthta 3.2         Anˆptugma       Fourier - Seirˆ Fourier                                                               73



    Ikan       Sunj kh 1.       H sunˆrthsh (s ma)                   x(t) na enai apìluta oloklhr¸simh sto
diˆsthma eÔrou          T , dhlad   ,
                                             Z t0 +T
                                                           jx(t)jdt < +1                                             (3.2.15)
                                              t0
H sunj kh aut exasfalzei ìti kˆje suntelest                                       ak enai peperasmèno           . Prˆgmati,
gia kˆje suntelest ak enai
                             Z t0 +T
                    ja j  1         jx(t)e                    jk!0 t jdt          1 Z t0 +T jx(t)jdt
                        k
                                T       t0                                          T    t0
kai lìgw th (3.2.15), èqoume ak <            j j 1. àna s                         ma to opoo parabanei th sunj kh
aut enai to s ma tou Sq mato 3.2a

                                             x(t) = ;
                                                           1 0<t1
                                                   t

        x(t)                                  x(t)                                            x(t)
                                                   1
                                                   1
                                                                                                0
                                                   2
                                                   1
                                                   4
                                                                                                              1      t
           0                1       t              0       2    4    6        8     t
                  (a)                                          (â)                                     (ã)

               Sq ma 3.2        S mata to opoa den ikanopoioÔn ti                           sunj ke   Dirichlet.

    Ikan   Sunj kh 2. H sunˆrthsh (s ma), x t , se kˆje peperasmèno qronikì       ()
diˆsthma prèpei na enai suneq    perièqei peperasmèno arijmì asuneqei¸n, kajem-
a apì ti opoe enai peperasmènou Ôyou . àna s ma sto diˆsthma ;          to opoo                           [0 8℄
ikanopoie thn pr¸th sunj kh, en¸ parabanei th deÔterh sunj kh enai to s ma x t                                         ()
                                                       8
                                                 1; 0  t < 4
                                                       >
                                                       >
                                                 1=2; 4  t < 6
                                                       >
                                                       <
                                         x(t) = 1=4; 6  t < 7
                                               >
                                               >       >
                                                       : ..              ..
                                                          .               .

Sto Sq ma 3.2b blèpoume to grˆfhma tou s mato x t . ParathroÔme ìti to embadì           ()
                  ()
kˆtw apì th x t se qronikì diˆsthma T                           =8
                                          enai mikrìtero apì 8 me apotèlesma h
pr¸th sunj kh ikanopoietai.
   Ikan   Sunj kh 3. H sunˆrthsh (s ma), x t na enai fragmènh kÔmansh ,          ()
dhlad , na upˆrqei peperasmèno arijmì megstwn kai elaqstwn sto diˆsthma. àna
74                       Anˆptugma - Metasqhmatismì             Fourier Analogik¸n Shmˆtwn                        Kefˆlaio 3




s ma to opoo ikanopoie thn pr¸th sunj kh kai parabanei thn trth enai to s ma
tou Sq mato 3.2g
                                                  
                                   x(t) = sin
                                                      2  ; 0 < t  1
                                                       t
   Oi sunj ke , autè enai gnwstè w sunj ke Dirichlet. Sunart sei pou plhroÔn
ti sunj ke 2 kai 3 qarakthrzontai w tmhmatikˆ omalè . Eˆn èna s ma plhro ti
sunj ke Dirichlet, tìte upˆrqei o metasqhmatismì Fourier tou.

   Me to parˆdeigma pou akolouje ja prospaj soume na anadexoume th fusik
shmasa th ekjetik seirˆ Fourier kai na prosdiorsoume th sqèsh th me th tri-
gwnometrik seirˆ Fourier.

Parˆdeigma 3.2.1
     JewroÔme to periodikì s ma             x(t) me jemeli¸dh kuklik                  suqnìthta      2, to opoo dnetai
     apì thn
                                                           +5
                                                           X
                                                x(t) =               ak ejk!0 t                                       (3.2.16)
                                                           k=    5
          a0 = 1; a1        =a 1=           1 ; a2    = a 2 = 0;          a3       =a 3=        1 ; a4    = a 4 = 0 kai
     ìpou
                                            2                                                   6
     a5 = a 5 = 101 .
     Me antikatˆstash twn suntelest¸n sthn (3.2.16) èqoume



      x(t) = 1 +
                     1                  1              
                         ej2t + e j2t + ej6t + e j6t +
                                                                                       1    ej10t + e j10t
                                                                                                             
                     2                            6                                   10                              (3.2.17)


     kai me th bo jeia th          tautìthta     tou     Euler to     s ma grˆfetai



                               x(t) = 1 +     os(2t) + 13 os(6t) + 15 os(10t)                                      (3.2.18)


     H (3.2.18) apotele to trigwnometrikì anˆptugma tou                            x(t).   H kataskeu        tou s mato
     x(t), apì armonikˆ sunhmitonoeid                s mata, fanetai sto Sq ma 3.3.

Ja doÔme ìti ta sumperˆsmata tou Paradegmato 3.2.1 genikeÔontai gia kˆje pra-
                           ()
gmatikì s ma. An to x t enai pragmatikì, tìte x? t x t epomènw           ()= ()
        +1
        X                           +1
                                    X                           +1
                                                                X                               +1
                                                                                                X
                a?k e jk!0 t   =            ak ejk!0 t   )                a?   k   ejk!0t   =            ak ejk!0 t
       k=   1                      k=   1                    k=       1                         k=   1
dhlad , prokÔptei ìti
                                         a? k = ak a?k = a                 k                                       (3.2.19)

An oi suntelestè Fourier ak enai pragmatiko arijmo, ja enai ak                                   =a      k.
Enìthta 3.2           Anˆptugma       Fourier - Seirˆ Fourier                                                      75



                                                                                x0(t)=1
                                                                           1

                                                                           0                              t

                                                                                x0(t)+x1(t)
              x1(t)=cos(2ðt )                                              2

         1                                                                 1

        0                                           t                      0                              t
        -1
                                                                                x0(t)+x1(t)+x2(t)
                                                                           2
              x2(t)= 13   cos(6ðt )
                                                                           1

        0                                           t                      0                              t
                                                                                x0(t)+x1(t)+x2(t)+x3(t)
                                                                           2
              x3(t)= 15 cos(10ð t)
                                                                           1

        0                                          t                       0                              t

     Sq ma 3.3       Kataskeu          tou s mato       x(t) apì armonikˆ susqetizìmena sunhmtona.

    An diaspˆsoume to ˆjroisma sto deÔtero mèlo th (3.2.5), èqoume

                                          X1                                   +1
                                                                               X
                          x(t)   =                 ak ejn!0 t + a0 +                 ak ejk!0t
                                         k=    1                               k=1
                                         +1
                                         X                                      +1
                                                                                X
                                 =             a ke     jk!0 t   + a0 +               ak ejk!0t )
                                         k=1                                    k=1
                                                +1 h
                                                X                                                 i
                                 =       a0 +           a ke      jk!0 t       + ak ejk!0t
                                                k=1
                                                +1 h
                                                X                                             i
                                 =       a0 +           ak ejk!0 t + a?k e           jk!0 t
                                                k=1
kai me th bo jeia th ( 3.2.19) kai epeid                    <e[z℄ = (z + z? )=2 èqoume
                                                         1
                                                         X             h                i
                                       x(t) = a0 +               2<e   ak ejk!0 t                             (3.2.20)
                                                         k=1
76                   Anˆptugma - Metasqhmatismì       Fourier Analogik¸n Shmˆtwn                     Kefˆlaio 3




An ekfrˆsoume to ak se polikè suntetagmène                  ak = jak jejk , èqoume
                                          +1
                                          X           h                       i
                         x(t) = a0 +            2<e jak jej(k!0t+k )                                 (3.2.21)
                                          k=1
                                           +1
                                           X
                           x(t) = a0 +           Ak       os(k!0t + k )                              (3.2.22)
                                           k=1
ìpou Ak   = 2j j
            ak . Parathr ste ìti gia th dhmiourga tou sunhmitìnou suqnìthta k!0
summetèqoun h antstoiqh jetik kai arnhtik suqnìthta tou ekjetikoÔ anaptÔgmato .
Apì ti (3.2.6), (3.2.10) kai (3.2.11) me th bo jeia th tautìthta tou Euler èqoume
2 =
 ak bk j k . àtsi, an antikatast soume to ak sthn (3.2.20), èqoume
                                1
                                X
              x(t)   =   a0 +         <e [(bk j k )( os(k!0t) + j sin(k!0 t))℄
                                k=1
                                1
                                X
                     =   a0 +         [bk os(k!0 t) + k sin(k!0t)℄                                    (3.2.23)
                                k=1
Ta trigwnometrikˆ anaptÔgmata Fourier, pou perigrˆfoun oi (3.2.22) kai (3.2.23), gi-
a pragmatikˆ s mata enai isodÔnama me thn ekjetik seirˆ Fourier kai perièqoun
mìno jetikè suqnìthte . H anˆptuxh, ìmw , se migadikˆ s mata enai pio eÔkolh apì
majhmatik ˆpoyh kai me aut n kurw ergazìmaste. Ston Pnaka 3.1 upˆrqoun oi
exis¸sei sÔnjesh th ekjetik kai th trigwnometrik seirˆ Fourier enì peri-
odikoÔ s mato kai oi sqèsei metaxÔ twn antstoiqwn suntelest¸n.


                            PINAKAS 3.1 SEIRES               FOURIER
                                                   ak = T1 tt00 +T x(t)e jk!0 t dt
                         P+1                              R
                x(t) = k= 1 ak ejk!0 t
          x(t) = a0 + +k=1
                      P 1
                           Ak os(k!0 t + k )              Ak = 2jak j
                 P1
     x(t) = a0 + k=1 [bk os(k!0 t) + k sin(k!0 t)℄       2ak = bk j k
Parˆdeigma 3.2.2
       Na upologiste h mèsh isqÔ      kˆje ìrou th       ekjetik       seirˆ     Fourier (3.2.5).
       LÔsh    Apì thn (1.2.16) h mèsh isqÔ      s mato         enai


                                      Px = Tlim  1        Z T
                                                                 jx(t)j2 dt
                                             !1 2T
                                                                                                       (3.2.24)
                                                             T
       An h olokl rwsh gnei se qronikì diˆsthma           [t0 ; t0 + T ℄, èqoume
                                        Px = T1
                                                  Z
                                                             jx(t)j2 dt                                (3.2.25)
                                                   <T >
Enìthta 3.2                Anˆptugma        Fourier - Seirˆ Fourier                                                                 77



        O   k   sto
                       ìro tou migadikoÔ anaptÔgmato                         Fourier, ejk!0 t       prosfèrei sto ˆjroisma mèsh
        isqÔ

                                           Px = T1
                                                      Z
                                                                 ak ejk!0 t  a?k e jk!0 t dt = jak j2                         (3.2.26)
                                                          <T >

3.2.5    Tautìthta tou                 Parseval
H olik mèsh isqÔ enì periodikoÔ s mato enai sh me to ˆjroisma twn isqÔwn
ìlwn twn ìrwn th ekjetik seirˆ Fourier, dhlad

                                             1 Z                                        1
                                                                                        X
                                        Px =     T
                                                                 jx(t)j2 dt =                      jak j2                     (3.2.27)
                                                         <T >                          k=      1
H sqèsh aut onomˆzetai tautìthta tou Parseval kai ekfrˆzei th dunatìthta upolo-
gismoÔ th isqÔo sto pedo qrìnou kai sto pedo suqnot twn.
    Apìdeixh
    H (3.2.25) me th bo jeia th exswsh anˆlush dnei diadoqikˆ
                                                                              1
                                      Px = T1
                                                          Z                   X
                                                                     x(t)              a?k e   jk!0 t dt
                                                           <T >              k=    1
                                                     1
                                                     X               1   Z
                                             =            T
                                                               a?k                 x(t)e       jk!0 t dt
                                                     k= 1                <T >
                                                     1
                                                     X                         1
                                                                               X
                                             =                 a?k ak =                 jak j2                                (3.2.28)
                                                     k=    1                  k=   1
An to s ma            x(t) enai pragmatikì lìgw th                          (3.2.19), èqoume
                                                                                                 1
                                     Px = T1
                                                 Z                                               X
                                                           jx(t)j2 dt = ja0 j2 + 2                     jak j2                 (3.2.29)
                                                  <T >                                           k=1

Parˆdeigma 3.2.3
        Na upologiste h mèsh isqÔ                    kˆje ìrou th             trigwnometrik                seirˆ   Fourier (3.2.14).
        LÔsh           O   k   sto
                                     ìro    th                os(k!0t + k ) kai prosfèrei isqÔ
                                                 (3.2.14) enai o        Ak
                                     Px = T1
                                                     Z
                                                   A2k os2 (k!0 t + k ) dt
                                              <T >
                                             2Z     1 + os2(k!0t + k ) dt
                                        = ATk                 2
                                               <T >
                                          A2k            A2k
                                              Z              Z
                                        = 2T        dt +
                                                         2T           os2(k!0t + k ) dt
                                                          <T >                     <T >
                                                                                                                               (3.2.30)
78                         Anˆptugma - Metasqhmatismì        Fourier Analogik¸n Shmˆtwn                  Kefˆlaio 3




          epeid   to pr¸to olokl rwma enai so me           T    kai to deÔtero olokl rwma enai so me
          mhdèn, èqoume
                                                                   2
                                                         Pk = A2k                                           (3.2.31)

          H mèsh isqÔ     tou s mato    lìgw th     (3.2.31) ja enai

                                                                                   1     A2k
                                 Px = T1
                                           Z                                       X
                                                    jx(t)j2 dt = ja0 j2 + 2              2                  (3.2.32)
                                           <T >                                    k=1
          pou prokÔptei kai apì thn (3.2.29) gia   Ak = 2jak j. An ekfrˆsoume to ak sthn (3.2.29)
          se kartesianè    suntetagmène    2ak = bk    j k , èqoume
                                    1 Z
                                                                  1X 1
                             Px =            x(t)j2 dt = ja0 j2 +        2 2
                                    T <T >
                                           j                      4 k=1 bk + k           (3.2.33)




     Apì ta Paradegmata 3.2.2 kai 3.2.3 èqoume ti akìlouje parathr sei

     1.   Gia pragmatikˆ s mata, epeid a?k a k èqoume ak=a k . àtsi, h isqÔ thj j=j            j
                                   2
                              P =j j
          k armonik , k ak , sthn ekjetik seirˆ Fourier (3.2.5) enai sh me thn
            sth



          isqÔ th   ksth armonik , k a k 2 .
                                           P =j              j
     2.   Gia pragmatikˆ s mata isqÔei ìti Ak                    = 2j j
                                                        ak , dhlad ta plˆth tou trigw-
          nometrikoÔ anaptÔgmato enai sa me to diplˆsio twn antstoiqwn suntelest¸n
          tou ekjetikoÔ anaptÔgmato gia ti jetikè timè tou k . Epomènw , h isqÔ th
          ksth armonik sthn trigwnometrik seirˆ Fourier (3.2.22), k A2k = , enai                  P =      2
          sh me to ˆjroisma th isqÔo th k sth armonik kai th      ksth armonik sthn
          ekjetik seirˆ. H Ôparxh arnhtik suqnìthta gia pragmatikˆ s mata enai
          apìrroia th anaparˆstash tou s mato me th bo jeia migadik¸n shmˆtwn kai
          èqei w apotèlesma na moirˆzei exsou thn isqÔ metaxÔ jetik kai arnhtik
          armonik . Sthn pragmatikìthta to arnhtikì mèro tou fˆsmato den ma parè-
          qei kamiˆ plhrofora, prˆgma pou epibebai¸netai apì ti exis¸sei (3.2.22) kai
          (3.2.23). Fusikˆ, autì den isqÔei gia migadikˆ s mata.


Parˆdeigma 3.2.4
          Na upologistoÔn oi suntelestè            th    ekjetik           seirˆ   Fourier     tou s mato   x(t)   =
           os(!0t).
          LÔsh     Me th bo jeia th     sqèsh      tou   Euler to      s ma grˆfetai

                                                 1        1
                                           x(t) = ej!0 t + e j!0 t
                                                        2              2                                    (3.2.34)


          H sÔgkrish th     teleutaa   exswsh         me thn exswsh sÔnjesh            dnei

                                               1
                                a1 = a 1 = ; ak = 0; k = 0;                    2; 3; :::
                                          2                                                                 (3.2.35)
Enìthta 3.2         Anˆptugma   Fourier - Seirˆ Fourier                                                                                  79



      sto Sq ma 3.4 èqoun sqediaste oi suntelestè                                th       ekjetik            seirˆ    Fourier.

                                               1
                                               2
                                                                  1
                                                                  2
                                                                                   an

                                          -2 -1        0              1      2     3             n

              Sq ma 3.4     Oi suntelestè              Fourier tou                s mato          x(t) =         os(!0 t).
Parˆdeigma 3.2.5
      Na upologistoÔn oi suntelestè                   th          ekjetik           seirˆ            Fourier        tou s mato    x(t)     =
      sin(!0t).
      LÔsh       Me th bo jeia th         sqèsh       tou         Euler to        s ma grˆfetai


                                            x(t) =
                                                              1 j!0t 1 e                    j!0 t
                                                              2j e   2j                                                           (3.2.36)


      H sÔgkrish th     teleutaa         exswsh             me thn exswsh sÔnjesh                           dnei


                        a1 =
                                    1          1
                                    2j ; a 1 = 2j ;                       ak = 0; k = 0;              2; 3; :::                 (3.2.37)


      sto Sq ma 3.5 èqei sqediaste to mètro kai h fˆsh twn suntelest¸n th ekjetik                                                 seirˆ
      Fourier.

                    1       1             an
                    2       2                                                          ð                        arg an
                                                                                       2
                                                                                                          1
              -2 -1     0       1     2     3             n                      -2 -1           0              2      3      n
                                                                                                      ð
                                                                                                      2


  Sq ma 3.5      To mètro kai h fˆsh twn suntelest¸n                              Fourier tou          s mato          x(t) = sin(!0 t).
Parˆdeigma 3.2.6
      Na upologistoÔn oi suntelestè                  th       ekjetik             seirˆ          kai th        trigwnometrik       seirˆ
      Fourier gia   to periodikì orjog¸nio s ma
                                                      
                                          x(t) =              1; jtj < T1
                                                              0; T1 < jtj < T0=2                                                  (3.2.38)



      LÔsh       Sto Sq ma 3.6 èqei sqediaste to periodikì orjog¸nio s ma. ParathroÔme ìti
      to s ma èqei jemeli¸dh perodo               T0 kai kuklik                  suqnìthta           !0 = 2=T0. Oi suntelestè
      Fourier upologzontai me th bo               jeia th exswsh anˆlush , ìpou h olokl rwsh gnetai
      apì   T0=2 èw T0 =2.
      àtsi, gia k = 0 èqoume

                                                   a0 =
                                                              1       Z T1
                                                                                 dt =
                                                                                           2T1                                    (3.2.39)
                                                        T0                 T1              T0
80                     Anˆptugma - Metasqhmatismì                     Fourier Analogik¸n Shmˆtwn                 Kefˆlaio 3




                                    x(t)
                                      1

          T0            T0     T1        0       T1        T0               T0                          2T0        t
                        2                                  2


             Sq ma 3.6       To periodikì orjog¸nio s ma tou Paradegmato                               3.2.6.



     en¸ gia   k 6= 0 èqoume

                                    a0
                                               1
                                             = T0
                                                  Z T1
                                                       e jk!0 t dt
                                                    T1
                                             =     1 e jk!0 t T1
                                                      jk!0 T0                      T1

                                             =         1             ejk!0 T1      e jk!0 T1
                                                                                             
                                                  jk!0 T0
                                             = 2 sin( k!0 T1)
                                                   k! T         0 0
                                                                                                                       (3.2.40)


     kai epeid    !0T0 = 2, èqoume
                                                      ak =
                                                                    sin(k!0T1)                                         (3.2.41)
                                                                       k
     Gia thn perptwsh, ìpou    T0 = 4T1, to x(t) enai summetrikì orjog¸nio s                                ma, dedomènou
     ìti isqÔei ìti   !0 T1 = =2 oi suntelestè Fourier dnontai apì th sqèsh
                                                                
                                    ak
                                           k
                                             = sin
                                             k 2
                                                  ; k 6= 0 kai a0 =
                                                                     1
                                                                     2                   (3.2.42)



             a1 = a 1 =      1               1                 1
     àtsi,
                              ; a3 = a 3 = 3 ; a5 = a 5 = 5 ; : : : kai ak = 0, an k ˆrtio .
     Sto Sq ma 3.7 èqoun sqediaste oi suntelestè                        Fourier gia to periodikì orjog¸nio s              ma,
     an to   T1 enai stajerì, kai gia diaforetikè                      timè     sthn perodo    T0 .
     Me th bo jeia twn (3.2.13) upologzoume tou                          suntelestè      th     trigwnometrik          seirˆ
     Fourier

                 a0   = 2TT01 ;
                 bk   = 2 sin(kk!0 T1 )
                                         ; gia k = 1; 3; ::: kai bk = 0; gia k = 2; 4; :::
                  k   = 0; gia k = 1; 2; 3; :::                                                                        (3.2.43)
Enìthta 3.2          Anˆptugma     Fourier - Seirˆ Fourier                                                 81



                     sin ( kð
                            2 (                                                      Ô0 = 4Ô1
              ak        kð

                                                  -2   0   2                                     k



                     sin ( kð
                            4 (                                                       Ô0 = 8Ô1
              ak        kð

                                            -4         0         4                               k


                     sin ( kð
                            8 (                                                      Ô0 = 16Ô1
              ak        kð

                                  -8                   0                    8                    k

Sq ma 3.7     Oi suntelestè            Fourier   gia to periodikì orjog¸nio s ma gia stajerì          T1   kai

diaforetikè   timè     sthn perodo      T0 .

3.2.6   Fainìmeno         Gibbs
A doÔme t¸ra ti sumbanei an prospaj soume na proseggsoume to periodikì s ma
 ()
x t apì to peperasmèno ˆjroisma
                                                       N
                                                       X
                                          xN (t) =             ak ejk!0 t                            (3.2.44)
                                                       k= N
                                                           2
sto opoo qrhsimopoioÔntai h suneq kai mìno N armonikè sunist¸se tou fˆs-
mato . To sfˆlma prosèggish enai eN t                 ()= ()
                                             x t xN t . Sto Sq ma 3.8 èqoume    ()
sqediˆsei thn prosèggish tou periodikoÔ orjog¸niou s mato apì thn (3.2.44) gia
diˆfore timè th paramètrou N .
                                                 ()
    H prosèggish enì s mato , x t , to opoo parousiˆzei asunèqeie peperasmènou
Ôyou , apì èna ˆjroisma me s mata sugkekrimènwn suqnot twn th morf ejk!0 t ,
ta opoa enai suneqe sunart sei , dhmiourge sto shmeo asunèqeia tou s mato
 ()
x t talant¸sei . Epiplèon, sta shmea asunèqeia to grˆfhma tou s mato xN t                                 ()
dièrqetai apì to mèso th asunèqeia pou parousiˆzei to s ma x t sto shmeo autì,      ()
dhlad mpore na apodeiqje

                                      1 [x(t ) + x(t+ )℄
                                        xN (t) =
                                      2                                   (3.2.45)

ìpou x(t ) kai x(t+ ) enai ta ìria tou s mato x(t) apì ta aristerˆ kai dexiˆ, an-
tstoiqa, sto shmeo asunèqeia .
82                         Anˆptugma - Metasqhmatismì   Fourier Analogik¸n Shmˆtwn       Kefˆlaio 3




                                          xN(t)                        N=1



                                                                                 t
                                          xN(t)                        N=3



                                                                                 t
                                          xN(t)                        N=7



                                                                                 t
                                          xN(t)                        N=19



                                                                                     t

Sq ma 3.8     H prosèggish tou periodikoÔ orjog¸niou s mato apì to merikì ˆjroisma (3.2.44)

gia diˆfore    timè   th   paramètrou   N.

      To plˆto    twn talant¸sewn enai anexˆrthto tou pl jou                twn suqnot twn pou
suneisfèroun sthn prosèggish tou s mato                 ()
                                         x t apì th (3.2.44). äso to N auxˆne-
tai tìso perissìtere suqnìthte suneisfèroun sthn prosèggish tou s mato . ätan
N    !1 , tìte ìle oi armonikè suqnìthte lambˆnoun mèro kai to s ma x t anak-            ()
tˆtai pl rw . Antjeta, an to N enai peperasmèno, upˆrqoun suqnìthte pou de
lambˆnontai upìyh sto ˆjroisma. Autì èqei w apotèlesma na parathroÔntai talan-
t¸sei sto shmeo asunèqeia .
    Se antjesh me to plˆto twn talant¸sewn pou paramènei anallowto ìso to N
auxˆnetai, to eÔro th perioq , sthn opoa entopzontai oi talant¸sei , tenei sto
mhdèn. To fainìmeno autì enai gnwstì w fainìmeno Gibbs.


3.3    METASQHMATISMOS                       FOURIER

Sthn prohgoÔmenh enìthta, edame pw èna periodikì s ma mpore na anaptuqje sto
diˆsthma    ( 1 1)
              ;     se ma seirˆ Fourier, dhlad , na parastaje w èna grammikì
sunduasmì aperwn armonik¸n ekjetik¸n shmˆtwn. Sthn enìthta aut , ja doÔme
ìti ta apotelèsmata autˆ mporoÔn na epektajoÔn kai se mh periodikˆ s mata, sto
diˆsthma    ( 1 1)
              ; . Epishmanoume, gia ˆllh ma forˆ, ìti gia mh periodikˆ s mata
to anˆptugma se seirˆ Fourier enai dunatì se peperasmènou eÔrou diast mata.
Enìthta 3.3        Metasqhmatismì    Fourier                                                               83



   Sto Parˆdeigma 3.2.6 edame ìti oi suntelestè th seirˆ Fourier tou periodikoÔ
orjog¸niou s mato enai
                                         ak =
                                                 2sin(k!0T1 )                                          (3.3.1)
                                                           k!0 T0
ìpou T0 enai h perodo kai !0           =2
                                   =T0 h kuklik suqnìthta. Upenjumzetai ìti oi
suntelestè Fourier ak fasmatikè grammè tou s mato prosdiorzoun th suneis-
forˆ kˆje suqnìthta sto anˆptugma Fourier tou s mato ìpw epsh ìti apoteloÔn
to fˆsma tou s mato , to opoo gia to lìgo autì qarakthrzetai w grammikì fˆsma.
    H exswsh (3.3.1) mpore na apokt sei th morf


                          ak =
                                   2T1  sin(k!0T1 ) = 2T1  sin(x)                                    (3.3.2)
                                   T0          k!0 T1                   T0        x
ìpou x   =
         k!0 T1 .
                  sin(x)
   H sunˆrthsh x apotele thn peribˆllousa tou fˆsmato , dhlad , oi fas-
matikè grammè , oi opoe brskontai sti suqnìthte k!0 , enai fragmène apì th
sunˆrthsh aut , ìpw fanetai sto Sq ma 3.9.
   Apì to Sq ma 3.9 èqoume ti akìlouje parathr sei gia to fˆsma:

                                                 ak               2T1
                                                             a0   T0

                                                                      ÐåñéâÜëëïõóá
                                    2ð                                 2T1 sin(ùT1 )
                              Äù    T0                                 T0 ùT1

                                                      0                                            ù
                                          ð                 2ð          ð
                                     ù    T1          ù0    T0
                                                                  ù     T1


Sq ma 3.9     Oi suntelestè    Fourier kai h peribˆllousˆ tou                 gia to periodikì orjog¸nio kÔma.



   1.   H suneq    sunist¸sa tou fˆsmato enai                     a0 = 2TT01 .
   2.   H jemeli¸dh suqnìthta enai            !0 = 2T0 .
   3.   H apìstash metaxÔ twn fasmatik¸n gramm¸n enai                            ! = 2T0 .
   4.   O pr¸to mhdenismì th peribˆllousa tou fˆsmato gnetai ìtan

                              sin(k!0 T1) = 0 ) k!0T1 =  ) k = 2TT0
                                                                                         1
        (an 2TT01 den enai akèraio arijmì , tìte den upˆrqei fasmatik                           gramm    sth
        suqnìthta aut ).
84                             Anˆptugma - Metasqhmatismì   Fourier Analogik¸n Shmˆtwn             Kefˆlaio 3




     5.   H suqnìthta tou pr¸tou mhdenismoÔ enai                 !=   
                                                                       T1 .

    A upojèsoume t¸ra ìti h perodo T0 auxˆnetai en¸ diathroÔme stajerì to T1 .
To apotèlesma th aÔxhsh aut sth morf tou orjog¸niou kÔmato fanetai sta
Sq mata 3.10a1 ; a2 ; a3 , sta opoa èqei sqediaste to periodikì kÔma gia T0 T1 ,                   =4
T0   =8 T1 kai T0           = 16
                           T1 . ParathroÔme ìti krat¸nta thn tim tou T1 stajer ,
diathroÔme stajer th qronik diˆrkeia twn orjog¸niwn palm¸n kai auxˆnonta thn
tim th periìdou T0 auxˆnoume thn orizìntia apìstash twn orjog¸niwn palm¸n
pou apoteloÔn to orjog¸nio kÔma. Sta Sq mata 3.10 1 ; 2 ; 3 , èqoume sqediˆsei ta
antstoiqa fˆsmata, gia ta opoa parathroÔme ìti kaj¸ auxˆnetai h perodo tou
orjog¸niou kÔmato

                                                                       ak       1
                                                                                2




                                             Ô0 = 4Ô1

          2T1



            Ô0 = 4Ô1
                                        t                    ð
                                                                         0             ð             ù
                                                             T1                        T1
                       ( a1)                                           ( â1)
                                                                       ak       1
                                                                                4


          2T1
                                             Ô0 = 8Ô1

                                         t                   ð
                                                                         0             ð             ù
            Ô0 = 8Ô1                                         T1                        T1
                       ( a2)                                           ( â2)
                                                                       ak       1
          2T1                                                                   8
                                             Ô0 = 16Ô1

                Ô0 = 16Ô1
                                         t                  ð
                                                                         0              ð            ù
                                                            T1                          T1
                       ( a3)                                           ( â3)

Sq ma 3.10         To periodikì orjog¸nio kÔma kai oi fasmatikè               grammè   tou   gia stajer   tim

T1 kai gia diaforetikè           timè   periìdou   T0.

     1.   To plˆto twn fasmatik¸n gramm¸n elatt¸netai.
Enìthta 3.3      Metasqhmatismì    Fourier                                            85



   2.   H apìstash metaxÔ twn fasmatik¸n gramm¸n elatt¸netai
   3.   To pl jo twn fasmatik¸n gramm¸n, pou perièqontai ston kentrikì lobì, auxˆne-
        tai.

   4.   H suqnìthta tou pr¸tou mhdenismoÔ den metabˆlletai

   5.   H peribˆllousa tou fˆsmato ,
                                             sin(x) , diathre stajer   morf .
                                               x

    ätan T0   !1    , to arqikì periodikì kÔma metatrèpetai sto mh periodikì s ma
tou orjog¸niou palmoÔ. Epsh , ìtan T0             !1
                                                , èqoume th dhmiourga enì aperou
pl jou fasmatik¸n gramm¸n me plˆto to opoo tenei sto mhdèn, kai h metaxÔ tou
apìstash tenei epsh sto mhdèn.
    H porea thn opoa perigrˆyame den enai katˆllhlh gia na petÔqoume to fˆsma
enì aploÔ palmoÔ. Sth sunèqeia ja doÔme pw sto stìqo autì mporoÔme na ftˆsoume
w ma oriak perptwsh twn ìswn dh gnwrzoume.
    Gia to periodikì orjog¸nio kÔma tou Paradegmato 3.2.6 to ginìmeno th periìdou
T0 ep to suntelest ak grˆfetai

                       T0 ak =
                                  2sin(k!0 T1) = 2sin(!T1 )                       (3.3.3)
                                      k!0                 !       !=k!0

                                                                             
Sto Sq ma 3.11 apoddontai oi grafikè parastˆsei tou ginomènou T0 ak se sunˆrthsh
me thn kuklik suqnìthta ! gia stajer tim tou T1 kai gia diaforetikè timè tou
T0 .
     ätan to T0 auxˆnetai, to pl jo twn suntelest¸n th seirˆ Fourier gnetai ìlo
kai megalÔtero, en¸ ta antstoiqa ginìmena paramènoun stajerˆ. To diˆsthma metaxÔ
                   
twn deigmˆtwn T0 ak gnetai ìlo kai mikrìtero, dhlad ta degmata plhsiˆzoun ìlo
kai perissìtero metaxÔ tou kai mporoÔme na poÔme ìti telikˆ, ìtan T0             !1
                                                                              , to
                            
sÔnolo twn ginomènwn T0 ak plhsiˆzei thn peribˆllousa. Kai to antstoiqo fˆsma
gnetai suneqè . Aut enai h basik idèa tou metasqhmatismoÔ Fourier.
                            2 sin(!T1 ) , h opoa enai h peribˆllousa twn T  a apotele
    H suneq     sunˆrthsh        !                                          0 k
to metasqhmatismì Fourier tou orjog¸niou palmoÔ. Oi suntelestè tou anaptÔgmato
Fourier tou orjog¸niou kÔmato enai isapèqonta degmata th peribˆllousa , dhlad ,
tou metasqhmatismoÔ Fourier. H de apìstas tou prosdiorzetai apì thn perodo
mèsw th sqèsh

                                             ! = 2T                             (3.3.4)
                                                     0
   Sth sunèqeia ja genikeÔsoume ta parapˆnw sumperˆsmata gia kˆje mh periodikì
                                             ()
s ma. àstw èna mh periodikì s ma x t peperasmènh diˆrkeia , dhlad x t            ()=0
   jj
an t > T1 (Sq ma 3.12a) gia to opoo upojètoume ìti upˆrqei to anˆptugma Fourier.
86                            Anˆptugma - Metasqhmatismì           Fourier Analogik¸n Shmˆtwn                  Kefˆlaio 3




                                                                             T0 ak

         2T1
                                             Ô0 = 4Ô1                                                2ù0

           Ô0 = 4Ô1
                                      t                             ð
                                                                                 0              ð                ù
                                                                    T1                          T1
                      ( a1)                                                     ( â1)
                                                                             T0 ak

         2T1
                                             Ô0 = 8Ô1                                                4ù0
                                       t                            ð
                                                                                  0             ð                ù
           Ô0 = 8Ô1                                                 T1                          T1
                      ( a2)                                                     ( â2)
                                                                             T0 ak

         2T1
                                             Ô0 = 16Ô1                                               8ù0

                Ô0 = 16Ô1
                                       t                            ð
                                                                                  0
                                                                                                ð                ù
                                                                    T1                          T1
                      ( a3)                                                     ( â3)

Sq ma 3.11        (a) To periodikì orjog¸nio kÔma kai (b) ta ginìmena                        T0 ak   kai h peribˆllousˆ

tou , gia stajer        tim    T1 kai gia diaforetikè          timè      periìdou     T0 .

                                             ()
Me th bo jeia tou s mato x t dhmiourgoÔme to periodikì s ma x t me perodo                             ~( )
     (          2 )                          ()
T0 T0 > T1 , tou opoou to x t apotele ma perodo (Sq ma 3.12b).
                       ~( )
   Epeid to s ma x t enai periodikì, mpore na anaptuqje se seirˆ Fourier gia
ìla ta t      ;2 ( 1 +1
                   ). Oi exis¸sei sÔnjesh kai anˆlush tou s mato x t enai                                    ~( )
                                                         1
                                                         X
                                             x~(t) =               ak ejk!0 t                                    (3.3.5)
                                                         k=    1
                                                         T0
                                       ak =
                                            1Z            2
                                                               x~(t)e     jk!0 t dt                              (3.3.6)
                                            T0          2
                                                          T0

Epeid     x~(t) = x(t) gia jtj            T0 , oi suntelestè th seirˆ Fourier dnontai apì thn
                                           2
                                                         T0
                                       ak =
                                            1Z            2
                                                               x(t)e      jk!0 t dt                              (3.3.7)
                                            T0            T0
                                                          2
Enìthta 3.3       Metasqhmatismì   Fourier                                                               87


                                     x(t)


                                   T1    0 T1                                           t
                                        (á)
                                    x(t)


                       T0          T1    0 T1                 T0             2T0         t
                                        ( â)

    Sq ma 3.12    (a) Mh periodikì s ma      x(t) kai (b) x~(t) h periodik    epèktash tou       x(t).

kai, afoÔ x t ( )=0
                èxw apì to diˆsthma olokl rwsh , èqoume telikˆ gia tou sunte-
lestè th seirˆ Fourier


                               ak =
                                        1    Z   1
                                                      x(t)e   jk!0 t dt                           (3.3.8)
                                        T0       1
    Orzoume th migadik sunˆrthsh       X (!) th pragmatik                metablht           !
                                        Z +1
                                X (!) =        x(t)e j!t dt                                       (3.3.9)
                                                 1
Me th bo jeia th sunˆrthsh aut               oi suntelestè         ak mporoÔn na ekfrastoÔn w

                                        ak =
                                                 1 X (k!0 )                                      (3.3.10)
                                                 T0
kai apì thn (3.3.5) to s ma x~(t), dhlad         , h periodik epanˆlhyh tou x          (t), dnetai apì
thn
                                            +1
                                            X        1 X (k!0 )ej!0t
                              x~(t) =                                                            (3.3.11)
                                            T
                                        k= 1 0
kai epeid     !0 = 2=T0
                                     1  +1
                                        X
                            x~(t) =
                                    2 k= 1 X (k!0 )e !0
                                                     jk!0 t                                      (3.3.12)


A jewr soume t¸ra ìti to diˆsthma T0 auxˆnei suneq¸ , me T0        . H apìstash    !1
loipìn metaxÔ twn diadoqik¸n armonik¸n, !0              =2
                                              =T0 , suneq¸ elatt¸netai kai tenei
sto mhdèn !0  ( ! )
                  d! kai to k!0 gnetai h suneq metablht ! k!0 ! . àtsi,           (        ! )
to fˆsma gnetai suneqè kai to ˆjroisma sto deÔtero mèlo th (3.3.12) grˆfetai w
88                           Anˆptugma - Metasqhmatismì        Fourier Analogik¸n Shmˆtwn             Kefˆlaio 3




olokl rwma. Epsh , to s ma              x~(t) proseggzei to s           ma   x(t) kai to s   ma   x(t) dnetai
apì thn exswsh
                                                 Z +1
                                       x(t) =
                                               1
                                              2 1 X (!)e d!
                                                         j!t                                            (3.3.13)

H exswsh (3.3.13) apotele thn exswsh sÔnjesh kai anasunjètei to s ma sto pedo
tou qrìnou. H sunˆrthsh
                                                    Z   +1
                                        X (! ) =              x(t)e   j!t dt                            (3.3.14)
                                                        1
apotele thn exswsh anˆlush kai enai o Metasqhmatismì Fourier (MF) tou s mato
 ()
x t . Akribèstera, metasqhmatismì Fourier enai o kanìna eÔresh th X ! apì                            ()
          ()                                                  ()
thn x t , dhlad , h (3.3.14). H sunˆrthsh X ! (pou enai ma apeikìnish X IR                          : !
Z ) lègetai metasqhmatismì Fourier. Suqnˆ anaferìmaste se autìn kai w to fˆsma
tou s mato . O metasqhmatismì Fourier èqei nìhma gia ìlo to diˆsthma      ;                         ( 1 +1)
kai anaparistˆ mh periodikˆ s mata me th bo jeia ekjetik¸n shmˆtwn kai me ton
trìpo autì anadeiknÔetai to fasmatikì tou perieqìmeno.

     Parathr sei

     1.   Sto anˆptugma se seirˆ Fourier, h exswsh anˆlush analÔei èna s ma x t sto                    ()
                        [
          diˆsthma t0 ; t0 T     + ℄
                                sto diˆsthma       ;         ( 1 +1)
                                                         an to s ma enai periodikì se
          èna diakritì fˆsma periodik¸n ekjetik¸n shmˆtwn me armonikˆ susqetizìmene
          suqnìthte , pollaplˆsie th jemeli¸dou kuklik suqnìthta !0 , sto opoo
          h armonik k tˆxh èqei “plˆto " ak . An, gia parˆdeigma, to s ma x t enai                    ()
          s ma tˆsh , h monˆda mètrhsh twn suntelest¸n ak enai “Volts".
     2.   Sto metasqhmatismì Fourier, h exswsh anˆlush analÔei èna mh periodikì s -
                   ()
          ma x t sto diˆsthma       ;  ( 1 +1)
                                            se èna suneqè fˆsma periodik¸n ekjetik¸n
          shmˆtwn. To fasmatikì perieqìmeno sto apeirostì diˆsthma suqnot twn !; !                       [    +
               ℄            ()                                            [
          d! enai X ! . H suneisforˆ twn suqnot twn !; ! d! èqei “plˆto " X !    + ℄                        ()
          (        2)                                   ()
           d!=  . An, gia parˆdeigma, to x t enai s ma tˆsh , tìte o X ! èqei monˆda         ()
          mètrhsh “Volts anˆ monˆda suqnìthta ". O metasqhmatismì Fourier den enai,
          loipìn, èna fˆsma plˆtou , allˆ fasmatik puknìthta plˆtou .

    An ant th ! qrhsimopoi soume th suqnìthta                        f   = !=2, oi exis¸sei         anˆlush
kai sÔnjesh parnoun th morf
                                                  Z     +1
                                       X (f ) =              x(t)e j 2ft dt                            (3.3.15)
                                                       1
                                                Z     +1
                                       x(t) =              X (f )ej 2ft df                             (3.3.16)
                                                      1
Enìthta 3.3            Metasqhmatismì         Fourier                                                                       89



                                              ()
O metasqhmatismì Fourier X ! , gia kˆje tim th suqnìthta ! , enai migadik
sunˆrthsh kai, epomènw , mpore na anaparastaje se polik morf

                                          X (!) = jX (!)j ej arg X (!)                                            (3.3.17)

  se kartesian morf

                        X (!) = <e [X (!)℄ + j =m [X (!)℄ = R(!) + jI (!)                                         (3.3.18)


Parˆdeigma 3.3.1
        Na upologiste o metasqhmatismì                  Fourier tou    orjog¸niou palmoÔ diˆrkeia                T1
                                                            
                                                   x(t) =       1; jtj < T1
                                                                0; alli¸                                           (3.3.19)



        LÔsh      Epeid    to s ma enai mhdèn gia          t < T1 kai t > T1 , o metasqhmatismì                       Fourier
        enai

                                Z   +T1                    1 Z +T1
                                                                                                        j j!t +T1
                 X (! )   =               e   j!t dt    = j!       e             j!t d     (   j!t) =     e    T1
                                    T1                             T1                                   !
                          = 2 sin(!!T1)                                                                            (3.3.20)


        Sto Sq ma 3.13 dnetai h grafik                 parˆstash tou s mato                   x(t) kai o metasqhmatismì
        Fourier tou.


                x(t)                                                         X(ù)
                                                                                 2T1
                   1

                                                                        ð                        ð
                                                                        T1                       T1
          T1       0       T1        t                                                 0                                ù
                  (á)                                                              ( â)

        Sq ma 3.13        (a) O orjog¸nio           palmì    kai (b) O metasqhmatismì                   Fourier tou.

    Parathr sei

   1.   O metasqhmatismì Fourier,                  X (!),    tou orjog¸niou palmoÔ enai pragmatik
        sunˆrthsh.
   2.   H tim tou metasqhmatismoÔ Fourier sto mhdèn enai


                                                 X (0) = !lim
                                                                  2sin(!T1 )                                      (3.3.21)
                                                           !0                !
90                        Anˆptugma - Metasqhmatismì      Fourier Analogik¸n Shmˆtwn       Kefˆlaio 3




                                                                                            0    1,
          Efarmìzoume ton kanìna L’ Hospital gia ti aprosdiìriste morfè                     0    1
          sÔmfwna me ton opoo

                              f (x) 0 1           f (x)        f 0 (x)
                  an      lim
                         x!1 g (x)
                                   = 0 1 tìte lim
                                              x!1 g (x)
                                                        =  lim
                                                          x!1 g 0 (x)
                                                                                            (3.3.22)


          kai èqoume
                                    X (0) =     lim 2T1 os(!T1) = 2T1                       (3.3.23)
                                                !!0
     3.                                                   ()
          Oi timè sti opoe mhdenzetai to X ! enai ta fasmatikˆ mhdenikˆ, dnon-
          tai apì thn exswsh     sin(
                                !T1         )=0
                                           kai enai oi suqnìthte !  k=T1 , k         =          =
          1 2
             ; ; :::.
     4.   To fˆsma tenei sto mhdèn kaj¸ pernˆme se polÔ uyhlè suqnìthte , dhlad ,
          j j!1
          !      .
     5.   An jewr soume to olokl rwma sÔnjesh se peperasmèno diˆsthma suqnot twn
                                          Z +W
                             x^W (t) =
                                        1      2 sin(!T1) ej!t d!
                                       2 W          !
                                                                             (3.3.24)


          parousiˆzetai to fainìmeno Gibbs. Dhlad , to x^W (t) parousiˆzei kumˆnsei
          gÔrw apì to shmeo asunèqeia , to plˆto twn opown den elatt¸netai kaj¸
          to W auxˆnei allˆ sumpièzontai gÔrw apì thn asunèqeia kai h enèrgeiˆ tou
          tenei sto mhdèn, ìtan W   .   !0
     6.   Sto ìrio   W   ! 1, h (3.3.24) parnei th morf
                                              Z +1
                                 x^W (t) =
                                            1      2 sin(!T1) ej!t d!
                                           2 1          !
                                                                                            (3.3.25)


          äpw kai sto parˆdeigma tou periodikoÔ orjog¸niou s mato (Sq ma 3.8), enai
          ^( ) = ( )
          x t x t , ektì apì ta shmea asunèqeia t       T1 ìpou x t 12 , pou enai
                                                                  =              ^( ) =
                                           ()
          h mèsh tim twn tim¸n tou x t sti dÔo pleurè th asunèqeia .


Parˆdeigma 3.3.2
          Na upologiste o metasqhmatismì       Fourier th     sunˆrthsh     x(t) = Æ(t)
          LÔsh    O metasqhmatismì       Fourier th   sunˆrthsh     dèlta enai
                                                 Z    1
                                      X (! ) =            Æ(t)e j!t dt = 1                   (3.3.26)
                                                      1
                                   R1
          ìpou qrhsimopoi jhke h
                                      1 x(t)  Æ(t t0 ) dt = x(t0 ) ParathroÔme ìti to fˆsma th
          Æ(t) kalÔptei ìlo to eÔro   suqnot twn.
Enìthta 3.3          Metasqhmatismì      Fourier                                                                91



3.3.1    Ìparxh tou metasqhmatismoÔ                  Fourier
Sthn prohgoÔmenh enìthta orsame to metasqhmatismì Fourier èqonta upojèsei ìti ta
oloklhr¸mata (3.3.13) kai ( 3.3.14) upˆrqoun. Ta oloklhr¸mata autˆ den upˆrqoun
pˆnta     enai dunatì na upˆrqei to èna kai na mhn upˆrqei to ˆllo. Oi sunj ke
Dirichlet enai ikanè sunj ke gia na upˆrqoun kai ta dÔo oloklhr¸mata, ta opoa
apoteloÔn to zeÔgo metasqhmatism¸n Fourier.
                                                                 ()
    Ikan Sunj kh 1. H sunˆrthsh (s ma) x t na enai apìluta oloklhr¸simh,
dhlad ,                          Z             1
                                                    jx(t)j dt < 1                                      (3.3.27)
                                               1
H sunj kh aut exasfalzei thn Ôparxh tou olokl rwmato sth (3.3.14). Prˆgmati,
                                     Z   1                         Z   1
                      jX (!)j =              x(t)e    j!t dt              jx(t)j dt < 1               (3.3.28)
                                         1                             1
    Ikan Sunj kh 2. H sunˆrthsh (s ma) x t enai suneq     ()
                                                            perièqei peperasmèno
arijmì asuneqei¸n, kˆje ma apo ti opoe na enai peperasmènou Ôyou .
                                                           ()
    Ikan Sunj kh 3. H sunˆrthsh (s ma) x t enai fragmènh kÔmansh .

Parˆdeigma 3.3.3
        Na upologiste o metasqhmatismì              Fourier tou   aitiatoÔ ekjetikoÔ s mato


                                              x(t) = e at u(t) a 2 R                                       (3.3.29)


        LÔsh       Epeid   to s ma enai so me mhdèn gia          t < 0, o metasqhmatismì        Fourier      tou
        enai
                                Z   +1                    Z +1
                X (!)      =             e at e j!t dt =       e (a+j!)t dt
                                    0                      0
                           =            1 e (a+j!)t 1 = 1 h lim e (a+j!)t                         e0
                                                                                                       i
                                     a + j!             0      a + j! t!1
        kai epeid


           lim e    (a+j!)t =   lim e           = tlim
                                                   !1 e [ os(!t)                 j sin(!t)℄ = 0 ìtan a > 0
                                         at e j!t         at
          t!1                   t!1
        o metasqhmatismì        Fourier upˆrqei gia a > 0 kai enai

                                               X (!) =
                                                           1
                                                        a + j!
                                                                                                           (3.3.30)



        Sto Sq ma 3.14 dnetai h grafik         parˆstash tou s mato            x(t) kai oi grafikè    parastˆ-
        sei tou mètrou kai th        fˆsh tou metasqhmatismoÔ              Fourier. ParathroÔme ìti to mètro
        aposbènei sti      uyhlè    suqnìthte , dhlad ,        limj!j!1 jX (!)j = 0.
92                             Anˆptugma - Metasqhmatismì           Fourier Analogik¸n Shmˆtwn                        Kefˆlaio 3




     x(t)                                         X(ù)                                         arg X(ù)
                                                                                                              ð
                                                        1                                                     2
                                                        á
       1                                          1
                                                                                                              ð
                                                                                                              4
                                                  á2
                                                                                                                  á
                                                                                                     -á                        t
                                                                                                          ð
                                                                                                          4
        0                      t                      -á 0 á                    t                         ð
                                                                                                          2

                 (á)                                    ( â)                                              (ã)

Sq ma 3.14             H grafik        parˆstash (a) tou s mato         x(t) = e t u(t), > 0, (b) tou mètrou
kai (g) th       fˆsh       tou metasqhmatismoÔ         Fourier tou.



Parˆdeigma 3.3.4
           Na upologiste to s ma, tou opoou o metasqhmatismì                           Fourier enai parˆjuro suqnot             -
           twn me plˆto        W , dhlad      ,

                                                                
                                                   X (!) =          1; j!j < W
                                                                    0; alli¸                                            (3.3.31)



           LÔsh        Epeid   o metasqhmatismì             Fourier tou s   mato enai so me mhdèn gia               !< W
           kai   ! > W , to s       ma ja enai

                                              Z +W
                                   x(t) =
                                           1                 1 j!t +W
                                          2 W e d! = 2jt e W
                                                     j!t


                                        = 2jt1 ejW t e jW t = 1 2j sin(W t)
                                                                2jt
                                        = sin(tW t)                                                                    (3.3.32)


           Sto Sq ma 3.15 dnetai to grˆfhma tou s mato                         x(t)       sto pedo suqnot twn kai sto
           pedo tou qrìnou.



                                                                                    x(t)
                  X(ù)                                                               W
                                                                                     ð
                        1

                                                                            ð                       ð
                                                                            W                       W
                 W       0         W      ù                                                0                               t
                        (á)                                                           ( â)

Sq ma 3.15             Perigraf        tou s mato      x(t)    (a) sto pedo suqnot twn kai (b) sto pedo tou

qrìnou.
Enìthta 3.3         Metasqhmatismì            Fourier                                                                  93



   Oi exis¸sei X !        ( )=         2 sin(!T )
                                 1 kai x t                         ()=          sin(W t)
                              !                 t , ti opoe sunant same sta
Paradegmata 3.3.1 kai 3.3.4, mporoÔn na ekfrastoÔn me eniao trìpo me th bo jeia
th sunˆrthsh        sin                                       sin(t) ; t 6= 0
                                        sin (t) = 1; t                  t=0
                                                                                                                  (3.3.33)

 kai enai gnwst       w         sunˆrthsh deigmatolhya                        , h grafik          parˆstash th opoa

                                                                   sinc(t)
                                                           1




                            -5    -4     -3    -2     -1       0        1       2       3   4   5             t

                                       Sq ma 3.16          H sunˆrthsh               sin (x).
fanetai sto Sq ma 3.16. ParathroÔme ìti h sunˆrthsh dièrqetai periodikˆ apì to
mhdèn kai ìti to Ôyo twn deutereuìntwn lob¸n mei¸netai asumptwtikˆ sto mhdèn. H
sunˆrthsh aut enai idiaterh shmasa kai thn sunantˆme suqnˆ tìso sthn epexer-
gasa shmˆtwn (anˆlush Fourier, melèth GQA susthmˆtwn) ìso kai sti epikoinwne .
Me th bo jeia th sunˆrthsh deigmatolhya , o metasqhmatismì Fourier tou Pa-
                                                 ()
radegmato (3.3.1) kai to s ma x t tou Paradegmato (3.3.4) grˆfontai w
                                                                            
              X (!) =
                      2sin(!T1 ) = 2T1 sin  !T 1 = 2T1 sin                                    
                                                                                                    !T1
                                                                                                          
                                                                                                                  (3.3.34)
                          !                !T1                                                     
                                                                                
                    x(t) =
                           sin(W t) = W sin                             W t
                                                                                    =   W
                                                                                          sin
                                                                                                
                                                                                                     Wt
                                                                                                          
                                                                                                                  (3.3.35)
                                        t                         W t                           

3.3.2   Idiìthte     tou metasqhmatismoÔ                       Fourier
Sthn enìthta aut ja parousiˆsoume ti basikè idiìthte pou èqei o metasqhmatismì
Fourier. Gia eukola, o metasqhmatismì Fourier tou s mato x t merikè forè sum-                       ()
bolzetai w      F [ ( )℄
                x t kai h sqèsh metaxÔ tou x t kai tou metasqhmatismoÔ Fourier  ()
tou upodeiknÔetai w
                                                    x(t) F! X (!)                                                 (3.3.36)


(1) Suzuga
    An to s ma     x(t) èqei metasqhmatismì Fourier X (!), tìte
                                                x? (t) F! X ? ( !)                                                (3.3.37)
94                       Anˆptugma - Metasqhmatismì             Fourier Analogik¸n Shmˆtwn                    Kefˆlaio 3




Apìdeixh
     O metasqhmatismì Fourier tou suzugoÔ s mato enai
                             Z   1                             Z   1                   ?
              F [ (t)℄ =
                x?                    x?   (t)e   j!t dt   =             x(t)   ej!t dt      = X ? ( !)
                                  1                                  1
IsqÔei epsh
                                              x? ( t) F! X ? (!)                                               (3.3.38)


(2) Grammikìthta

     An    x1 (t) F! X1 (!) kai x2 (t) F! X2 (!), tìte
                                                           F! X (!) + X (!)
                             1 x1 (t) + 2 x2 (t)              1 1     2 2                                      (3.3.39)

H apìdeixh enai ˆmesh sunèpeia th grammikìthta tou oloklhr¸mato .

(3) €rtio-perittì mèro            s mato . Pragmatikì-fantastikì mèro                                  fˆsmato
                                                                      ()
   äpw enai gnwstì, (blèpe 1.2.7) kˆje s ma x t mpore na ekfraste w ˆjroisma
                  ()                                                 ()
enì ˆrtiou, xe t , kai enì perittoÔ s mato , xo t . An X ! enai o metasqhmatismì   ()
                             ()
Fourier tou s mato x t , tìte èqoume

                                             xe (t) F! <e[X (!)℄                                               (3.3.40)

                                            xo (t) F! j =m[X (!)℄                                              (3.3.41)

H apìdeixh apotele ˆmeso epakìloujo th grammikìthta kai th suzuga .

(4) Olsjhsh sto qrìno

     An    x(t) F! X (!), tìte gia kˆje pragmatikì arijmì t0 isqÔei
                                       x(t t0 ) F! e                j!t0 X   (!)                               (3.3.42)

Apìdeixh
     O metasqhmatismì Fourier tou s mato                        x(t t0 ) enai
                                                      Z    1
                                 F [x(t t0)℄ =                  x(t t0 )e          j!t dt
                                                            1
jètw      =t    t0 , opìte èqw
                     Z   1                                               Z   1
 F [x(t t0)℄ =               x( )e    j!( +t0 ) d       =e    j!t0            x( )e     j!   d   =e   j!t0 X   (!)
                         1                                                   1
Enìthta 3.3        Metasqhmatismì     Fourier                                                                   95



ParathroÔme ìti, an to s ma metatopiste sto pedo tou qrìnou katˆ t0 , to fˆsma
tou pollaplasiˆzetai me to fasmatikì parˆgonta e j!t0 . àtsi, to fˆsma enì s -
mato olisjhmènou sto qrìno èqei to dio mètro me to arqikì s ma, en¸ h fˆsh tou
metabˆlletai grammikˆ. Prˆgmati, an   xt      X!       X ! ej(!) , tìte
                                         F [ ( )℄ = ( ) = j ( )j 
                     F [x(t t0 )℄ = e j!t0 X (!) = jX (!)j  ej[(!) !t0 ℄

(5) Olsjhsh suqnìthta

    An   x(t) F! X (!), tìte gia kˆje pragmatikì arijmì !0 isqÔei
                                     ej!0 t x(t) F! X (! !0 )                                             (3.3.43)

Apìdeixh
   Me th bo jeia tou antistrìfou metasqhmatismoÔ Fourier brskoume ìti to s ma,
                                              (          )
pou èqei metasqhmatismì Fourier X ! !0 , enai to ej!0 t x t . Prˆgmati,           ()
            1 Z 1 X (!          !0 )ej!t d!       !0 =! !0
                                                     =         1 Z 1 X (!0 )ej(!0 +!0)t d!0
           2 1                                               2 Z1
                                                              ej!0 t 1             0
                                                     =         2 1      X (!0 )ej! t d!0
                                                     =        e 0 t x(t)
                                                               j!


Parˆdeigma 3.3.5 (H     bˆsh th     diamìrfwsh      ).
      Na upologiste o metasqhmatismì             Fourier tou      s mato


                                              z (t) = x(t)    os(!0 t)                                     (3.3.44)


      LÔsh       Me th bo jeia th      sqèsh      tou   Euler to   s ma     z (t) grˆfetai

              z (t) = x(t)   os(!0t) = x(t) 12 [ej!0 t + e     j!0 t     ℄ = 12 x(t)ej!0 t + 21 x(t)e   j!0 t

      Me th bo jeia th idiìthta th grammikìthta kai th olsjhsh suqnìthta , o metasqh-
      matismì     Fourier tou   z (t) enai
                                                                  
                        1
              Z (!) = F x(t)e j!0 t   + F   1 x(t)e          j!0 t       = 12 [X (!     !0 ) + X (! + !0 )℄
                        2                   2
    H idiìthta aut apotele th bˆsh th diamìrfwsh pou qrhsimopoietai eurèw
                                                                            ()
sti thlepikoinwne . Katˆ th diamìrfwsh, èna s ma x t pou metafèrei sugkekrimè-
nh plhrofora pollaplasiˆzetai me èna s ma apl suqnìthta          !0 t , h opoa             os( )
96                         Anˆptugma - Metasqhmatismì                 Fourier Analogik¸n Shmˆtwn                      Kefˆlaio 3




onomˆzetai fèrousa, me skopì thn ekpomp tou se èna mèso metˆdosh , p.q., zeÔgo
surmˆtwn, atmìsfaira, klp.
    ParathroÔme ìti o pollaplasiasmì , tou s mato x t me to      !0 t den al-              ()                 os( )
loi¸nei th morf tou metasqhmatismoÔ Fourier X ! (me thn propìjesh ìti to !0    ()
                                              ()
enai arketˆ megˆlo kai to X ! enai mhdèn èpeita apì ma orismènh suqnìthta,
ìpw sto Sq ma 3.17a), allˆ metafèretai sthn perioq twn suqnot twn !0 , ìpw                                         
perigrˆfetai sto Sq ma 3.17b.

                                                      X(ù)
                                                              A

                                                   W           0       W                                          ù
                                                              (á)

                                                   F x(t) cos (ù0 t)
                         2W                                                                     2W
                                                              A
                                                              2
             ù W 0        ù0     ù W0                          0                      ù W
                                                                                       0        ù   0    ù W
                                                                                                          0
                                                                                                                  ù
                                                              ( â)

Sq ma 3.17       H diamìrfwsh plˆtou                (a) to fˆsma tou s mato                mhnÔmato           gia èna aujareto

s ma   x(t) kai (b) to fˆsma tou diamorfwmènou s                       mato .



(6) Allag        klmaka        sto qrìno kai th suqnìthta - Anˆklash

     An   x(t)       F! X (!), tìte gia kˆje pragmatikì arijmì a isqÔei

                         x(at)          F!    1 X  !  kai 1 x  t  F! X (a!)                                        (3.3.45)
                                             jaj a          jaj a
Apìdeixh
     O metasqhmatismì Fourier tou s mato                              x(at) enai
                                                              Z   1
                                         F [x(at)℄ =                  x(at)e     j!t dt
                                                                  1
jètoume     =
           at kai diakrnoume dÔo peript¸sei
           0
  an a > enai
                                       1
                           F [x(at)℄ = a
                                         Z 1
                                             x( )e                    j !a    d   = a1 X
                                                                                              ! 

                                                          1                                         a
 an a < 0 enai
                   1
       F [x(at)℄ = a
                     Z           1
                                        x( )e   j !a    d =
                                                               1 Z 1
                                                                     x( )e                j !a    d   = a1 X !a
                                                                                                                

                               +1                              a            1
Enìthta 3.3                Metasqhmatismì   Fourier                                              97



    H idiìthta th allag klmaka parousiˆzetai sto Sq ma 3.18. ParathroÔme
               1
ìti, an a > , to s ma sumpièzetai sto pedo tou qrìnou, me sunèpeia na metabˆlletai
pio gr gora sth monˆda tou qrìnou. An analogistoÔme ìti oi gr gore metabolè sto
qrìno antistoiqoÔn se suneisforˆ apì uyhlìtere suqnìthte sto pedo suqnot twn,
sumperanoume ìti to fˆsma tou diastèlletai sto pedo suqnot twn (Sq ma 3.18b).
                   0               1
Antjeta, an < a < , to s ma diastèlletai sto pedo tou qrìnou, me sunèpeia na
metabˆlletai pio argˆ sth monˆda tou qrìnou kai, epeid èna s ma qamhl suqnìth-
ta metabˆlletai me argoÔ rujmoÔ , to fˆsma tou sumpièzetai (Sq ma 3.18g). An

               x(t)                                                  X(ù)
                                                                       2T1
                   1
                                                                ð                   ð
                                                                T1                  T1
              T1      0      T1          t                             0                     ù
                                       (á) ÓÞìá x(t) êáé ôï öÜóìá ôïõ X(ù).

               x(t)                                                  X(ù)




                       0             t                               0                       ù
                           (â) ÓÞìá x1(t) = x(at) ìå á > 1 êáé ôï öÜóìá ôïõ X1(ù).

               x(t)                                                  X(ù)




                       0               t                                0                    ù
                           ( ã) ÓÞìá x2(t) = x(at) ìå 0 < á < 1 êáé ôï öÜóìá ôïõ X2(ù).

                                  Sq ma 3.18   Apeikìnish th   allag         klmaka .


a=     1, prokÔptei h idiìthta th              Anˆklash


                                               x( t) F! X ( !)                            (3.3.46)


(7) Je¸rhma th               Sunèlixh
   Ma apì ti shmantikè idiìththte tou metasqhmatismoÔ Fourier, ìson aforˆ
th qr sh tou sta grammikˆ qronikˆ anallowta sust mata, enai h epdras tou
sth leitourga th sunèlixh . Gnwrzoume ìti h èxodo y t enì GQA sust mato ,    ()
98                  Anˆptugma - Metasqhmatismì            Fourier Analogik¸n Shmˆtwn                Kefˆlaio 3




me kroustik apìkrish h     (t), ìtan h esodì              tou enai to s ma           x(t),   dnetai apì to
olokl rwma th sunèlixh
                                          Z   1
                               y(t) =             x( )h(t  ) d                                    (3.3.47)
                                              1
Sthn parˆgrafo aut ja anadexoume th sqèsh pou sundèei tou metasqhmatismoÔ
twn antistoqwn shmˆtwn. O metasqhmatismì Fourier th exìdou tou sust mato
enai
                                Z   1
                   Y (!)   =             y(t)e    j!t dt
                                    1
                                Z   1 Z 1                                
                           =                      x( )h(t  ) d e           j!t dt
                                Z
                                    1         1Z                              
                                    1                 1
                        =      x( )      h(t  )e              d        j!t dt
                             1          1
Me allag     metablht  = t  èqoume
                          Z 1       Z 1                      
                 Y (!) =      x( )      h( )e j! ( +  ) d d
                               Z
                                   1                  1Z                          
                                   1                         1
                           =            x( )e    j!            h( )e   j! d       d
                                    1                        1
To perieqìmeno th agkÔlh       [℄ enai o metasqhmatismì                 Fourier th        h(t) (h(t) F!
  ( ))
H ! , ètsi                                        Z   1
                           Y (!) = H (!)                  x( )e   j! d
                                                      1
an   X (!) enai o metasqhmatismì       Fourier tou s mato           x(t), èqoume
                    y(t) = h(t) ? x(t) F! Y (!) = H (!)  X (!)                                      (3.3.48)

    ParathroÔme ìti h upologistikˆ polÔplokh sqèsh th sunèlixh metasqhmatizìme-
nh katˆ Fourier katal gei se èna aplì ginìmeno sunart sewn.
    To je¸rhma th sunèlixh ma dnei th dunatìthta na upologsoume to fˆsma tou
s mato exìdou enì GQA sust mato an gnwrzoume to fˆsma tou s mato eisìdou
 ()
X ! kai to fˆsma th kroustik apìkrish H ! tou sust mato .     ()
    Anˆlogh sqèsh isqÔei kai gia th sunèlixh twn metasqhmatism¸n Fourier X ! kai                     ()
 ()                   ()  ()
Y ! twn shmˆtwn x t kai y t antstoiqa, dhlad ,
                     F  1
         x(t)  y(t) ! X (!) ? Y (!) =
                                        1 Z 1

                       2              2 X ()Y (!           1
                                                                                    ) d            (3.3.49)
Enìthta 3.3          Metasqhmatismì        Fourier                                                                     99



Parˆdeigma 3.3.6
      àstw s ma          x(t) me metasqhmatismì Fourier X (!). Ja upologsoume to s                            ma pou èqei
      metasqhmatismì          Fourier jX (! )j2 = X (! )  X ? (! ).
      LÔsh        Me th bo jeia th          idiìthta     th    suzuga , th        anˆklash         kai tou jewr mato
      th      sunèlixh , brskoume ìti to s ma,               Rx( ),        to opoo èqei metasqhmatismì          Fourier
      jX (!)j2 , dnetai apì thn
                                                   Z   1                                 Z   1
                Rx ( ) = x( )   ? x?    ( ) =            x(t)   x?   (t     ) dt =           x(t +  )x? (t) dt
                                                        1                                    1

                     ()
    To s ma Rx  kaletai sunˆrthsh autosusqètish tou x t kai parèqei èna mètro          ()
                                                              ()
tou susqetismoÔ twn tim¸n tou s mato x t gia dÔo qronikˆ stigmiìtupa pou diafè-
roun katˆ  . Th sunˆrthsh autosusqètish ja th sunant soume kai sthn Enìthta 3.4.

(8) Je¸rhma tou        Parseval
   To je¸rhma        tou Parseval ekfrˆzei th dunatìthta eÔresh th enèrgeia enì s -
mato ete sto pedo tou qrìnou ete sto pedo suqnot twn.


                             Ex =
                                    Z   1
                                              jx(t)j2 dt =         1 Z 1 jX (!)j2 d!
                                          1                       2 1                                           (3.3.50)


SÔmfwna me to je¸rhma tou Parseval h olik enèrgeia enì s mato mpore na upo-     
logiste ete a) upologzonta thn enèrgeia anˆ monˆda qronikoÔ diast mato   xt 2                                 j ( )j
kai oloklhr¸nonta gia  ìlo to qrìno ete b) upologzonta thn enèrgeia anˆ monˆda
                               jX (!)j2
kuklik        suqnìthta           2          kai oloklhr¸nonta gia ìle ti suqnìthte .
Apìdeixh
    Gia to pr¸to mèlo th isìthta èqoume
                 Z   1                         Z   1
                         jx(t)j2 dt =                  x(t)x? (t) dt
                     1                             1                                                 
                                        =
                                               Z   1
                                                     x(t)
                                                           1 Z 1

                                                          2 1 X (!)e
                                                                 ?                           j!t d!       dt
                                                   1
allˆzonta th seirˆ olokl rwsh èqoume
                                                     Z 1                                            
                 Z   1
                         jx(t)j2 dt        1 Z 1
                                        = 2 X (!)
                                                 ?          x(t)e                            j!t dt       d!
                     1                         1         1
                                        = 21 X ? (!)X (!) d!
                                             Z 1

                                               1
                                           1 Z 1
                                        = 2 jX (!)j2 d!
                                                        1
100                     Anˆptugma - Metasqhmatismì                 Fourier Analogik¸n Shmˆtwn         Kefˆlaio 3




          ()                                                            =1
    An x t enai h tˆsh sta ˆkra antstash R R , tìte h enèrgeia pou parèqetai
                                                   1 x2 t dt. Apì to dexiì mèlo
sthn antstash dnetai apì to olokl rwma x          1              E =             ()
th (3.3.50) èqoume ìti h enèrgeia x isoÔtai me to 21 tou embadoÔ pou perikleei h
                                                 E
kampÔlh X ! 2 . H posìthta loipìn X f 2 ekfrˆzei thn katanom th enèrgeia
           j ( )j                                        j ( )j
anˆ monˆda suqnìthta kai onomˆzetai fasmatik puknìthta enèrgeia tou s mato
 ()                                                                 E
x t . Me ˆlla lìgia h stoiqei¸dh enèrgeia d pou suneisfèroun oi suqnìthte pou
brskontai sthn perioq f; f     (
                                df          + ) (
                                      !; ! d! enai                + )
                                dE = jX (f )j2 df                ) ddfE = jX (f )j2

(9) Parag¸gish

    An   x(t) F! X (!), kai upˆrqei o metasqhmatismì                           Fourier th parag¸gou dxdt(t) ,
tìte
                                              dx(t) F
                                               dt
                                                    ! j!X (!)                                          (3.3.51)

Apìdeixh
   MporoÔme na apodexoume thn idiìthta an pˆroume to metasqhmatismì Fourier th
parag¸gou, dhlad ,
                                                    
                                            dx(t)                1 dx(t)
                                                             Z
                                    F        dt
                                                         =          dt
                                                                         e j!t dt                      (3.3.52)
                                                                 1
kai oloklhr¸soume katˆ parˆgonte
                               
                        dx(t)
                                                             Z 1
                                                        1              de j!t
                F        dt
                                        = x(t)e          j!t
                                                         1       x (t)   dt
                                                                              dt
                                                               1
                                                               Z 1
                                                        1
                                        =     x(t)e j!t
                                                         1 + j! 1 x(t)e
                                                                            j!t dt


Gia thn apìdeixh upojètoume ìti, ìtan                        t ! 1 to s      ma    x(t)   ! 0, opìte enai kai
limjtj!1 x(t)ej!t = 0. àtsi èqoume
                                                            
                                                     dx(t)
                                             F        dt
                                                                 = j!X (!)                             (3.3.53)


Epanalhptik efarmog th parapˆnw idiìthta dnei th genik èkfrash th idiìthta
parag¸gish sto qronikì pedo

                                            dn x(t) F
                                             dtn
                                                    ! (j!)n X (!)                                      (3.3.54)
Enìthta 3.3       Metasqhmatismì      Fourier                                                       101



    Me parìmoio trìpo skèyh èqoume gia thn parag¸gish sto pedo suqnot twn
                                                     n X (! )
                                     ( jt)n x(t) F! d d! n                                      (3.3.55)


Parˆdeigma 3.3.7
      Na upologiste o metasqhmatismì             Fourier th    sunˆrthsh   pros mou   sgn(t)
                                                      
                                            sgn(t) = 1;1;        t>0
                                                                 t<0                            (3.3.56)



      LÔsh     ParathroÔme ìti
                                                  dsgn(t)
                                                    dt
                                                            = 2Æ(t)
      Lambˆnonta      to metasqhmatismì       Fourier sta dÔo     mèlh th   parapˆnw exswsh     èqoume
                                                         
                                            F dsgn(
                                                dt
                                                    t)
                                                       = F [2Æ(t)℄
      Enai ìmw      F [Æ(t)℄ = 1 (Parˆdeigma 3.3.2) kai lìgw th            idiìthta   th   parag¸gish
      èqoume

                               j!F [sgn(t)℄ = 2 ) F [sgn(t)℄ =
                                                                       2 ; ! 6= 0               (3.3.57)
                                                                       j!

(10) Olokl rwsh

    An   x(t) F! X (!), tìte
                         Z t
                                   x( ) d F!
                                                    1 X (!) + X (!)Æ(!)                        (3.3.58)
                               1                    j!
Apìdeixh
   An y t ( ) = Rt      ()
             1 x  d , tìte h y        (t) mpore na jewrhje w h sunèlixh th x(t) kai
th sunˆrthsh monadiaou b mato           u(t), dhlad ,
                                               Z 1
                         y(t) = x(t) ? y(t) =       x( )u(t  ) d
                                                            1
Me th bo jeia tou jewr mato th sunèlixh prokÔptei ìti
                                              
         Y (!) = X (!)U (!) = X (!) Æ(!) +
                                             1   =  1 X (!) + X (!)Æ(!)
                                            j!     j!
Ma epipìlaia efarmog th idiìthta th parag¸gish ja mporoÔse na ma odhg sei
se esfalmèna sumperˆsmata. Prˆgmati,

                                            ) dydt(t) = x(t) ) j!Y (!) = X (!)
                         Z t
               y(t) =            x( ) d
                             1
102                   Anˆptugma - Metasqhmatismì          Fourier Analogik¸n Shmˆtwn               Kefˆlaio 3




apì thn teleutaa sqèsh den sunepˆgetai ìti Y !        ( ) = Xj!(! allˆ Y (!) = Xj!(! + CÆ(!)
ìpou C ma stajerˆ, diìti isqÔei j!Æ !     j Æ! ( ) = 0 ( ) = 0.
(11) Summetre     gia pragmatikˆ s mata
             ()                                 ()
    àstw x t pragmatikì s ma kai X ! o metasqhmatismì Fourier, o opoo den e-
nai aparathta kai autì pragmatikì arijmì . Ja dexoume ìti isqÔoun oi summetre

                                    X ( !)             = X ? (!)
                                 <e[X ( !)℄            = <e[X (!)℄                                  (3.3.59)
                                =m[X ( !)℄             = =m[X (!)℄
Apìdeixh
                          ()
   Epeid to s ma x t enai pragmatikì, ja enai x?                   (t) = x(t). àtsi, apì thn idiìthta
th summetra èqoume

                               x(t) = x? (t) F! X (!) = X ? ( !)
dhlad , to fˆsma enai suzug ˆrtia sunˆrthsh th suqnìthta .
   Me th bo jeia th sqèsh tou Euler èqoume
                                Z   1
                  X (!)    =            x(t)e    j!t dt
                                Z   1
                                    1
                           =            x(t)[   os(!t)        j sin(!t)℄ dt
                                Z
                                    1                                Z
                                    1                                    1
                           =            x(t)    os(!t) dt        j           x(t)sin(!t) dt
                                    1                                    1
kai epeid to s ma enai pragmatikì èqoume ìti
                                                 Z   1
                           <e[X (!)℄ =                    x(t)   os(!t) dt kai
                                                     Z1  1
                          =m[X (!)℄ =                         x(t)sin(!t) dt                        (3.3.60)
                                                          1
Apì ti teleutae sqèsei sumperanoume

                                <e[X (!)℄ = <e[X ( !)℄ kai
                                  jX (!)j = jX ( !)j                                                (3.3.61)

dhlad , to   pragmatikì mèro        kai to     mètro   th enai      ˆrtie    sunart sei   , kai

                               =m[X (!)℄ =               =m[X ( !)℄ kai
                               arg[X (!)℄ =              arg[jX ( !)℄                               (3.3.62)
Enìthta 3.3       Metasqhmatismì   Fourier                                                 103



dhlad , to fantastikì mèro kai h fˆsh apoteloÔn perittè sunart sei .
   Mpore eÔkola na apodeiqje ìti oi sqèsei (3.3.59 ) apoteloÔn kai anagkae
                                   ()
sunj ke gia na enai to s ma x t pragmatikì. Prˆgmati, èstw

                                   X (!) = R(!) + jI (!)
ìpou R(! ) kai I (! ) to pragmatikì tm       ma kai to fantastikì tm ma th   X (!). To s   ma
x(t) ja enai

                x(t) =
                        1 Z 1

                       2 Z 1 X (!)e d!
                                    j!t


                     = 21 [R(!) + jI (!)℄[ os(!t) + j sin(!t)℄ d!
                             1
                             1
                        1 Z 1
                     = 2 [R(!) os(!t) I (!)sin(!t)℄ d!
                             1
                           1 Z 1
                       +j 2 [R(!)sin(!t) + I (!) os(!t)℄ d!
                               1
An diaspˆsoume to deÔtero olokl rwma se dÔo oloklhr¸mata, me ìrio olokl rwsh
apì    1èw 0 to pr¸to kai apì 0 èw           1
                                      to deÔtero, èqoume gia to fantastikì mèro
      ()
tou x t


              =m[x(t)℄ =     1 Z 0 [R(!)sin(!t) + I (!) os(!t)℄ d!
                            2 Z1
                            + 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
                                    1
                                  0
                        =    1 Z 1[R( !)sin( !t) + I ( !) os( !t)℄ d!
                            2 0Z
                            + 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
                                    1
                                  0
                        =    1 Z 1[ R(!)sin(!t) I (!) os(!t)℄ d!
                            2 0Z
                            + 21 [R(!)sin(!t) + I (!) os(!t)℄ d!
                                    1
                                  0
                        =   0
àtsi, to s ma    x(t) enai pragmatikì kai dnetai apì th sqèsh

                    x(t) =
                            1 Z 1

                           2 1[R(!) os(!t)             I (!)sin(!t)℄ d!            (3.3.63)
104                  Anˆptugma - Metasqhmatismì       Fourier Analogik¸n Shmˆtwn     Kefˆlaio 3




Apì thn trigwnometra, epsh , gnwrzoume

                  R(!) os(!t) I (!)sin(!t) = A(!) os[!t + (!)℄                        (3.3.64)
              p
ìpou A(! ) = R2 (! ) + I 2 (! ) enai to plˆto tou X (! ) kai (! ) = tan          1 I (!) enai
                                                                                     R(!)
h fˆsh tou, ètsi èqoume gia to pragmatikì s ma x(t)

                     x(t) =
                                 1 Z 1

                                2Z 1 A(!) os[!t + (!)℄ d!
                           = 1 A(!) os[!t + (!)℄ d!
                                     1
                                                                                       (3.3.65)
                                        0
Apì thn (3.3.65 ) parathroÔme ìti me th bo jeia tou metasqhmatismoÔ Fourier X !          ( )=
 ( )+ ( )                                   ()
R ! jI ! èna pragmatikì s ma x t anaptÔssetai se èna ˆpeiro (mh arijm simo)
pl jo shmˆtwn apl¸n suqnot twn. Kajema apì ti aplè autè suqnìthte upei-
                     [ () ℄                           ()
sèrqetai me plˆto A ! = d! kai fˆsh  ! , ìpou ! enai h kuklik suqnìthta.
Autì enai kai o lìgo pou h metablht ! tou metasqhmatismoÔ Fourier anafèretai
kai w kuklik suqnìthta. Apìrroia autoÔ enai kai h onomasa tou metasqhmatismoÔ
Fourier w fˆsma suqnot twn, kat' analoga th anˆlush pou ufstatai to leukì fw
sti epimèrou suqnìthte pou to apartzoun.
    Shmei¸noume ìti, an èna s ma enai fantastikì, dhlad x t             ()= ()
                                                                    jy t ìpou y t           ()
enai èna s ma pragmatikì, tìte eÔkola apodeiknÔetai ìti

                                    X ( !)       = X ? (!)
                                 <e[X ( !)℄      = <e[X (!)℄                           (3.3.66)
                                =m[X ( !)℄       = =m[X (!)℄
(12) Duðsmì
   Thn idiìthta tou duðsmoÔ tou metasqhmatismoÔ Fourier thn èqoume dh sunant sei
sta Paradegmata 3.3.1 kai 3.3.4, ìpou edame ìti o metasqhmatismì Fourier enì
orjog¸niou palmoÔ èqei th morf mia sunˆrthsh                sin
                                                    kai o metasqhmatismì Fourier
mia sunˆrthsh     sin èqei th morf enì orjog¸niou palmoÔ. àstw x(t) F! X (!),
               ( ) = X (t) èqei metasqhmatismì Fourier
tìte to s ma y t

                                  Y (!) = 2x( !)                     (3.3.67)

Apìdeixh
      Apì thn exswsh anˆlush èqoume

                  X (!) =
                            Z   1
                                    x(t)e   j!t dt      1 Z 1
                                                     = 2 2x(t)e         j!t dt
                                1                           1
Enìthta 3.3        Metasqhmatismì      Fourier                                                    105



Me antikatˆstash tou            t me t èqoume

                                   X (!) =
                                            1 Z 1

                                           2 1 2x( t)e dt
                                                        j!t


Eˆn enallˆxoume to            t me !, èqoume

                                  X (t) =
                                           1 Z 1

                                          2 1 2x( !)e d!
                                                       j!t


An sugkrnoume thn teleutaa exswsh me th exswsh sÔnjesh , èqoume

                                         X (t) F! 2x( !)
Sto Sq ma 3.19 perigrˆfetai sqhmatikˆ h idiìthta tou duðsmoÔ.

                   x(t)                                             X(ù)
                                                                     2T1
                        1
                                               F
                                                               ð                  ð
                                                               T1                 T1
              T1          0       T1     t                                 0                        ù

                   x(t)
                    W                                               X(ù)
                    ð
                                                                       1
                                                         F
              ð                    ð
              W                    W
                          0                          t          W          0     W        ù

              Sq ma 3.19           H idiìthta duðsmoÔ tou metasqhmatismoÔ      Fourier.
Efarmogè
    1) Sthn €skhsh 3.8 èqoume dexei

                                 x(t) = e ajtj F! X (!) = 2
                                                            2a
                                                         a + !2
àtsi, to s ma
                                               y(t) = 2
                                                         2
                                                      t +1
                                                                                              (3.3.68)

èqei metasqhmatismì Fourier
                                             Y (!) = 2e j!j                                  (3.3.69)

    Ston Pnaka 3.2 parousiˆzontai oi idiìthte tou metasqhmatismoÔ Fourier.
106                   Anˆptugma - Metasqhmatismì     Fourier Analogik¸n Shmˆtwn                Kefˆlaio 3




                PINAKAS 3.2        Idiìthte tou metasqhmatismoÔ Fourier
                Idiìthta                  Pedo qrìnou               Pedo suqnìthta

          Suzuga sto qrìno                        x? (t)                      X ? ( !)
        Suzuga sth suqnìthta                     x? ( t)                      X ? (!)
               Anˆklash                            x( t)                       X ( !)
            Grammikìthta                     ax1 (t)+bx2 (t)               aX1 (!)+bX2 (!)
        €rtio mèro s mato               xe (t)= 12 [x(t)+x? ( t)℄          <e[X (!)℄=R(!)
      Pragmatikì mèro fˆsmato

       Perittì mèro s mato              xo (t)= 12 [x(t) x? ( t)℄         j =m[X (!)℄=jI (!)
      Fantastikì mèro fˆsmato

          Qronik      metatìpish                  x(t t0 )                   e j!t0 X (!)
         Olsjhsh suqnìthta                    ej!0 t x(t)                  X (! !0 )
                                             Rt
                                                  1 x( ) d
               Olokl rwsh                                              1 X (!)+X (!)Æ(!)
                                                                      j!
                                                                          X (!)=X ? (!)
                                                                      <e[X (!)℄=<e[X ( !)℄
           Pragmatikì s ma                    x(t)=x? (t)           =m[X (!)℄= =m[X ( !)℄
                                                                         jX (!)j=jX ( !)j
                                                                     arg X (!)= arg X ( !)
                Sunèlixh                       x(t)?y(t)                     X (!)Y (!)
               Diamìrfwsh                      x(t)y(t)                   2 [X (!)?Y (!)℄
                                                                            1
           Parag¸gish sto
                                                 dx(t)                         j!X (!)
                                                     dt
            qronikì pedo

           Parag¸gish sto                          tx(t)                       j dXd!(!)
           pedo suqnot twn

                                                   x(at)                      jaj X ( a )
           Allag      klmaka                                                  1      !

      Duðsmì    an   F [x(t)℄ = X (!)         y(t)=X (t)                 Y (!)=2x( !)
                                               R1
           Je¸rhma      Parseval          Ex = 1      jx(t)j2 dt     Ex = 21 R 11 jX (!)j2 d!


    2) Sto Parˆdeigma 3.3.2 èqoume dexei ìti     Æt       F [ ( )℄ = 1
                                                        . Lìgw th idiìthta tou
duðsmoÔ kai, epeid h kroustik sunˆrthsh enai ˆrtia, sunepˆgetai ìti èna suneqè
s ma èqei ma fasmatik sunist¸sa gia !            =0
                                              , dhlad ,


                                   1 F! 2Æ( !) = 2Æ(!)                                         (3.3.70)
Enìthta 3.3                Metasqhmatismì       Fourier                                                                             107




Parˆdeigma 3.3.8
       Na upologiste o metasqhmatismì                          Fourier tou   monadiaou b mato .

       LÔsh            H sunˆrthsh         u(t) mpore na grafe w
                                                            1 + 1 sgn(t)
                                                            u(t) =
                                                            2 2
                                           1    F! Æ(!), sgn(t) F! 2 kai me th bo
       Apì ta zeÔgh           Fourier      2                          j!                                        jeia th        idiìthta
       th     grammikìthta           sunepˆgetai ìti o metasqhmatismì                   Fourier tou        monadiaou b mato
       enai

                                                         u(t) F! Æ(!) +
                                                                                    2                                           (3.3.71)
                                                                                   j!
Parˆdeigma 3.3.9
       Na upologiste o metasqhmatismì                          Fourier tou   trigwnikoÔ s mato

                                                                        jtj
                                                       t
                                                       T1
                                                                = 01;      T1 ;    jtj < T1
                                                                                   alli¸
                                                                                                                                (3.3.72)



       LÔsh            Paragwgzonta           to trigwnikì s ma dÔo forè , èqoume


                                d2
                                               
                                    t
                                dt2 T1
                                                    = T11 Æ(t + T1) T21 Æ(t) + T11 Æ(t                    T1 )                  (3.3.73)


       Sto Sq ma 3.20 eikonzontai to trigwnikì s ma, h pr¸th kai h deÔterh parˆgwgì tou.
       Apì thn idiìthta th             parag¸gish               sto qronikì pedo èqoume


                                                         d     t                                    d2      t
            Ë ( Ôt (
                 1                                       dt Ë Ô1( (                                       ( (
                                                                                                    dt 2 Ë Ô1
                1                                                     1
                                                                      Ô1                      1                           1
                                                                              T1              Ô1                          Ô1
      T1               0        T1     t            T1            0                t           T1                          T1      t
                                                                                                           2
                                                                 1                                         Ô1
                                                                 Ô1

                  (á)                                              (â)                                      (ã)

Sq ma 3.20           H grafikè       parastˆsei           (a) tou trigwnikoÔ palmoÔ, (b) th                     pr¸th     kai (g) th

deÔterh     parag¸gou tou.
                                                      2       
                                                    F d dtx(2t) = (j!)2 X (!)                                                   (3.3.74)



       Gnwrzoume ìti          F [Æ(t)℄ = 1 ètsi, lìgw th idiìthta th                    qronik          metatìpish , èqoume


                                                F [Æ(t  T1 )℄ = ej!T1                                                         (3.3.75)
108                      Anˆptugma - Metasqhmatismì      Fourier Analogik¸n Shmˆtwn                  Kefˆlaio 3




        Lambˆnonta to metasqhmatismì Fourier kai sta dÔo mèlh th (3.3.73) lìgw twn (3.3.74)
        kai (3.3.75) èqoume

                                            
                           (j!)2F     Tt1           = T1 ej!T1 2 + e               j!T1 
                                      
                                                         1
                                   F  Tt            = os(
                                                       2       !T1 ) 2
                                                           T1 (j!)2
                                         1
                                                              2 1=2)
                                                     = T1 sin(!T(!T
                                                                 1 =2)2
                                                                            
                                                     =   T1sin      2 !T1
                                                                      2                               (3.3.76)




Parˆdeigma 3.3.10
        Na upologiste o metasqhmatismì           Fourier tou   s mato      x(t) =    os(!0t).
        LÔsh     An ekfrˆsoume to sunhmtono me th bo jeia th sqèsh tou                   Euler, w   ˆjroisma
        migadik¸n ekjetik¸n ìrwn èqoume

                                              1        1
                                        x(t) = ej!0 t + e j!0 t
                                                    2           2                                      (3.3.77)



        Gnwrzoume ìti   1 F! 2Æ(!). àtsi, efarmìzonta             thn idiìthta th olsjhsh suqnìth-
        ta   brskoume to metasqhmatismì      Fourier tou   s mato .


                           F [x(t)℄ = F [ os(!0 t)℄ = [Æ(! !0 ) + Æ(! + !0 )℄                         (3.3.78)




Parˆdeigma 3.3.11
        Na upologiste o metasqhmatismì           Fourier tou   s mato      x(t) =    os(!0t)u(t).
        LÔsh     Me th bo jeia th    sqèsh    tou    Euler to   s ma grˆfetai

                                          1             1
                                    x(t) = ej!0 t u(t) + e j!0 t u(t)
                                              2                 2                                      (3.3.79)


        Lìgw th    idiìthta   th   olsjhsh   th     suqnìthta      kai epeid    F [u(t)℄ = j!1 + Æ(!) ,
        èqoume

                                                                                                     
             F [x(t)℄ = 21 j (! 1 ! ) + Æ(! !0) + 12 j (! +1 ! ) + Æ(! + !0 )
                                   0                           0
                       = 2 [Æ(!      !0 ) + Æ(! + !0 )℄ + 2
                                                             j!
                                                          !0 !2
                                                                                                       (3.3.80)




      Ston Pnaka 3.3 upˆrqoun basikˆ s mata kai oi antstoiqoi metasqhmatismo
Fourier tou .
Enìthta 3.3                 Metasqhmatismì          Fourier                                           109




         PINAKAS 3.3                Metasqhmatismo Fourier merik¸n basik¸n sunart sewn
   A/A                     Pedo qrìnou                               Pedo suqnìthta
     1                          Æ(t)                                         1
     2                           1                                      2Æ(!) Æ(f )
                                u(t)                               1 + Æ(!) 1 + 1 Æ(f )
     3                                                            j!           j 2f 2
     4                 Æ(t t0 )                                            e j!t0
     5                    ej!0 t                                         2Æ(! !0 )
     6                   os(!0 t)                                 [Æ(! !0 ) + Æ(! + !0 )℄
     7                  sin(!0 t)                                  [Æ (! ! ) Æ (! + ! )℄
                                                                  j P       0             0
                 P1                                                      1
     8               k = 1 ak e
                                 jk!0 t                           2 k= 1 ak Æ(! k!0 )
                P1                                                 2 P1 Æ ! 2k 
     9              k= 1 Æ (t nT )                                  T    k= 1           T
                      
    10         2T1 = 10;; jjttjj<T
                   t
                                     >T1
                                        1
                                                                  2T1 sin !T 1 = 2 sin(!!T1 )
                                                                               

                                                                                
    11         W sin W t  = sin(W t)                               X (! ) =        1; j!j<W
                                               t                                 0; j!j>W
                             8
                           < 1 jtj ; jtjT1                                          
    12                t
                      T1    =: T1                                        T1 sin 2 !T
                                                                                  2
                                                                                     1
                                0;     jtj>T1
                                                                            
                                     
                                 sin(W t)2                                   1 2j!Wj ; j!j2W
    13                     W
                                       Wt                       X (! ) =    0;        j!j>2W
               e at u(t);
                      <e[a℄ > 0                                                 1
    14                                                                       a+j!
               te at u(t);
                       <e[a℄ > 0                                                1
    15                                                                     (a+j!)2
                                                                                1
          (n 1)! e u(t); <e[a℄ > 0
           tn 1   at
    16                                                                     (a+j!)n
    17                      os(!0t)u(t)                        [Æ (! ! ) + Æ (! + ! )℄ + j!
                                                              2        0               0     !02 !2
    18                     sin(!0t)u(t)                       2j [Æ(! !0 ) Æ(! + !0 )℄ + !02 !2
                                                                                              !0

                      e    ajtj ; <e[a℄ > 0                                     2a
    19                                                                       a2 +!2
                                    1                                         
    20                              t                               jsgn 2!         jsgn(f )
                                
    21         sgn(t) =                 1;      t>0                         1       2
                                          1;    t<0                         jf      j!


3.3.3    Metasqhmatismì                        Fourier   periodik¸n shmˆtwn

                                               ()
H qr sh th sunˆrthsh Æ t , ma epitrèpei na prosdiorsoume to metasqhmatismì
Fourier kai gia periodikˆ s mata.
110                     Anˆptugma - Metasqhmatismì             Fourier Analogik¸n Shmˆtwn               Kefˆlaio 3




      O metasqhmatismì Fourier th sunˆrthsh dèlta enai

                                                 Æ(t) F! 1                                               (3.3.81)

Epsh ,
                                        1 F! 2Æ( !) = 2Æ(!)                                            (3.3.82)

Apì thn (3.3.81) kai (3.3.82) lìgw th idiìthta olsjhsh èqoume antstoiqa

                                             Æ(t t0 ) F! e          j!t0                                 (3.3.83)

                                            ej!0 t F! 2Æ(!          !0 )                                (3.3.84)

äpw gnwrzoume, èna periodikì s ma anaptÔssetai se seirˆ Fourier
                                                      1
                                                      X
                                             x(t) =            ak ejk!0 t
                                                      k=   1
Me th bo jeia th (3.3.84) kai lìgw th idiìthta th grammikìthta mporoÔme na
ekfrˆsoume to metasqhmatismì Fourier twn periodik¸n shmˆtwn w ex
                   1
                   X                                            1
                                                                X
          x(t) =              ak   ejk!0 t    F! X (!) =                2ak Æ(!      k!0 )              (3.3.85)
                   k=   1                                      k=   1
An efarmìsoume ta parapˆnw sta Paradegmata 3.2.4 kai 3.2.6 èqoume ta antstoiqa
fˆsmata sta Sq mata 3.21 kai 3.22.
   ParathroÔme ìti o metasqhmatismì Fourier epektenetai kai sta periodikˆ s -
                               ()
mata. àtsi, to fˆsma X ! enì periodikoÔ s mato me periìdo T0 apoteletai apì
sunart sei dèlta omoiìmorfa katanemhmène se apìstash !0        =T0 , me Ôyo         =2                       2
forè ton antstoiqo suntelest th seirˆ Fourier.

                                   X(ù)
                        ð                        ð             X(ù)=ð[ä(ù−ù0)+ä(ù+ù0)]

                         ù0             0        ù0        ù

           Sq ma 3.21         O metasqhmatismì         Fourier gia to       s ma   x(t) =   os(!0 t).
3.4    Enèrgeia kai IsqÔ


Oi ènnoie th enèrgeia kai th isqÔo enì s mato parousiˆsthkan sto pr¸to ke-
fˆlaio. Sthn enìthta aut ja epektenoume ti ènnoie autè tìso sto pedo tou
qrìnou, ìso kai sto pedo suqnot twn.
Enìthta 3.3        Enèrgeia kai IsqÔ                                                                         111


                                                                                  ∞
                                               X(ù)                    X(ù)=     Ó 2ða ä(ù−kù )
                                                                                         k        0
                                                 ð                               k=−∞

                                               2             2



                                               ù0      0    ù0                                        ù

          Sq ma 3.22    O metasqhmatismì               Fourier gia   to periodikì orjog¸nio kÔma.



3.4.1   Energeiakˆ s mata


Gia èna energeiakì s ma x       (t), ìpw èqoume dei kai sto Parˆdeigma 3.3.6, orzetai h
sunˆrthsh autosusqètish          Rx ( ) w
                                   Z   1                                 Z   1
     Rx( ) = x( ) ? x? (  ) =               x(t)x? (t  ) dt =                x(t +  )x? (t) dt       (3.4.1)
                                           1                                 1
Sth sunèqeia ja doÔme merikè basikè idiìthte th sunˆrthsh autosusqètish .
a) H enèrgeia tou s mato enai sh me thn tim th sunˆrthsh autosusqètish tou
 ()
x t , gia    =0
              . Prˆgmati,
                                                   Z   1
                                 Rx(0) =                   jx(t)j2 dt = Ex                                (3.4.2)
                                                       1
b) O metasqhmatismì Fourier th sunˆrthsh autosusqètish enì s mato isoÔtai
me th fasmatik puknìthta enèrgeia tou s mato . H sunˆrthsh fasmatik puknìth-
ta enèrgeia perigrˆfei ton trìpo me ton opoo katanèmetai h enèrgeia tou s mato
sto q¸ro suqnot twn. Prˆgmati, lìgw tou jewr mato th sunèlixh tou metasqhma-
tismoÔ Fourier èqoume

                     Rx ( ) = x( ) ? x? (  ) ) F [Rx ( )℄ = jX (!)j2                                  (3.4.3)

kai apì to je¸rhma tou Parseval èqoume


                   Ex = Rx(0) =
                                       Z   1
                                                   jx(t)j2 dt =    1 Z 1 jX (!)j2 d!
                                           1                      2 1                                    (3.4.4)


    Sth sunèqeia, ja prosdiorsoume th sqèsh pou sundèei th sunˆrthsh autosusqè-
tish tou s mato eisìdou kai tou s mato exìdou enì GQA sust mato .
     An s ma x(t) efarmoste sthn esodo enì GQA sust mato me kroustik apìkri-
sh   h(t) kai apìkrish suqnìthta H (!), tìte h èxodo tou sust mato enai y(t) =
112                       Anˆptugma - Metasqhmatismì     Fourier Analogik¸n Shmˆtwn           Kefˆlaio 3




x(t) ? h(t)     sto pedo suqnot twn           Y (!)   = X (!)  H (!). H enèrgeia tou s         mato
y(t) enai

              Ey =
                     Z   1
                             jy(t)j2 dt      1 Z 1
                                          = 2 jY (!)j2 d!
                         1                       1
                                             1 Z 1
                                          = 2 jX (!)j2 jH (!)j2 d! = Ry (0)                     (3.4.5)
                                                 1
        ( )= ( ) ( )
ìpou Ry     y  ?y?  enai h sunˆrthsh autosusqètish th exìdou tou sust -
mato . Qrhsimopoi¸nta ton antstrofo metasqhmatismì Fourier gia to Y ! 2 è-                 j ( )j
qoume

               Ry ( ) = F 1 [jY (!)j2 ℄         = F 1 [jX (!)j2 jH (!)j2 ℄
                                                 = F 1 [jX (!)j2 ℄ ? F 1 [jH (!)j2 ℄
                                                 = Rx( ) ? Rh( )                               (3.4.6)


Parˆdeigma 3.4.1
      Na upologistoÔn h sunˆrthsh autosusqètish , h fasmatik                     puknìthta enèrgeia    kai
      h enèrgeia tou s mato        x(t) = e at u(t); a > 0
      LÔsh     Gnwrzoume ìti



                                    x(t) = e at u(t) F! X (!) =
                                                                         1
                                                                      a + j!
      H fasmatik         puknìthta enèrgeia     tou s mato    enai



                                               jX (!)j2 = a2 +1 !2
      H sunˆrthsh autosusqètish            isoÔtai me ton antstrofo metasqhmatismì          Fourier   th
      fasmatik       puknìthta      enèrgeia    tou s mato



                                     Rx ( ) = F 1 [jX (!)j2 ℄ =
                                                                    1e   aj j
                                                                   2a
      ìpou qrhsimopoi jhke to zeÔgo            MF 19 tou Pnaka 3.3. H enèrgeia isoÔtai me thn tim
      pou èqei h sunˆrthsh autosusqètish            sto mhdèn, ètsi



                                                Ex = Rx(0) = 21a
      Shmei¸netai ìti h enèrgeia tou s mato            mpore na breje kai apì thn (1.2.13).
Enìthta 3.3      Enèrgeia kai IsqÔ                                                     113



3.4.2    S mata isqÔo

Sthn enìthta aut ja orsoume th mèsh qronik sunˆrthsh autosusqètish enì s -
mato isqÔo kai ja diatup¸soume ti basikè th idiìthte .
   H mèsh qronik sunˆrthsh autosusqètish gia èna s ma isqÔo x t orzetai w ()
                         Rx( ) = Tlim  1     Z T
                                                     x(t)x? (t  ) dt
                                    !1 2T
                                                                                    (3.4.7)
                                                 T
H isqÔ tou s mato       Px enai sh me th mèsh qronik      sunˆrthsh autosusqètish gia
   =0
     . Prˆgmati,

                         Px = Tlim  1 Z T
                                          jx(t)j2 dt = Rx(0)
                                !1 2T T
                                                                                    (3.4.8)

          ()
àstw Sx ! o metasqhmatismì Fourier th mèsh qronik                   sunˆrthsh autosusqèti-
sh , tìte èqoume

          Rx( ) = 21 Z 1
                            Sx (!)e d! ) Rx (0) =
                                                        1 Z 1

                                                       2 1 Sx(!) d!
                                    j!
                          1
àtsi mporoÔme na ekfrˆsoume thn isqÔ tou s mato x(t) me th bo jeia th Sx (! ).
Prˆgmati,
                         Px = Rx(0) = 2 1  Z 1
                                                 Sx(!) d!                   (3.4.9)
                                              1
H sunˆrthsh Sx (! ) perigrˆfei ton trìpo me ton opoo katanèmetai h isqÔ tou s ma-
to sto q¸ro twn suqnot twn kai onomˆzetai        fasmatik              tou s mato
                                                              puknìthta isqÔo
x(t).
    An to s ma x(t), efarmoste sthn esodo enì GQA sust mato me kroustik
apìkrish h(t) kai apìkrish suqnìthta H (! ), tìte h mèsh qronik sunˆrthsh auto-
susqètish th exìdou dnetai apì th sqèsh

                              Ry ( ) = Rx( ) ? h( ) ? h(  )                    (3.4.10)

H apìdeixh th (3.4.10) enai pèra apì ta plasia tou parìnto egqeiridou. O endi-
aferìmeno anagn¸sth parapèmpetai sto biblo [6℄ sthn Anaforˆ.
    Lambˆnonta to metasqhmatismì Fourier kai twn dÔo pleur¸n th (3.4.10) brskou-
me th sqèsh pou sundèei th fasmatik puknìthta isqÔo eisìdou kai exìdou enì GQA
sust mato , w ex

                            Sy (! )   =   Sx(!)  H (!)  H ? (!)
                                      =   Sx(!)  jH (!)j2                         (3.4.11)

H   jH (!)j2 onomˆzetai apìkrish isqÔo     tou sust mato .
114                      Anˆptugma - Metasqhmatismì        Fourier Analogik¸n Shmˆtwn            Kefˆlaio 3




Parˆdeigma 3.4.2
      Dnetai to s ma      x(t)   = u(t).     Na deiqje, ìti to s ma enai s ma isqÔo         kai na upo-
      logistoÔn a) h isqÔ         tou, b) h mèsh qronik       sunˆrthsh autosusqètish          tou kai g) h
      fasmatik    puknìthta isqÔo         tou.

      LÔsh     H enèrgeia tou s mato           enai

                                      Z T                         Z T
                         Ex = Tlim
                                !1
                                              ju(t)j2 dt = Tlim
                                                             !1
                                                                        dt = Tlim
                                                                               !1
                                                                                  T   =1
                                          T                        0
      To s ma den enai energeiakì s ma. H isqÔ             tou s mato     enai



               Px = Tlim  1       Z T
                                         ju(t)j2 dt = Tlim  1     Z T
                                                                        dt =   lim 12 = 12
                      !1 2T                             !1 2T
                                                                                                   (3.4.12)
                                     T                             0           T !1

      To s ma enai, loipìn, s ma isqÔo . H mèsh qronik                  sunˆrthsh autosusqètish         tou
      s mato    enai



                          Rx ( ) = Tlim  1 Z T
                                                u(t)u(t  ) dt
                                      !1 2T T
                                  = Tlim  1 Z T dt = lim 1 (T                      ) =
                                                                                          1
                                      !1 2T          T !1 2T                              2        (3.4.13)
                                                       
      H fasmatik        puknìthta isqÔo       tou s mato enai o metasqhmatismì           Fourier th   mèsh
      qronik     sunˆrthsh        autosusqètish . àtsi, me th bo jeia tou zeÔgou              2 metasqhma-
      tismoÔ   Fourier tou   Pnaka 3.3 èqoume


                                          Sx (!) = F [Rx ( )℄ = Æ(!)                             (3.4.14)



SÔnoyh Kefalaou
    Sthn arq tou kefalaou orsame to eswterikì ginìmeno dÔo shmˆtwn kai to mètro
enì s mato . Edame pìte ma oikogèneia shmˆtwn apotele orjokanonikì sÔnolo sto
q¸ro twn shmˆtwn. Parathr same ìti ta armonikˆ migadikˆ ekjetikˆ s mata kai ta
trigwnometrikˆ s mata se èna peperasmèno diˆsthma, sunistoÔn orjog¸nio sÔnolo
ston antstoiqo q¸ro shmˆtwn.
    Me bˆsh ta anwtèrw perigrˆyame to anˆptugma se seirˆ Fourier, me th bo jeia
tou opoou analÔoume èna s ma se seirˆ apì armonikˆ migadikˆ ekjetikˆ s mata
  se ˆjroisma (sun)hmitìnwn, dhlad se s mata sugkekrimènh suqnìthta . Peri-
grˆyame th mèjodo prosdiorismoÔ twn suntelest¸n tou anaptÔgmato kai d¸same th
fusik tou shmasa. DieurÔname ta parapˆnw apotelèsmata kai ètsi perigrˆyame to
metasqhmatismì Fourier enì s mato . Parathr same ìti, ìpw to anˆptugma Fouri-
er twn periodik¸n shmˆtwn, ètsi kai o metasqhmatismì Fourier twn mh periodik¸n
shmˆtwn anaparistˆ mh periodikˆ s mata me ekjetikˆ s mata kai me ton trìpo autì
apokalÔptei to fasmatikì tou perieqìmeno.
Enìthta 3.5      Probl mata                                                      115



    Perigrˆyame ti basikè idiìthte pou èqei o metasqhmatismì Fourier. Parousiˆ-
same leitourge , ìpw h diamìrfwsh, h opoa apotele basik leitourga sthn ekpom-
p enì s mato apì èna shmeo se ˆllo mèsa apì èna kanˆli (zeÔgo surmˆtwn
th atmìsfaira ), to je¸rhma th sunèlixh , me th bo jeia tou opoou h upologi-
stikˆ polÔplokh sqèsh th sunèlixh metasqhmatizìmenh katˆ Fourier katal gei se
èna aplì ginìmeno sunart sewn. Me th bo jeia tou jewr mato tou Parseval edame
ìti mporoÔme na upologsoume thn enèrgeia enì s mato ete sto pedo tou qrìnou
ete sto pedo twn suqnot twn.
    Edame ìti o metasqhmatismì Fourier upˆrqei kai gia ta periodikˆ s mata kai
shmei¸same ìti ta periodikˆ s mata èqoun fˆsma diakritì, en¸ ta mh periodikˆ èqoun
fˆsma suneqè .
    Orsame th sunˆrthsh autosusqètish enì energeiakoÔ s mato kai th mèsh
qronik sunˆrthsh autosusqètish enì s mato isqÔo . Parathr same ìti oi metasqh-
matismo Fourier twn dÔo aut¸n sunart sewn enai h sunˆrthsh fasmatik puknìth-
ta enèrgeia kai h sunˆrthsh fasmatik puknìthta isqÔo .
    Sto tèlo tou kefalaou parousiˆsthkan dÔo pnake . Ston Pnaka 3.2 upˆrqoun
oi idiìthte tou metasqhmatismoÔ Fourier, en¸ ston Pnaka 3.3 oi metasqhmatismo
Fourier merik¸n basik¸n sunart sewn. Ja prèpei, telei¸nonta to diˆbasma tou ke-
falaou, na gnwrzete kalˆ ti idiìthte kai na mporete, basizìmenoi sta paradeg-
mata tou kefalaou kai sti idiìthte , na brskete tou metasqhmatismoÔ Fourier twn
basik¸n sunart sewn pou upˆrqoun sto deÔtero pnaka.




3.5    PROBLHMATA

 3.1   Na upologistoÔn kai na sqediastoÔn to mètro kai h fˆsh twn suntelest¸n th
       ekjetik seirˆ Fourier tou s mato .
                                                                  
                         x(t) = 1 + 2sin(!0 t) +   os 2!0 t + 4
 3.2   Na upologiste h mèsh isqÔ tou periodikoÔ orjog¸niou s mato tou Paradeg-
       mato 3.2.6. Epsh , na upologiste h isqÔ twn suqnot twn pou perièqei o ken-
       trikì lobì (dhlad , h sunolik isqÔ tou kentrikoÔ loboÔ). O kentrikì lobì
       perièqei ìle ti suqnìthte metaxÔ tou pr¸tou aristerˆ mhdenismoÔ kai tou
       pr¸tou dexiˆ mhdenismoÔ.
 3.3   Na upologistoÔn oi suntelestè th ekjetik      seirˆ Fourier gia to s ma

                                  x(t) =   os(4t) os(6t)
116                      Anˆptugma - Metasqhmatismì     Fourier Analogik¸n Shmˆtwn        Kefˆlaio 3




 3.4   Na upologistoÔn oi suntelestè th ekjetik                 seirˆ Fourier gia to s ma

                                              x(t) =    os2 (2t)
 3.5   Na upologistoÔn oi ekjetikè seirè Fourier gia ta s mata.
         1.   x(t) = ej 200t
                                   
         2.   x(t) = os 4 (t 1)
         3.   x(t) = os(4t) + sin(8t)
         4.   x(t) = os(4t) + sin(6t)
         5.   x(t) enai periodikì me perodo sh me 2 kai x(t) = e          t gia     1<t<1
                                                  
         6.   x(t) = [1 + os(2t)℄[ os 10t 4
 3.6   Na upologsete to mètro kai th fˆsh tou metasqhmatismoÔ Fourier tou aitia-
       toÔ ekjetikoÔ s mato x t         ()=         ()
                                    e at u t . Na parathr sete ìti X       1 kai     j (0)j =
       jX (a)j = ap1 2
 3.7   Na upologistoÔn oi suntelestè th ekjetik seirˆ Fourier kai th trigwno-
       metrik seirˆ gia to periodikì s ma to opoo perigrˆfetai sto Sq ma 3.23.

                        x(t)
                           1

                   -1               1           t
                               -1                      Sq ma 3.23   To s ma tou Probl mato 3.7.



 3.8   Na upologiste o metasqhmatismì Fourier tou s mato

                                         x(t) = e ajtj ;      a>0
       kai na kˆnete th grafik parˆstash tou s mato kai tou mètrou tou metasqh-
       matismoÔ Fourier.
 3.9   Na upologiste o metasqhmatismì Fourier gia kajèna apì ta s mata

         1.   x(t) = [eat os(!0 t)℄u(t); a > 0
         2.   x(t) = e ajtj sin(bt); a 6= b
         3.   x(t) = e2+t u( t + 1)
         4.   x(t) = e 3t [u(t + 2) u(t 3)℄
                     
         5.   x(t) = 10;+ os(t); jjttjj >1
                                            1
Enìthta 3.5                  Probl mata                                                            117


                                 P
            6.   x(t) = 1   k=0 a Æ (t kT ); jaj < 1
                                  k
            7.   x(t) = [t  e 2t sin(4t)℄u(t)
            8.   x(t) = u(t) + 2Æ(3 2t)
3.10   Na upologiste o metasqhmatismì Fourier tou s mato                     x(t) = sin(!0 t) .
3.11   Na upologiste o metasqhmatismì Fourier tou s mato                     x(t) = sin(!0 t)u(t) .
3.12   Na upologiste o metasqhmatismì Fourier tou summetrikoÔ orjog¸niou palmoÔ
       ( )
          t , o opoo èqei qronik diˆrkeia sh me ma qronik monˆda kai plˆto epsh
       so me ma monˆda m kou , dhlad ,
                                                              1     1
                                           (t) = 01;;         2 <t< 2
                                                             alli¸

3.13   Na upologiste o metasqhmatismì Fourier gia to s ma to opoo perigrˆfetai
       sto Sq ma 3.24.

                      x(t)
                         2
                             1
                                           3
       -2        -1              1     2        4   t
                        -1                                  Sq ma 3.24   To s ma tou Probl mato 3.13.


3.14   Na upologiste o metasqhmatismì Fourier gia ta periodikˆ s mata
            1.   x1 (t) = os(4t) os(6t)
            2.   x2 (t) = sin2 (2t)
3.15   Na upologiste o antstrofo metasqhmatismì Fourier gia kˆje èna apì ta
       akìlouja fˆsmata
            1.   X (!) = 2 sin[3(
                              ! 2
                                  ! 2)℄
                                         
            2.   X (!) = os 4! + 3
            3.   X (!) = 2[Æ(! 1) Æ(! + 1)℄ + 3[Æ(!                  2)    Æ(! + 2)℄
3.16   Na upologiste o antstrofo metasqhmatismì Fourier gia to s ma tou opoou
       to mètro kai h fˆsh perigrˆfetai sto Sq ma 3.25
3.17   Na dexete ìti to s ma x t          ( ) = os( )
                                          !0 t enai s ma isqÔo kai na upologsete
       thn isqÔ tou me th bo jeia tou jewr mato Parseval, dhlad ete sto pedo tou
       qrìnou ete sto pedo suqnot twn.
3.18   An to s ma, x t           ()=       ()           0
                            eat u t ; a > efarmoste sthn esodo enì GQA sust -
       mato , to opoo èqei kroustik apìkrish h t              ()=
                                                    e t u t ; > kai         ()
                                                                           a, na      0       6=
       brejoÔn h sunˆrthsh autosusqètish , h fasmatik puknìthta enèrgeia kai h
       enèrgeia tou s mato exìdou.
118                      Anˆptugma - Metasqhmatismì    Fourier Analogik¸n Shmˆtwn               Kefˆlaio 3




                        X(ù)                                   arg X(ù)
                           1                                                 3
                                                                                     1
                                                              -1                            ù
                                                ù                       -3
               -1              0        1

         Sq ma 3.25      To mètro kai h fˆsh tou      MF tou   s mato     sto Prìblhma 3.16.


3.19   An to s ma x t   ( )= ( )
                        u t efarmoste sthn esodo enì GQA sust mato , to opoo
       èqei kroustik apìkrish h t           ( ) = sin (6 )
                                           t , na brejoÔn h fasmatik puknìthta
       isqÔo kai h isqÔ tou s mato exìdou.
3.20   Na upologiste o metasqhmatismì Fourier gia to s ma to opoo perigrˆfetai
       sto Sq ma 3.26.

              x(t)
                    1


                    0      1        t            Sq ma 3.26    To s ma tou Probl mato 3.20.


3.21   Qrhsimopoi¸nta ti idiìthte tou metasqhmatismoÔ Fourier, na breje o metasqh-
       matismì Fourier tou s mato x t         t  ( ) = (2
                                                     ìpou          3)        ( )
                                                             t enai o trigwnikì
       palmì kai na gnei h grafik tou parˆstash se sunˆrthsh me th suqnìthta.


      Bibliografa

3.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
3.2     N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”,                      Daulo   , Aj na, 1994.
3.3     A. Mˆrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
 sei    Tziìla 2012.

3.4     S. Haykin, B. Veen, “Signal and Systems”, John              & Wiley Sons, Inc. 2003
3.5    A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
 Hall Inc., N. Y., 1983.
3.6   R. E. Siemer, W. H. Tranter, D. R. Fannin, “Signals               & Systems Continuous and
 Discrete”, Prentice Hall, 1998.
3.7     A. Papoulis, “The Fourier integral and its Applications”, McGraw Hill., 1962.
3.8      J. G. Proakis, M. Salehi, “Communication System Engineering”, Prentice Hall
 1994.
                                                                 ÊÅÖÁËÁÉÏ       4
         ÅÖÁÑÌÏÃÅÓ ÔÏÕ ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÕ FOURIER




    Skopì tou kefalaou enai na parousiˆsei merikè efarmogè tou Metasqhma-
tismoÔ Fourier (MF). Eidikìtera, sto kefˆlaio autì ja perigrafoÔn èmmesoi trìpoi
upologismoÔ tou antstrofou MF, trìpoi oi opooi enai idiatera qr simoi, an h mor-
f tou MF den enai apl . Se aut thn perptwsh, o apeujea upologismì tou
antstrofou me thn exswsh sÔnjesh gnetai ma dÔskolh diadikasa. Epsh , ja
perigrafe ma eÔkolh mèjodo eÔresh th apìkrish suqnìthta , th kroustik
apìkrish kai th exìdou enì sust mato , tou opoou gnwrzoume th diaforik exsw-
sh pou susqetzei ta s mata eisìdou-exìdou tou sust mato .

      Eisagwg
   Sto Kefˆlaio 3 orsame to MF, o opoo parèqei th dunatìthta metˆbash apì
to pedo tou qrìnou sto pedo suqnìthta . O MF th sunèlixh dÔo shmˆtwn up-
ologzetai me èna aplì ginìmeno twn antstoiqwn metasqhmatism¸n. Me ton trìpo
autì, upologzetai pr¸ta o MF th exìdou kai sth sunèqeia, me ènan antstrofo MF,
prosdiorzetai h èxodo tou sust mato sto pedo tou qrìnou. Sto
kefˆlaio autì ja parousiastoÔn merikè akìma efarmogè tou MF sth melèth gram-
mik¸n susthmˆtwn.


4.1    APOKRISH SUQNOTHTAS SUSTHMATOS


Sto Kefˆlaio 2 edame ìti èna grammikì qronikˆ anallowto sÔsthma perigrˆfetai
                                           ()                       ()
pl rw apì thn kroustik tou apìkrish, h t , kai ìti h esodo , x t , kai h èxodo ,
 ()
y t , tou GQA sust mato sundèontai me to olokl rwma th sunèlixh
                          y(t)   = Zx(t) ? y(t)
                                      1
                                 =       x( )h(t    ) d                   (4.1.1)
                                       1
                              ()                               ()
O metasqhmatismì Fourier H ! , th kroustik apìkrish h t , ìpw èqoume dei
sthn Enìthta 2.5, apotele thn apìkrish suqnìthta tou sust mato kai dnetai w
120                                         Efarmogè      tou MetasqhmatismoÔ       Fourier   Kefˆlaio 4




to phlko twn metasqhmatism¸n Fourier eisìdou-exìdou, w ex

                                                          Y (!)
                                            H (!) =
                                                          X (! )
                                                                                                (4.1.2)

                                        ()
ParathroÔme ìti h sunˆrthsh H ! mpore na breje ete upologzonta to metasqh-
                    ()                                               ()
matismì Fourier th h t , afoÔ pr¸ta upologiste h h t , ete w phlko twn metasqh-
matism¸n Fourier eisìdou-exìdou. O deÔtero trìpo upologismoÔ th H ! enai                     ()
saf¸ eukolìtero tou pr¸tou kai gia to lìgo autì o metasqhmatismì Fourier
apotele èna isqurì majhmatikì ergaleo gia th melèth grammik¸n susthmˆtwn.


4.1.1   H apìkrish suqnìthta           gia sust mata pou perigrˆfontai
        apì diaforikè   exis¸sei            me stajeroÔ          suntelestè

Sto Kefˆlaio 2 orsame w sÔsthma thn ontìthta ekenh h opoa metatrèpei mia
fusik posìthta pou perigrˆfetai apì to s ma eisìdou x t se mia ˆllh pou peri- ()
                                    ()
grˆfetai apì to s ma exìdou y t . H diadikasa aut metasqhmatismoÔ ekfrˆzetai me
th bo jeia ma diaforik exswsh pou susqetzei ta s mata eisìdou-exìdou. ätan
to sÔsthma enai grammikì qronikˆ anallowto, ìpw èqoume sta Paradegmata 2.1.1
kai 2.1.2, h antstoiqh diaforik exswsh enai grammik me stajeroÔ suntelestè ,
dhlad èqei th genik morf
                                 N
                                 X          dk y(t)       M
                                                          X   dk x(t)
                                       ak
                                             dtk
                                                      =         bk
                                                               dtk
                                                                                                (4.1.3)
                                 k=0                      k=0
Sth sunèqeia ja perigrˆyoume ton trìpo me ton opoo prosdiorzoume thn apìkrish
              ()
suqnìthta H ! apì thn (4.1.3) me th bo jeia tou metasqhmatismoÔ Fourier kai twn
idiot twn tou. Efarmìzoume to metasqhmatismì Fourier kai sta dÔo mèlh th exswsh
(4.1.3) kai parnoume
                            "                     #         "                   #
                              N
                              X       dk y(t)                   M
                                                                X     dk x(t)
                        F           ak k
                                       dt
                                                      =F            bk k
                                                                       dt
                                k=0                             k=0
Lìgw th idiìthta th grammikìthta , pou qarakthrzei to metasqhmatismì Fourier,
èqoume
                                        k
                        N
                        X
                                ak F
                                        dy    (t)  = X
                                                      M
                                                        bk F
                                                              k
                                                              d x(t)
                                                                     

                        k=0
                                            dtk           k=0
                                                                        dtk
lìgw th idiìthta th diafìrish , èqoume thn exswsh
                        N
                        X                                 M
                                                          X
                                ak (j!)k Y (!) =                bk (j!)k X (!)
                        k=0                               k=0
Enìthta 4.1        Upologismì    tou Antstrofou           MF                                               121



  isodÔnama
                                   N
                                   X                                  M
                                                                      X
                           Y (!)          ak (j!)      k   = X (! )         bk (j!)k
                                   k=0                                k=0
kai lìgw th (4.1.2), èqoume
                                                                PM
                                            Y (!)
                                                           = PNk=0 bk (j!)k
                                                                               k
                                H (!) =
                                            X (!)
                                                                                                         (4.1.4)
                                                              k=0 ak (j! )
ParathroÔme ta ex

                                        ()
        H apìkrish suqnìthta H ! , enì GQA sust mato enai ma rht sunˆrthsh,
        dhlad mpore na ekfraste w lìgo dÔo poluwnÔmwn th metablht    j! .                             ( )
       Ston upologismì th apìkrish suqnìthta tou sust mato den upeisèrqontai
        oi arqikè sunj ke sti opoe brsketai to sÔsthma, se antjesh me th lÔsh
        th (4.1.3), h opoa exartˆtai apì ti arqikè sunj ke tou sust mato . Autì
        ofeletai sto gegonì ìti o metasqhmatismì Fourier propojètei ènarxh th
        diadikasa sto      1 , pou enai to kˆtw ìrio tou oloklhr¸mato ston tÔpo
        orismoÔ tou (3.3.14) kai apì sÔmbash deqìmaste ìti sto    oi arqikè sunj ke    1
        enai pˆnta mhdèn.



Parˆdeigma 4.1.1 (SÔsthma       pr¸th     tˆxh    ).
        Na upologiste h apìkrish suqnìthta kai h kroustik                    apìkrish tou GQA sust mato
        pr¸th   tˆxh , to opoo, ìpw      enai gnwstì, perigrˆfetai apì th diaforik                 exswsh

                                         dy(t)
                                          dt
                                               + ay(t) = bx(t); a > 0                                     (4.1.5)


        LÔsh    Efarmìzonta to metasqhmatismì                   Fourier kai sta dÔo mèlh th       exswsh , lìgw
        twn idiot twn th   grammikìthta       kai diafìrish , èqoume diadoqikˆ
                                             
                                      dy(t)
                                 F     dt
                                            + F [ay(t)℄           = F [bx(t)℄
                                     (j!)Y (!) + aY (!)           = bX (!)
                                                                       b
                                                            H (!) =
                                                                    j! + a
                                                                                                          (4.1.6)


        ìpou sthn teleutaa isìthta qrhsimopoi jhke to je¸rhma th sunèlixh                         Y (!) = H (!)
        X (!) Sto Parˆdeigma 3.3.3 èqoume dexei
                                  x(t) = e at u(t) F! X (!) =
                                                                                   1
                                                                              j! + a
                                                                                                          (4.1.7)


        Epomènw , h kroustik     apìkrish tou sust mato                   pr¸th    tˆxh   enai

                                                  h(t) = be           (t)
                                                                   at u                                   (4.1.8)
122                                     Efarmogè       tou MetasqhmatismoÔ   Fourier         Kefˆlaio 4




4.2    UPOLOGISMOS TOU ANTISTROFOU                                 METASQHMATISMOU
       FOURIER

Enai profanè ìti, an gnwrzoume thn apìkrish suqnìthta enì sust mato , tìte me
th bo jeia th (3.3.13), h opoa perigrˆfei ton antstrofo metasqhmatismì Fourier,
mporoÔme na upologsoume thn kroustik apìkrish tou sust mato . An h morf th
  ()                                                               ()
H ! den enai apl , tìte o apeujea upologismì th h t apì thn (3.3.13) mpore na
apodeiqje ma epponh diadikasa. Gia to lìgo autì, sun jw , akoloujoÔntai èmmesoi
trìpoi upologismoÔ tou antstrofou metasqhmatismoÔ Fourier. An h H ! èqei apl           ()
morf , ìpw sto Parˆdeigma 4.1.1, enai dunatìn me th bo jeia tou Pnaka 3.3 na
prosdiorzoume eÔkola thn kroustik apìkrish tou sust mato . Genikìtera, an h
apìkrish suqnìthta mpore na ekfraste w ˆjroisma epimèrou stoiqeiwd¸n ìrwn,
tìte me th bo jeia tou Pnaka 3.3 kai twn idiot twn tou metasqhmatismoÔ Fourier
mporoÔme na upologsoume thn kroustik apìkrish tou sust mato . Sto Parˆrthma
B perigrˆfetai h diadikasa anˆptuxh ma rht sunˆrthsh , se ˆjroisma apl¸n
klasmˆtwn. Parakˆtw efarmìzoume th mejodologa aut se èna parˆdeigma.

Parˆdeigma 4.2.1 (SÔsthma   deÔterh    tˆxh   ).
       Dnetai to GQA sÔsthma deÔterh             tˆxh , to opoo arqikˆ brsketai se hrema, kai
       qarakthrzetai apì th diaforik     exswsh

                              d2 y(t)
                               dt2
                                      + 4 dydt(t) + 3y(t) = dxdt(t) + 2x(t)                     (4.2.1)


       Na upologiste h kroustik    apìkrish tou sust mato .

       LÔsh     Efarmìzoume to metasqhmatismì         Fourier kai sta dÔo mèlh th      exswsh (4.2.1)
       kai me th bo jeia th    idiìthta      th    grammikìthta   kai th      diafìrish , pou èqei o
       metasqhmatismì   Fourier, brskoume        ìti h apìkrish suqnìthta     tou sust mato     enai


                                      H (!) =
                                                       (j!) + 2
                                                   (j!) + 4(j!) + 3
                                                       2                                        (4.2.2)


       AnalÔoume ta polu¸numa tou arijmht            kai tou paranomast      se ginìmena poluwnÔmwn
       pr¸tou    deÔterou bajmoÔ w     pro    (j!) kai sth sunèqeia anaptÔssoume thn apìkrish
       suqnìthta   se aplˆ klˆsmata. àtsi, parnoume


                         H (!) =
                                        (j!) + 2         C1       C2
                                    (j! + 1)(j! + 3) = j! + 1 + j! + 3
       Sth sunèqeia upologzoume ti    stajerèC1 kai C2
                                                      j! + 2        1
                        C1 = [(j! + 1)H (!)℄jj!= 1 =              =
                                                      j! + 3 j!= 1 2
                                                   j! + 2                              1
                     C2 = [(j! + 3)H (!)℄jj!= 3 =               ) C2 =
                                                   j! + 1 j!= 3                        2
Enìthta 4.1           Upologismì   tou Antstrofou        MF                                                123



      Epomènw , h apìkrish suqnìthta                 parnei th morf


                                         H (!) =
                                                          1 1        1 1
                                                          2 j! + 1 + 2 j! + 3                            (4.2.3)


      Me th bo jeia th        idiìthta       th    grammikìthta         tou metasqhmatismoÔ    Fourier   kai th
      (4.1.7), h kroustik     apìkrish tou sust mato                  enai

                                               1          1
                                         h(t) = e t u(t) + e 3t u(t)
                                                      2                2                                 (4.2.4)



Parˆdeigma 4.2.2
      An h esodo       tou sust mato        sto Parˆdeigma 4.2.1 enai

                                                      x(t) = e t u(t)                                    (4.2.5)

      na upologiste h èxodo        tou sust mato .

      LÔsh        O metasqhmatismì       Fourier tou s         mato     eisìdou   x(t) = e t u(t) enai X (!) =
      1=(j! + 1). Me th bo         jeia tou jewr mato            th    sunèlixh , o metasqhmatismì       Fourier
      th      exìdou enai
                                                                    
                                                  j! + 2
                                                      1
           Y (!) = H (!)X (!) =                             = (j! +j!1)2+(j!2 + 3)
                                             (j! + 1)(j! + 3)
                                                   j! + 1
      Sthn perptwsh aut h anˆptuxh se aplˆ klˆsmata tou Y (! ) èqei th morf

                                    C          C12       C21
                            Y (!) = 11 +              +
                                   j! + 1 (j! + 1) j! + 3
                                                    2
      Sth sunèqeia upologzoume ti                C11 , C12 kai C21
                                              stajerè
                                                                        
      C11 =
                      1       d          2                   d j! + 2                                       1
                 (2     1)! d(j!) (j! + 1) Y (!) j!= 1 = d(j!) j! + 3 j!= 1 ) C11 =                           4
                                                       j! + 2               1
                        C12 = (j! + 1)2 Y (!) j!= 1 =                 ) C11 =
                                                         j! + 3 j!= 1         2
                                                        j! + 2                  1
                      C21 = [(j! + 3)Y (!)℄jj!= 3 =                   ) C21 =
                                                      (j! + 1) j!= 3
                                                               2                4
      Epomènw , o metasqhmatismì             Fourier th        exìdou parnei th morf


                               Y (!) =
                                             1 1 +1 1             1 1
                                             4 j! + 1 2 (j! + 1) 4 j! + 3
                                                                2                                        (4.2.6)


      An efarmìsoume thn idiìthta th diafìrish sthn (4.1.7) sto pedo suqnot twn, èqoume


                                                  t  x(t)     F! j X (!)
                                                                     d!
                                         t  e at u(t)         F!      1
                                                                  (j! + a)2                              (4.2.7)
124                                           Efarmogè      tou MetasqhmatismoÔ        Fourier            Kefˆlaio 4




      Me th bo jeia tou antstrofou metasqhmatismoÔ                   Fourier, th     idiìthta th grammikìth-
      ta , th    (4.1.7) kai th     (4.2.7) brskoume ìti h èxodo           tou sust mato         enai
                                                                              
                                     y(t) =
                                                  1 e t + 1 te    t    1e   3t u(t)
                                                  4       2            4                                      (4.2.8)


      Prèpei na toniste sta Paradegmata 4.2.1 kai 4.2.2 ìti, an zhtetai mìno h                    y(t) kai ìqi h
      Y (!), tìte o eukolìtero        trìpo       eÔres     th    enai h apeujea eplush th             diaforik
      exswsh .

Parˆdeigma 4.2.3 (Prosdiorismì            sust mato       apì thn esodì tou kai èxodì tou).

      H èxodo        enì    GQA sust mato     se s ma eisìdou         x(t) = e 2t u(t) enai y(t) = e t u(t)
      Na breje h apìkrish suqnìthta               tou sust mato        kai h kroustik          apìkrish.

      LÔsh       O metasqhmatismì         Fourier tou     s mato      eisìdou      x(t) enai
                                                   X (!) =
                                                                  1
                                                               2 + j!
      kai o metasqhmatismì          Fourier tou     s mato     exìdou   y(t) enai
                                                    Y (! ) =
                                                                  1
                                                               1 + j!
      H apìkrish suqnìthta           tou sust mato         upologzetai me th bo jeia th            4.1.2

                                                          Y (!)
                                           H (! ) =
                                                          X (!)
                                                                  = 21 ++ j!
                                                                          j!
                                                                                                              (4.2.9)


      H apìkrish suqnìthta           tou sust mato         grˆfetai w


                                                  H (!) = 1 +
                                                                     1
                                                                  1 + j!
      H kroustik           apìkrish tou sust mato         enai

                                              h(t) = Æ(t) + e tu(t)                                          (4.2.10)

      Shmei¸netai ìti, ìtan to s ma eisìdou enai s ma ma suqnìthta , ja prèpei kai to s ma
      exìdou na enai s ma th dia suqnìthta kai sthn perptwsh aut                         prosdiorzetai mìno
      h tim     th   apìkrish     suqnìthta       sth suqnìthta tou s mato             eisìdou.




4.3   DIAGRAMMATA                   BODE

Apì to je¸rhma th sunèlixh gnwrzoume ìti o metasqhmatismì Fourier th eisìdou
X (!) kai th                   ()
             exìdou Y ! enì grammikoÔ qronikˆ anallowtou sust mato , to opoo
                                     ()
èqei apìkrish suqnìthta H ! , sundèontai me th sqèsh

                                        Y (!) = H (!)  X (!)                                                (4.3.1)
Enìthta 4.2      Diagrˆmmata   Bode                                                               125



ParathroÔme ìti o metasqhmatismì Fourier th exìdou prokÔptei w ginìmeno tou
metasqhmatismoÔ Fourier th eisìdou me thn apìkrish suqnìthta . Apì thn (4.3.1)
èqoume gia ta mètra kai ti fˆsei twn antistoqwn posot twn ti exis¸sei

         jY (!)j = jH (!)j  jX (!)j kai argY (!) = argH (!) + argX (!)                        (4.3.2)

H ajroistik morf th deÔterh exswsh epitrèpei ton prosdiorismì th grafik
parˆstash th fˆsh exìdou me apl prìsjesh twn grafhmˆtwn th fˆsh eisìdou
me th fˆsh th apìkrish suqnìthta . Gia na petÔqoume anˆlogh sumperiforˆ gia to
mètro, logarijmzoume thn pr¸th exswsh kai èqoume

                          logjY (!)j = logjH (!)j + logjX (!)j                                 (4.3.3)

Suqnˆ, gia th grafik anaparˆstash tou mètrou, qrhsimopoioÔme logarijmik klma-
ka kai w monˆda mètrou to decibel (dB). H klmaka twn dB baszetai sthn antistoiqa

                                      dB = 20log10 jH (!)j                                     (4.3.4)

Endeiktikˆ èqoume ti akìlouje timè

    0 dB antistoiqe se jH (!)j = 1;
   20 dB antistoiqe se jH (!)j = 10;                 20 dB antistoiqe se jH (!)j = 0; 1
   40 dB antistoiqe se jH (!)j = 100;                40 dB antistoiqe se jH (!)j = 0; 01
ParathroÔme epiplèon ìti

        1 dB antistoiqe se jH (!)j  1; 12 kai 6 dB antistoiqe se jH (!)j  2
    Diagrˆmmata pou apeikonzoun th fˆsh kai to mètro se dB, se sunˆrthsh me th
suqnìthta, onomˆzontai diagrˆmmata Bode. Epeid o logˆrijmo ektenei thn klmaka,
h qrhsimopohsh logarijmik klmaka exasfalzei kalÔterh eukrneia ìtan to eÔro
twn suqnot twn pou ma endiafèrei enai megˆlo periorzetai se mikrè timè kontˆ
sto mhdèn. Efarmìzoume ta parapˆnw sto Parˆdeigma 4.3.1.
Parˆdeigma 4.3.1
      Na upologiste h apìkrish tou sust mato pr¸th tˆxh ìtan h esodo enai h sunˆrth-
      sh monadiaou b mato .

      LÔsh    O metasqhmatismì        Fourier tou   monadiaou b mato   enai (blèpe Pnaka 3.3)


                                          U (!) =
                                                     1 + Æ(!)                                 (4.3.5)
                                                     j!
      Apì to je¸rhma th    sunèlixh       prokÔptei ìti o metasqhmatismì        Fourier   th   exìdou

                                                              
                                                                   1 + Æ(!)
      enai
                                                          b
                        Y (!) = H (!)  U (!) =
                                                       j! +       j!
126                                            Efarmogè           tou MetasqhmatismoÔ              Fourier             Kefˆlaio 4




         gia   ! 6= 0 epeid Æ(!) = 0, èqoume
                                                     b                   b 1       b 1
                                   Y (! ) =
                                              (j! + a)j! =                       +
                                                                         a j! + a a j!
         Me th bo jeia tou antstrofou metasqhmatismoÔ                   Fourier, th idiìthta th grammikìth-
         ta , th     (4.1.7) kai tou metasqhmatismoÔ             Fourier tou monadiaou b mato upologzoume
         thn èxodo tou sust mato
                                                                                
                                                             b     b at
                                              y(t) =                 e  u(t)                                              (4.3.6)
                                                             a     a
         H kroustik        apìkrish tou sust mato pr¸th tˆxh kai h apìkris                                  tou sto monadiao
         b ma paristˆnontai grafikˆ sto Sq ma 4.1.



                   h(t)                                              y(t)
                                                                         b
                      b                                                  a
                                                                    b(  1
                                                                    a 1 e    (
                      b
                      e

                       0    ô                      t                         0       ô                             t
                                 (a)                                                         (â)

Sq ma 4.1        Apokrsei      sust mato     pr¸th      tˆxh       (a) kroustik               apìkrish (b) apìkrish sto

monadiao b ma.

H asumptwtik katˆstash th apìkrish sto monadiao b ma enai b=a. H parˆmetro
   =1=a onomˆzetai qronik stajerˆ kai shmatodote to rujmì me ton opoo to sÔsth-
ma apokrnetai. Th qronik stigm t                =
                                      , h kroustik apìkrish mei¸nei thn tim pou
                 1
eqe arqikˆ =e forè , en¸ h apìkrish sto monadiao b ma apèqei =e forè apì thn                          1
telik th tim (Sq ma 4.1). ParathroÔme ìti, kaj¸ a             , h qronik stajerˆ         ! +1
mikranei kai h ptwtik tˆsh th kroustik apìkrish gnetai pio apìtomh.
    H apìkrish suqnìthta , h kroustik apìkrish kai h apìkrish sto monadiao b ma
tou sust mato pr¸th tˆxh , ìtan a      b, enai    =
         H (! ) =
                             1 ; h(t) = 1 e            t
                                                       u    (t) kai y(t) = 1
                                                                                         
                                                                                                   e
                                                                                                       t
                                                                                                        u   (t)
                          j! + 1
                                                                                                                         (4.3.7)
                                        
To mètro th apìkrish suqnìthta                     h apìkrish plˆtou tou sust mato enai
                                               r
          jH (!)j = H (!)H ? (!) = j!1+ 1 j!1 + 1 = p 1 2 2
                           p
                                                                                                                         (4.3.8)
                                                       1+ !
kai se dB
                                20log10 jH (!)j = 10log10 1 + (!)2                                                     (4.3.9)
ParathroÔme ìti,
Enìthta 4.2        Diagrˆmmata               Bode                                                               127



                 1
        An ! << , isqÔei   log 1 + ( )   log 1 = 0
                              10      ! 2       10     . Sunep¸ , sti qamh-
        lè suqnìthte to mètro se dB th apìkrish suqnìthta enai perpou mhdèn,
             20log j ( )j  0
        efìson     10 H !       gia ! << = .1
                                             
     An ! >> 1, isqÔei log10 1 + (!)  log10 (!)2 = 20log10 + 20log10 !.
                                           2
      Sunep¸ , sti uyhlè suqnìthte to mètro se dB proseggzetai apì grammik
      sunˆrthsh tou log10 (! ), h opoa èqei klsh -20,


                  20log jH (!)j  20log  20log ! gia ! >> 1
                                        10                         10               10                    

                                        0
                                                                         -3dB
                       20log10 H(ù)




                                       -3


                                      -10


                                      -20
                                                    log10( 1   (   log10(1ô(   log10(10
                                                                                      ô(
                                                         10 ô
                                                                                           log10(ù)
                       arg H(ù)




                                       ð
                                       4


                                       ð
                                       2
                                                    log10( 1   (   log10(1ô(   log10(10
                                                                                      ô(
                                                         10 ô
                                                                                           log10(ù)


              Sq ma 4.2                Ta diagrˆmmata   Bode       tou sust mato           pr¸th      tˆxew .

Sto Sq ma 4.2 fanontai ta diagrˆmmata Bode sust mato pr¸th tˆxew . Gia to
shmeo tom twn asÔmptwtwn eujei¸n pou proseggzoun to mètro sti qamhlè kai
uyhlè suqnìthte isqÔei      10 !             log ( ) = log ( )
                                         10  kai antistoiqe sth suqnìthta !                                    =
1= . Sth suqnìthta aut to mètro se dB enai
                                                      "                       #
         20log10   H
                        
                           1 = 10log                       1  2 + 1 = 10log (2)  3dB
                                    10                                     10

Gia to lìgo autì, h kuklik suqnìthta !                     =1
                                          = onomˆzetai kuklik suqnìthta -3 dB.
                                                                                    1 p2
Genikˆ, h kuklik suqnìthta -3dB enai h kuklik suqnìthta gia thn opoa to mètro
th apìkrish suqnìthta enì sust mato apoktˆ to =           th mègisth tim tou
128                                               Efarmogè        tou MetasqhmatismoÔ   Fourier           Kefˆlaio 4




mètrou th apìkrish suqnìthta tou sust mato .

                                        jH (!)jj!    3dB      = p12 jH (!)jmax                             (4.3.10)

   Se anˆloga sumperˆsmata katal goume gia th fˆsh, ìpou sthn perptwsh aut
upˆrqoun trei asÔmptwte eujee (Sq ma 4.2).



4.4     IDANIKO FILTRO BASIKHS ZWNHS - BAJUPERATO FILTRO


àna sÔsthma to opoo enisqÔei apodunam¸nei to mètro th apìkrish suqnìthta
anˆloga me thn tim    to diˆsthma tim¸n th suqnìthta ! , onomˆzetai fltro. Idanikì
bajuperatì fltro    idanikì fltro basik   z¸nh
                                                  onomˆzetai to GQA sÔsthma to
opoo èqei apìkrish suqnìthta
                                                   
                                        H (! ) =         e    j!t0 ;   j!j < !
                                                         0;            j!j > !                              (4.4.1)

ìpou    t0 enai stajer
                     posìthta. H stajer kuklik suqnìthta ! qarakthrzetai w
kuklik                    tou fltrou. Sto Sq ma 4.3 dnetai h grafik parˆstash
           suqnìthta apokop
tou mètrou kai th fˆsh tou idanikoÔ fltrou basik z¸nh . To mètro th apìkrish

                        H(ù)                                                     arg H(ù)

                             1
                                                                                                     ùc
                                                                              -ùc       0                     ù
                 -ùc           0         ùc              ù
       Æþíç                                    Æþíç                                         êëßóç =-t0
      áðïêïðÞò         Æþíç äéÝëåõóçò         áðïêïðÞò
                            (a)                                                         ( â)

Sq ma 4.3        (a) To mètro kai (b) h fˆsh th                  apìkrish   suqnìthta       tou idanikoÔ fltrou

basik      z¸nh . H klsh th        eujea      prosdiorzetai apì to       t0 .
suqnìthta tou bajuperatoÔ fltrou enai so me 1 gia ! < ! < ! . Dedomènou
ìti Y ! ( )= ( ) ( )
            H ! X ! , enai profanè ìti oi suqnìthte tou s mato eisìdou pou
brskontai se autì to diˆsthma dièrqontai apì to fltro me ametˆblhto plˆto . Gia
to lìgo autì, to diˆsthma autì kaletai kai z¸nh dièleush tou fltrou. Epsh ,
epeid to mètro th apìkrish suqnìthta tou bajuperatoÔ fltrou enai so me 0
gia ! < ! kai ! < ! , enai profanè ìti to bajuperatì fltro aporrofˆ ti
suqnìthte ekene tou fˆsmato tou s mato eisìdou pou enai megalÔtere apì th
suqnìthta apokop . To diˆsthma autì apotele th z¸nh apokop tou fltrou.
    emfanzetai kai w   katwperatì fltro      kai katwdiabatì fltro
Enìthta 4.3         Idanikì Fltro Basik        Z¸nh       - Bajuperatì Fltro                          129



    A upojèsoume t¸ra, ìti sthn esodo tou bajuperatoÔ fltrou to s ma apotele-
                                        ()
tai apì dÔo sunist¸se , thn xep t pou enai h epijumht sunist¸sa tou s mato kai
         ()
thn xan t pou enai h anepijÔmhth sunist¸sa, p.q. èna s ma parembol      jìrubo .
                j
àstw de ìti Xep !    ( )j = 0        j j
                           gia ! > ! se antjesh me thn anepijÔmhth sunist¸sa,
th opoa o metasqhmatismì Fourier den ikanopoie antstoiqh sqèsh. Gia mia tè-
toia perptwsh, to idanikì bajuperatì fltro ja af nei thn epijumht sunist¸sa na
dièrqetai en¸ ja aporrof sei to tm ma th anepijÔmhth sunist¸sa to opoo periè-
qei suqnìthte megalÔtere apì th suqnìthta apokop , me apotèlesma th beltwsh
th poiìthta tou s mato xep t .      ()
    A upojèsoume t¸ra ìti to mh mhdenikì mèro tou metasqhmatismoÔ Fourier, X ! ,                       ()
                            ()
tou s mato eisìdou, x t , entopzetai sth z¸nh dièleush . Tìte o metasqhmatismì
Fourier th exìdou tou sust mato enai

                              Y (!) = X (!)H (!) = X (!)e                         j!t0

  sto pedo tou qrìnou
                                                y(t) = x(t t0 )                                      (4.4.2)
Me ˆlla lìgia, to gegonì ìti h fˆsh th apìkrish suqnìthta enai grammik
sunˆrthsh th suqnìthta , h epdrash tou fltrou se èna s ma eisìdou, me fasmatikì
perieqìmeno entopismèno sth z¸nh dièleush , enai ma qronik kajustèrhsh t0 .
    Apì to metasqhmatismì Fourier tou orjog¸niou palmoÔ kai me th bo jeia th
idiìthta th qronik metatìpish upologzetai h kroustik apìkrish tou idanikoÔ
katwperatoÔ filtroÔ
                                                                                            
                       h(t) =
                              sin[! (t t0)℄ = ! sin                              ! (t t0 )
                                 (t t0 )
                                                                                                     (4.4.3)
                                              !                                      
H grafik parˆstash th kroustik                        apìkrish enai sto Sq ma 4.4.

                                 h(t)
                                   ùc
                                   ð


                                            t    ð                      ð
                                            0    ùc                 t
                                                                    0   ùc
                                        0                  t
                                                           0                                     t
                                                      Tc       2ð
                                                               ùc


              Sq ma 4.4   H kroustik        apìkrish tou idanikoÔ bajuperatoÔ fltrou.

    Parathr sei

   1.   äso mikrìterh enai h suqnìthta apokop                           , tìso megalÔterh enai h diˆrkeia
        th kroustik apìkrish .
130                                                  Efarmogè       tou MetasqhmatismoÔ   Fourier       Kefˆlaio 4




    2.     To idanikì katwperatì fltro enai mh aitiatì, efìson h kroustik apìkris
           tou enai mh mhdenik gia arnhtikè timè tou qrìnou kai, epomènw , enai mh
           pragmatopoi simo. An h tim th stajerˆ t0 enai arketˆ megˆlh, oi timè th
           kroustik    apìkrish ti arnhtikè qronikè stigmè mporoÔn na jewrhjoÔn
           amelhtèe . Kai w ek toÔtou mporoÔme na proseggsoume to fltro me èna
           aitiatì sÔsthma.
    3.     äso megalÔterh enai h suqnìthta apokop , tìso taqÔtera to fltro èqei th du-
           natìthta na parakolouje apìtome metabolè tou s mato eisìdou. Autì enai
           logikì, afoÔ gr gore qronikè metabolè antistoiqoÔn sti uyhlè suqnìthte ,
           oi opoe dièrqontai apì to fltro an epilèxoume megˆlh suqnìthta apokop .

   H grafik parˆstash th apìkrish plˆtou twn pragmatik¸n fltrwn basik
z¸nh ta opoa sunantˆme sthn prˆxh, fanetai sto Sq ma 4.5. Sta pragmatikˆ fltra
ektì apì ti z¸ne dièleush kai apokop upˆrqei kai h z¸nh metˆbash . Epsh ,
sta pragmatikˆ fltra h suqnìthta apokop enai sh me th suqnìthta                                      3dB
                         H(ù)
                            A
                            A
                             2


                -ùc                       ùc                    ù         Sq ma 4.5       To mètro th   apìkrish
                                 0
 Æþíç          Æþíç          Æþíç        Æþíç         Æþíç                suqnìthta enì pragmatikoÔ fltrou
áðïêïðÞò     ìåôÜâáóçò     äéÝëåõóçò   ìåôÜâáóçò     áðïêïðÞò
                                                                          basik    z¸nh .


   Anˆloga me thn perioq twn suqnot twn pou dièrqontai apì to fltro autì qarak-
thrzetai w

    1.     bajuperatì fltro fltro basik z¸nh fltro dièleush qamhl¸n suqnot -
           twn (lowpass filter (LPF)) Sq ma 4.6a.
    2.     uyiperatì fltro fltro dièleush uyhl¸n suqnot twn (highpass filter (HPF))
           Sq ma 4.6b.
    3.     zwnoperatì fltro zwnodiabatì fltro fltro dièleush z¸nh suqnot twn
           (bandpass filter (BPF)) Sq ma 4.6g..
    4.     zwnofraktikì fltro              fltro apokop              z¸nh suqnot twn (bandstop filter (B-
           SF)) Sq ma 4.6d.

Oi apokrsei plˆtou twn antistoqwn idanik¸n fltrwn fanontai sto Sq ma 4.6 kai
twn pragmatik¸n fltrwn sto Sq ma 4.7.
Parˆdeigma 4.4.1
           Dnetai to sÔsthma to opoo perigrˆfetai sto Sq ma 4.8.
             1. Na breje h kroustik               apìkrish tou sust mato .
Enìthta 4.3          Idanikì Fltro Basik       Z¸nh    - Bajuperatì Fltro                                 131



                      H(ù)                                                 H(ù)
                                                LPF                                           HPF
                         1                                                     1

               -ùc        0         ùc              ù               -ùc         0        ùc          ù
                         (á)                                                  ( â)
                     H(ù)                                                  H(ù)
                                                ÂPF                                                ÂSF
                         1                                                    1

        -ù2     -ù1        0      ù1        ù2      ù         -ù2    -ù1        0       ù1    ù2        ù
                         ( ã)                                                 ( ä)

Sq ma 4.6     Oi apokrsei      plˆtou idanikoÔ (a) bajuperatoÔ (b) uyiperatoÔ (g) zwnoperatoÔ

kai (d) zwnofraktikoÔ fltrou.


                     H(ù)                                                  H(ù)                   HPF
                        A                    LPF                              A
                         A                                                    A
                         2                                                     2

               -ùc        0        ùc              ù                -ùc         0        ùc             ù
                        (á)                                                   ( â)
                     H(ù)                                                  H(ù)                    ÂSF
                        A                         ÂPF                         A
                         A                                                    A
                         2                                                     2

       -ù2      -ù1        0      ù1         ù2     ù         -ù2     -ù1       0       ù1    ù2        ù
                         ( ã)                                                 ( ä)

Sq ma 4.7     Oi apokrsei      plˆtou      pragmatikoÔ (a) bajuperatoÔ (b) uyiperatoÔ (g) zwnop-

eratoÔ kai (d) zwnofraktikoÔ fltrou.


         2. Na gnei h perigraf          tou sust mato        sto pedo suqnìthta .
         3. Na breje h apìkrish suqnìthta                tou sust mato .

      LÔsh

         1. Gnwrzoume ìti h kroustik             apìkrish enì sust mato enai sh me thn èxodì tou
              ìtan to s ma eisìdou enai h kroustik             sunˆrthsh     Æ(t), ètsi èqoume
                                                        Z t
                                         h(t)     =       (Æ() Æ(            )) d
                                                        1
                                                  = u(t) u(t  )
                                                  =  t =2                                             (4.4.4)
132                                      Efarmogè    tou MetasqhmatismoÔ    Fourier          Kefˆlaio 4




               Åßóïäïò                                         Óýóôçìá       ¸îïäïò
                   x(t)                                      ïëïêëÞñùóçò       y(t)
                                   Óýóôçìá                      ∫ (⋅) dt
                                 êáèõóôÝñçóçò
                                    êáôÜ ô


  Sq ma 4.8   Perigraf      tou sust mato       tou Paradegmato       4.4.1 sto pedo tou qrìnou.


         2. Me th bo jeia twn idiot twn th          qronik     metatìpish      kai th   olokl rwsh
           tou metasqhmatismoÔ      Fourier     èqoume thn perigraf        tou sust mato     sto pedo
           suqnìthta      tou Sq mato    4.9.

         3. Me th bo jeia th prosetairistik          kai th epimeristik       idiìthta th sunèlixh
           èqoume gia thn apìkrish suqnìthta         tou sust mato



                      H (!) = [H1 (!) H2 (!)℄H3 (!)           = 1 j! e j!

                                                                2
                                                              = !
                                                                             
                                                                   ej! 2 e j! 2
                                                                                e        j! 2
                                                                         2j
                                                                       ! 
                                                              =  sin 2 e j! 2                 (4.4.5)


           H apìkrish suqnìthta         mpore na breje, epsh , upologzonta          to metasqhma-
           tismì   Fourier th   kroustik    apìkrish     tou sust mato .


               Åßóïäïò                                                       ¸îïäïò
                X(ù)                                                1
                                  Ç1(ù)=1                    Ç3(ù)= jù        Y(ù)

                                Ç2(ù)=e- jùô

  Sq ma 4.9   Perigraf      tou sust mato       tou Paradegmato       4.4.1 sto pedo suqnìthta .




      SÔnoyh Kefalaou
    Sto kefˆlaio autì upologsame thn apìkrish suqnìthta enì GQA sust mato
apì th diaforik exswsh pou susqetzei ta s mata eisìdou-exìdou, ekmetalleuìmenoi
ti idiìthte th grammikìthta , th diafìrish kai to je¸rhma th sunèlixh . ätan
h apìkrish suqnìthta èqei apl morf , tìte enai dunatì me th bo jeia twn gnw-
st¸n zeug¸n MF, pou anafèrontai ston Pnaka 3.3, na upologsoume thn kroustik
apìkrish tou sust mato . Sto kefˆlaio autì parousiˆsthkan,epsh , èmmesoi trìpoi
upologismoÔ tou antstrofou MF, oi opooi enai idiatera qr simoi ìtan o MF den
èqei apl morf . Eidikìtera, sti perissìtere praktikè efarmogè , o MF enai ma
rht sunˆrthsh. Sthn perptwsh aut analÔoume th sunˆrthsh se ˆjroisma apl¸n
klasmˆtwn kai me th bo jeia tou Pnaka 3.3 upologzoume ton antstrofo MF. H
Enìthta 4.5            Probl mata                                                                133



parapˆnw mejodologa efarmìzetai kai gia ton upologismì th exìdou, sto pedo tou
qrìnou, enì GQA sust mato , eˆn èqoume upologsei pr¸ta ton MF th exìdou me
th bo jeia tou jewr mato th sunèlixh .
    Epsh , sto kefˆlaio autì parousiˆsthkan ta diagrˆmmata Bode. Ta diagrˆmmata
Bode, epeid o logˆrijmo ektenei thn klmaka, exasfalzoun perissìterh eukrneia
an to eÔro twn suqnot twn pou ma endiafèrei enai megˆlo , epsh , an periorzetai
se mikrè timè kontˆ sto mhdèn. Tèlo , parousiˆsthkan oi ènnoie twn idanik¸n kai
pragmatik¸n fltrwn.


4.5    PROBLHMATA


 4.1   Dnetai to kÔklwma pou apoteletai apì antstash R     K , phno L ; H= 10           =0 1
       kai puknwt C         = 10
                           F se seirˆ, to opoo perigrˆfetai sto Sq ma 4.10. An h
       esodo tou sust mato enai h efarmozomènh tˆsh in t kai èxodo h èntash ()
                           ()
       tou reÔmato i t , na upologiste h apìkrish suqnìthta tou sust mato .

              A                         B
                       L
              õin(t)       i(t)
                                    R
                           C
              Ä                         Ã           Sq ma 4.10        To kÔklwma tou Probl mato 4.1.


 4.2   Na upologiste h èntash tou reÔmato pou diarrèei to kÔklwma tou Sq mato
       4.8 ìtan h tˆsh eisìdou enai
                                                                        
                                            in (t) = 10   os 2t + 3
 4.3   Dnetai to GQA sÔsthma to opoo èqei kroustik apìkrish


                                                h(t) =
                                                           sin(4t)
                                                             t
       Me th bo jeia tou jewr mato th sunèlixh na prosdioriste h èxodo tou
       sust mato ìtan h esodo tou sust mato enai to s ma

                                        x(t) =     os(2t) + sin(6t)
 4.4   H diaforik exswsh h opoa sundèei thn esodo kai thn èxodo enì GQA sust -
       mato enai
                                              dy(t)
                                               dt
                                                    + 2y(t) = x(t)
134                                           Efarmogè       tou MetasqhmatismoÔ               Fourier          Kefˆlaio 4




         1.   Na prosdioriste h apìkrish suqnìthta tou sust mato kai na gnoun ta
              diagrˆmmata Bode.
         2.   An h esodo tou sust mato enai to s ma x                            (t) = e t u(t), na upologiste
              o metasqhmatismì Fourier th exìdou.
         3.                                                              ()
              AfoÔ anaptuqje se aplˆ klˆsmata h Y ! na upologiste h èxodo                                          y(t)
              tou sust mato , ìtan h esodo enai to s ma x t .                      ()
 4.5   An h phg tˆsh th morf tou Sq mato 4.11 efarmìzetai sthn esodo enì
       idanikoÔ katwperatoÔ fltrou, me apìkrish suqnìthta
                                                     
                                        H (!) =          e    j! ;     j!j < 4
                                                         0;            j!j > 4
       Na upologiste h èxodo tou fltrou.

                                       õ(t)
                                         V

                     -2ð      -ð                     ð           2ð                        t
                                        -V                                                          Sq ma 4.11


 4.6   àstw ìti h phg tˆsh th morf tou Sq mato 4.11 efarmìzetai sthn esodo
       enì GQA sust mato pr¸th tˆxh , to opoo qarakthrzetai apì thn exswsh

                                              dy(t)
                                               dt
                                                    + y(t) = x(t)
       Na upologiste h èxodo tou sust mato .
 4.7   To aitiatì ekjetikì s ma tou Sq mato 4.12a efarmìzetai sthn esodo tou ida-
       nikoÔ fltrou basik z¸nh tou Sq mato 4.12b. Na upologiste h suqnìthta
       apokop ! , ètsi ¸ste to fltro na epitrèpei th dièleush
                                                         R 1 th mis1 enèrgeia
                                                                            1 x .                       = tan
       tou s mato eisìdou. Dnetai to aìristo olokl rwma a2 + x2 dt a          a

              x(t)
                2              t                                     Ç(ùù
                                                                        ùó )
                       x(t)=2e 5                                           1
                                              x(t)                                                       y(t)

                 0                                             -ùc             0      ùc        ù
                                   t
                      (á)                                                 ( â)

       Sq ma 4.12      (a) To s ma eisìdou kai (b) to idanikì fltro sto Prìblhma 4.7.
Enìthta 4.5          Probl mata                                                                             135



 4.8   Dnetai to kÔklwma to opoo perigrˆfetai sto Sq ma 4.13. Na upologiste h
       apìkrish suqnìthta tou sust mato kai na gnei h grafik parˆstash th
       apìkrish plˆtou se sunˆrthsh me th suqnìthta.


           R=1 Ù        L= 12 H
 Åßóïäïò                                    ¸îïäïò
   x(t)                                        y(t)
                            C= 2 F
                                                             Sq ma 4.13    To kÔklwma tou Probl mato 4.8.


 4.9   Katˆ th      diamìrfwsh,                               ()
                             èna s ma m t periorismènou eÔrou z¸nh , dhlad ,
       M (!) = 0 gia j!j > W    (Sq ma 4.12b), pou metafèrei sugkekrimènh plhrofo-
       ra, pollaplasiˆzetai me èna s ma apl suqnìthta        !0 t , h opoa onomˆze-os( )
       tai fèrousa, me skopì thn ekpomp tou se èna mèso metˆdosh , p.q., zeÔgo
       surmˆtwn, atmìsfaira, klp. Sto Sq ma 4.14a perigrˆfetai èna aplopoihmèno
       sÔsthma epikoinwna . An jewr soume ìti katˆ th metˆdosh tou s mato den
       alloi¸netai apì to mèso kai ìti o jìrubo tou kanalioÔ enai amelhtèo , tìte
                                        ()
       to lambanìmeno s ma r t enai so me to ekpempìmeno. JewroÔme ìti h z¸nh
       dièleush tou idanikoÔ katoperatoÔ fltrou sto dèkth enai sh me to eÔro
                                                                ()
       z¸nh W tou s mato mhnÔmato m t . Na melethje to sÔsthma sto pedo
       suqnìthta .

                                                                                           M(ù)
                    u(t)     êáíÜëé     r(t)          z(t)                y(t)
  m(t)                     ìåôÜäïóçò
                                                             Êáôùðåñáôü                        A
                                                               ößëôñï

            cos(ùc t)                        cos(ùc t)                                                     ù
                                                                                          W       0   W
            Ðïìðüò                                      ÄÝêôçò
                                       (á)                                                    (â)

Sq ma 4.14         (a) To aplopoihmèno sÔsthma epikoinwna                       kai (b) to periorismènou eÔrou

z¸nh      fˆsma tou s mato        mhnÔmato       gia èna aujareto s ma           m(t).
4.10   ätan to s ma eisìdou se èna grammikì qronikˆ analloi¸to sÔsthma enai x                            (t) =
       e at , to s ma exìdou enai y t          ()=
                                        e bt u t . Na brejoÔn      ()
           1.   h apìkrish suqnìthta kai
           2.   h kroustik apìkrish tou sust mato .
4.11   Me th bo jeia th (3.3.83) na breje o metasqhmatismì Fourier tou periodikoÔ
                                       ()
       orjog¸niou s mato x t tou Paradegmato 3.2.6.
                           ()
       An to s ma x t efarmoste sthn esodo grammikoÔ qronikˆ anallowtou sust -
       mato me kroustik apìkrish h t       1           ( ) = sin( )
                                                t , na dexete, qrhsimopoi¸nta to
                                          t
136                                               Efarmogè    tou MetasqhmatismoÔ   Fourier        Kefˆlaio 4




        je¸rhma th sunèlixh , ìti h èxodo tou sust mato enai
                                                            
                                                     1
                                               y(t) = + os
                                                            t
                                                     2      2
4.12    Apì thn idiìthta th olsjhsh th kroustik                        sunˆrthsh
                                         Z    1
                                                      x(t)Æ(t t0 ) dt = x(t0 )
                                              1
        ParathroÔme ìti h sunèlixh kˆje sunˆrthsh me thn kroustik sunˆrthsh èqei
        w apotèlesma ma olisjhmènh èkdosh th arqik sunˆrthsh , dhlad ,

                                         g(t)  Æ(t t0 ) = g(t t0 )
        An to s ma x t        2 t efarmoste sthn esodo grammikoÔ qronikˆ anal-
                           ( ) = sin ( )
                                                                      ()
        lowtou sust mato me kroustik apìkrish h t , na breje kai na sqediasje o
        metasqhmatismì Fourier th exìdou tou sust mato ìtan
                                     
              1.   h(t) = 1 + os 2t
                          P
              2.   h(t) = 1 k= 1 Æ (t kT )
4.13    Na breje o majhmatikì tÔpo th kroustik apìkrish tou sust mato tou
        Sq mato 4.15 kai na gnei h grafik th parˆstash se sunˆrthsh me to qrìno.
        (Upìdeixh: Na jewr sete to sÔsthma w thn en seirˆ sÔndesh dÔo sust matwn).


  Åßóïäïò                                      Óýóôçìá                                 Óýóôçìá     ¸îïäïò
                                             ïëïêëÞñùóçò                             ïëïêëÞñùóçò
       x(t)                                       t                                      t          y(t)
                                                        dt                                    dt
                        Óýóôçìá                 −∞                Óýóôçìá               −∞
                      êáèõóôÝñçóçò                              êáèõóôÝñçóçò
                         êáôÜ ô                                    êáôÜ ô


                             Sq ma 4.15        To sÔsthma sto Prìblhma 4.13.




      Bibliografa


4.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
4.2       S. Haykin, B. Veen, “Signal and Systems”, John                 & Wiley Sons, Inc. 2003
4.3    A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
 Hall Inc., N. Y., 1983.
                                                                        ÊÅÖÁËÁÉÏ    5
                       ÓÅÉÑÁ - ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ FOURIER
                                      ÄÉÁÊÑÉÔÏÕ ×ÑÏÍÏÕ




    Sto kefˆlaio autì ja melet soume majhmatikˆ ergalea, ta opoa ma epitrèpoun
na analÔoume èna sÔnjeto s ma diakritoÔ qrìnou se s mata diakritoÔ qrìnou apl¸n
suqnot twn. Mia tètoia prosèggish ma dieukolÔnei ¸ste na upologsoume thn èxodo
enì sust mato diakritoÔ qrìnou, to opoo diegeretai apì èna sÔnjeto s ma, me
th bo jeia twn apokrsewn tou sust mato sti ep mèrou sunist¸se twn apl¸n
suqnot twn sti opoe analÔetai to sÔnjeto s ma. Sth sunèqeia ja efarmìsoume
ti mejìdou autè , ¸ste na analÔsoume ènan arijmì shmˆtwn ta opoa sunantˆme
suqnˆ sth prˆxh. Tèlo , sto kefˆlaio autì ja parousiastoÔn merikè efarmogè tou
metasqhmatismoÔ Fourier diakritoÔ qrìnou.


   Eisagwg

    Gnwrzoume ìti to migadikì ekjetikì s ma diakritoÔ qrìnou ej (2=N )n enai pe-
riodikì me jemeli¸dh perodo N . Ta ekjetikˆ s mata pou èqoun kuklik suqnìthta
pollaplˆsia th 0    =2                        = 0 1 2
                           =N (ejk 0 n , me k ; ; ; ::: ) enai epsh periodikˆ. Ta
ekjetikˆ s mata e  jk  0 n kaloÔntai armonikˆ susqetizìmena ekjetikˆ s mata diakritoÔ
qrìnou epeid oi jemeli¸dei suqnìthtè tou enai akèraia pollaplˆsia th kuklik
suqnìthta    0 . Ta migadikˆ ekjetikˆ s mata diakritoÔ qrìnou twn opown oi kuklikè
                                                   2
suqnìthte diafèroun katˆ pollaplˆsio tou  enai dia. Prˆgmati:


                          ej ( +2)n = ej     n  ej 2n   = ej   n


Upˆrqoun N to pl jo diaforetikˆ migadikˆ ekjetikˆ s mata diakritoÔ qrìnou ta
opoa sqhmatzoun èna orjog¸nio sÔnolo dhlad , enai anˆ dÔo orjog¸nia. Prˆgmati
to eswterikì ginìmeno twn ekjetik¸n shmˆtwn ejk 0 n kai ejm 0 n enai


                              X1
                                                       
       hejk 0n; ejm 0ni   =
                              N
                                    ej (k m) 0 n   = N;      k=m      = NÆ(k   m)
                              n=0
                                                     0;      k 6= m
138                              Seirˆ - Metasqhmatismì        Fourier DiakritoÔ Qrìnou      Kefˆlaio 5




5.1     PARASTASH PERIODIKWN SHMATWN -
             SEIRA   FOURIER        DIAKRITOU QRONOU

Ta periodikˆ s mata diakritoÔ qrìnou paristˆnontai me peperasmèna ajrosmata
                                                   NX1
                                                                  2
                                      x(n) =               ak ejk N n                          (5.1.1)
                                                   k=0
H exswsh aut dnei thn parˆstash ( anˆptugma) periodik¸n shmˆtwn diakritoÔ
qrìnou se seirˆ Fourier diakritoÔ qrìnou.


5.1.1    Prosdiorismì       th   seirˆ    Fourier         diakritoÔ qrìnou.

        ()
An x n enai ma akolouja h opoa enai periodik me perodo N , o prosdiorismì
twn suntelest¸n ak ja mporoÔse na gnei apì th lÔsh tou grammikoÔ sust mato

                                                     X1
                                                     N
                                    x(0)       =             ak
                                                     k=0
                                                     X1
                                                     N
                                                                       2
                                    x(1)       =             ak ejk N
                                                      k=0
                                         ..          ..
                                          .           .
                                                     X1
                                                     N
                                                             ak ejk N (N 1)
                                                                    2
                             x(N       1) =                                                    (5.1.2)
                                                      k=0
àna ˆllo trìpo prosdiorismoÔ enai o pollaplasiasmì kai twn dÔo mel¸n th
(5.1.1) me e jm(2=N )n kai ajrosoume w pro n, dhlad ,
                      NX1                                 NX1 N
                                                              X1
                            x(n)e   jm 2N n     =                     ak ej (k   m) 2N n
                      n=0                                  n=0 k=0
                                                          NX1 NX1
                                                                      ej (k m) N n
                                                                               2
                                                 =             ak
                                                           k=0    n=0
kai lìgw th     hejk 0n; ejm 0ni = NÆ(k m) enai
                      NX1
                            x(n)e     jm 2N n     =       Nam
                      n=0
                                                       X1
                                                   = N1 x(n)e
                                                       N
                                          am                                      jm 2N n
                                                              n=0
Enìthta 5.1         Parˆstash Periodik¸n Shmˆtwn - Seirˆ         Fourier DiakritoÔ Qrìnou                 139



àtsi èqoume ti exis¸sei :

                                 X1
                                 N
                                                  2
                      x(n) =              ak ejk N n ;          Exswsh sÔnjesh                      (5.1.3)
                                  k=0
                                 NX1
                     ak =
                             1            x(n)e     jk 2N n      Exswsh anˆlush                    (5.1.4)
                             N n=0
To zeÔgo twn exis¸sewn aut¸n orzoun th seirˆ Fourier diakritoÔ qrìnou (discrete-
time Fourier series (DTFS) tou periodikoÔ s mato diakritoÔ qrìnou x n . Oi sunte-             ()
lestè ak kaloÔntai suntelestè Fourier , ìpw ja doÔme, fasmatikè grammè .

Parˆdeigma 5.1.1
      Na breje h parˆstash se seirˆ           Fourier tou s    mato diakritoÔ qrìnou      x(n) = sin( 0 n).
      LÔsh      Gnwrzoume ìti to s ma enai periodikì an             2=     0 enai akèraio      rhtì   ari-
      jmì , ètsi mìno tìte mporoÔme na èqoume anˆptugma se seirˆ                   Fourier diakritoÔ qrìnou.
      Diakrnoume ti       peript¸sei :

         1. To s ma enai periodikì me jemeli¸dh perodo              N    kai    0 = 2=N . Me th bo     jeia
              th   sqèsh   tou   Euler to s     ma grˆfetai

                                             x(n)      = sin( 0 n)
                                                       = 21j ej 2N n 21j e   j 2N n                 (5.1.5)


              Sugkrnonta     thn (5.1.5) me thn exswsh sÔnjesh                 (5.1.3), parathroÔme ìti oi
              suntelestè     enai   a1   = 1=(2j ) kai a 1 = 1=(2j ) kai ak = 0 gia thn upìloiph
              perodo. Oi suntelestè auto epanalambˆnontai me perodo sh me                 N ètsi èqoume:
                             akN +1 =
                                     1 kai akN 1 = 1 ; k = 0; 1; 2; : : :
                                     2j                 2j                           (5.1.6)


              Sto Sq ma 5.1 èqoun sqediaste to s ma x(n) kai oi suntelestè th seirˆ Fourier
              diakritoÔ qrìnou me N = 5 oi opooi epanalambˆnontai. Prosoq ìmw sthn
              exswsh sÔnjesh        upˆrqoun mìno oi suntelestè           mia    periìdou.
         2. An     2= 0 = N=m, dhlad           , rhtì          0 = (2m)=N . Upojètoume ìti
                                                           arijmì , tìte
              ta m kai N den èqoun koinì parˆgonta ètsi to x(n) èqei jemeli¸dh perodo sh
                                                    
              me N . Me th bo jeia th sqèsh tou Euler to s ma grˆfetai
                                                         
                                   x(n) = sin
                                                   2  m
                                                         n
                                                      N
                                          = 21j ejm 2N n 21j e jm 2N n              (5.1.7)


              apì ìpou èqoume: am = 1=(2j ) a m =        1=(2j ) kai ak = 0 gia thn upìloiph
              perodo. Sto Sq ma 5.2 èqoun sqediaste to s ma x(n) kai oi suntelestè Fourier
              ìtan m = 3 kai N = 5. Lìgw periodikìthta (N = 5) enai :::a7 = a2 = a 3 =
              a 8 = ::: = 1=(2j ), en¸ h exswsh sÔnjesh èqei mìno dÔo ìrou .
140                                       Seirˆ - Metasqhmatismì                 Fourier DiakritoÔ Qrìnou                       Kefˆlaio 5




           3. ätan to s ma enai mh periodikì, den anaptÔssetai se seirˆ                                              Fourier   diakritoÔ
             qrìnou.



                       x(n)
                                                 2ð
                                            N                                          x(t)= sin(ù0 t )
                                                 Ù0
                    •••                                                                                         •••
                                                  3        4                              8       9
                            0         1     2                        5      6      7                       10     n

                                                                    (a)
                       ak
                                                      1                     N
                    •••                               2j                                                        •••
                                            6                   1                  4                  9
                            10 9 8 7            5 4 3 2             0 1 2 3            5 6 7 8             10     k
                                                       1
                                                           2j
                                                                    (â)
                                                      
   Sq ma 5.1    (a) To s ma           x(n) = sin 2N n , ìpou N                        = 5 kai (b) oi suntelestè            Fourier.

                       x(n)
                                           N m 2ð                               x(t)= sin(ù0 t )
                                               Ù0
                    •••                                                                                         •••
                                      1           3                         6             8
                            0               2              4         5             7              9        10     n

                                                                          (a)
                       ak
                                                                            N                         1
                    •••
                                                                                              7
                                                                                                      2j        •••
                                      8               3                     2
                            10 9          7 6 5 4          2 1 0 1               3 4 5 6          8 9 10          k
                                                                                                   1
                                                                          (â)                     2j

                                                                    
Sq ma 5.2     (a) To s ma           x(n)    = sin     m 2N n            , ìpou    N    = 5, m = 3 kai (b) oi suntelestè
Fourier.
Parˆdeigma 5.1.2
      Na breje h parˆstash se seirˆ                      Fourier         diakritoÔ qrìnou tou periodikoÔ orjog¸niou
      kÔmato
                                                           
                                             x(n) =             1; jnj  N1
                                                                0; N1 < jnj < N=2                                                  (5.1.8)


      me perodo sh me         N.
      LÔsh     To periodikì orjog¸nio s ma diakritoÔ qrìnou fanetai sto Sq ma 5.3. Gia na
      upologsoume tou              suntelestè   Fourier qrhsimopoioÔme thn exswsh                                   anˆlush

                                            NX1
                                    = N1                                    = N1
                                                                   XN1
                                                         2                   2
                                k                     ()
                                                x n e jk N n             e jk N n                                                  (5.1.9)
                                            n=0                                        n= N1
Enìthta 5.1        Parˆstash Periodik¸n Shmˆtwn - Seirˆ                Fourier DiakritoÔ Qrìnou                         141



                                             x(n)



                         -N                         -N1     0     N1                         N               n


              Sq ma 5.3          To periodikì orjog¸nio kÔma tou Paradegmato                          5.1.2.


      An jèsoume       m = n + N1 èqoume:
                                                            2N1
                                               = N1
                                                            X
                                                                  e jk N (m N1 )
                                                                       2
                                         k
                                                            m=0
                                                              2N1
                                               = N1 ejk 2N N1 e
                                                              X
                                                                                 jk 2N m                            (5.1.10)
                                                                       m=0
      dhlad , èqoume ˆjroisma twn            2N1 +1 pr¸twn ìrwn gewmetrik                      proìdou, gia thn opoa
      gnwrzoume ìti
                                                            (
                                         NX1                    N;              =1
                                                    n   =       1      N
                                                                           ;    6= 1                                 (5.1.11)
                                          n=0                    1
      àtsi, gia   k 6= 0; N; 2N; ::: èqoume
                                                 jk 2 (2N1 +1)
                   k     = N1 ejk 2N N1 1 1e e Njk 2N
                                                            h                                                    i
                                           jk 2N (N1 + 12 ) ejk 2N (N1 + 12 )             e jk N (N1 + 2 )
                                                                                                 2      1
                            1     2
                         = ejk N N1     e
                                                               h                                   i
                                 N                          e jk 22N ejk 22N         e jk 22N
      To ginìmeno twn suntelest¸n             ak ep to pl        jo       twn deigmˆtwn     N     enai
                                         1 
                      k 2N N1 + 2
                       sin
         N k=
                      sin k 22N  ; k = 1; 2; :::N                            1    k 6= 0; N; 2N; :::             (5.1.12)


      en¸ ìtan k = 0; N; 2N; ::: èqoume

                                                    N  k = 2N1 + 1                                                  (5.1.13)

      Sto Sq ma 5.4 èqoume thn akolouja tou ginomènou twn suntelest¸n th seirˆ                                      Fourier
      diakritoÔ qrìnou ep to pl jo              twn deigmˆtwn tou periodikoÔ orjog¸niou kÔmato                          gia
      diˆfore     timè   tou     N.
      H èkfrash twn suntelest¸n th seirˆ                    Fourier diakritoÔ qrìnou, ìpw                  aut   perigrˆfe-
      tai apì thn (5.1.12), ma        epitrèpei na jewr soume to ginìmeno twn suntelest¸n ep to
      pl jo    twn deigmˆtwn w         degmata th          sunˆrthsh

                                                 sin[(2N1 + 1)( =2)℄
                                                       sin( =2)                                                      (5.1.14)
142                                 Seirˆ - Metasqhmatismì    Fourier DiakritoÔ Qrìnou             Kefˆlaio 5




                 Na0
                              Na1
                                            ðåñéâÜëëïõóá
                                                                                     N=10
                    0        2ð              ð                         2ð
                             10

                 Na0     Na1

                                                                                     N=20
                    0 2ð                     ð                         2ð
                        20

                 Na0         Na1

                                                                                     N=40
                    0        2ð              ð                         2ð
                             40


Sq ma 5.4       To ginìmeno twn suntelest¸n th       seirˆ     Fourier diakritoÔ     qrìnou ep to pl jo

twn deigmˆtwn tou periodikoÔ orjog¸niou kÔmato               gia   N1 = 2 kai N   = 10; 20 kai 40.
       dhlad ,

                                    N k=
                                             sin [(2N1 + 1)( =2)℄
                                                    sin( =2)             =k(2=N )
       H sunˆrthsh (5.1.14) enai h peribˆllousa twn suntelest¸n th                  seirˆ   Fourier diakri-
       toÔ qrìnou tou periodikoÔ orjog¸niou kÔmato .

   Sto Sq ma 5.5 eikonzetai to periodikì orjog¸nio kÔma diakritoÔ qrìnou ìpw
upologzetai apì to merikì ˆjroisma
                                                  M
                                                  X
                                       x^(n) =             jk 2 n
                                                         ke N                                       (5.1.15)
                                                 k= M
 Gia M     =4
            parathroÔme ìti to merikì ˆjroisma (5.1.15) dnei to s ma x n , dhlad ,           ()
se antjesh me th suneq perptwsh, den emfanzetai fainìmeno Gibbs. Genikˆ den em-
fanzetai fainìmeno Gibbs sthn seirˆ Fourier diakritoÔ qrìnou. Autì ofeletai sto
                                                   ()
gegonì ìti kˆje periodik akolouja x n enai pl rw orismènh apì èna pepera-
smèno arijmì N tim¸n, dhlad , ton arijmì twn tim¸n th akolouja se ma perodo.
H (5.1.4) aplˆ metasqhmatzei th seirˆ twn N tim¸n se mia isodÔnamh seirˆ N sunte-
lest¸n Fourier kai h (5.1.3) dnei to trìpo anˆkthsh twn tim¸n th akolouja x n                          ()
me th bo jeia ma peperasmènh seirˆ . An N enai perittì arijmì kai jèsoume
M     =(N        1) 2
               = sthn (5.1.15), to ˆjroisma apoteletai akrib¸ apì N ìrou . E-
pomènw apì thn exswsh sÔnjesh èqoume x n             ^( ) = ( )
                                                   x n . Eˆn N enai ˆrtio arijmì ,
Enìthta 5.2          Metasqhmatismì   Fourier DiakritoÔ Qrìnou                            143


                                          x(n)
                                                                                 M=1


               -18             -9                0               9          18   n
                                          x(n)

                                                                                 M=2


               -18             -9                0               9          18   n
                                          x(n)

                                                                                 M=3


               -18             -9                0               9          18   n
                                          x(n)
                                                                                 M=4


               -18             -9                0               9          18   n

Sq ma 5.5      To periodikì orjog¸nio kÔma diakritoÔ qrìnou, ìpw upologzetai apì to merikì

ˆjroisma (5.1.15), ìtan    N   = 9 kai 2N1 + 1 = 5 gia M = 1; 2; 3 kai 4.
                            PM           jk 2 n
tìte to ˆjroisma x n   ^( ) = k= M +1 k e N me M                   = 2
                                                        N= perièqei N ìrou kai
katal goume sthn exswsh sÔnjesh (5.1.3). àtsi x n       xn.   ^( ) = ( )
    Antjeta, èna periodikì s ma suneqoÔ qrìnou katˆ th diˆrkeia mia periìdou lam-
bˆnei ˆpeire suneqe timè  epomènw , apaitetai ˆpeiro arijmì suntelest¸n Fouri-
er
PN
   gia thn anaparˆstas tou. Genikˆ ìle oi peperasmènou m kou seirè xN t                ()=
   k= N k e                                                          ()
            jk!0 t den dnoun akrib¸ ti timè tou x t kai parousiˆzoun fainìmena
sÔgklish .


5.2   METASQHMATISMOS                     FOURIER             DIAKRITOU QRONOU

                                                ()
Lambˆnoume s ma diakritoÔ qrìnou x n peperasmènh diˆrkeia  epomènw , upˆrqei
akèraio N1 tètoio ¸ste x n          ( )=0                jj
                                 gia kˆje n > N1 . àstw N > N1 . Sqhmatzoume2
                                      ()
thn periodik epèktash tou x n , blèpe Sq ma 5.6.
                                                 1
                                                 X
                                      x~(n) =            x(n rN )                      (5.2.1)
                                                r=   1
To s ma       x~(n) èqei perodo N , sumpptei me to x(n) sto diˆsthma N=2  n  N=2
144                             Seirˆ - Metasqhmatismì           Fourier DiakritoÔ Qrìnou             Kefˆlaio 5




                                               x(n)



                                      -N1            0             N1                                         n
                                                 x(n)




                  N                   -N1             0            N1                    N                 n


      Sq ma 5.6   (a) To s ma   x(n) kai (b) to s         ma    x~(n), h periodik      epèktash tou   x(n).

kai èqei anˆptugma se seirˆ Fourier diakritoÔ qrìnou
                                                   X                   2
                                      x~(n) =                 ak ejk N n                                (5.2.2)
                                                  k=hN i

Oi suntelestè th seirˆ Fourier diakritoÔ qrìnou dnontai apì th sqèsh:


                                      = N1
                                                   X
                                ak                            x~(n)e    jk 2N n
                                                 n=hN i

                                      = N1
                                                  XN1
                                                              x(n)e         jk 2N n
                                                 n= N1
                                                   1
                                      = N1
                                                   X
                                                              x(n)e     jk 2N n                        (5.2.3)
                                                 n=       1
Orzoume th migadik sunˆrthsh             X(     ) th     pragmatik               metablht

                                                   1
                                                   X
                                     X(     )=                x(n)e     j n                             (5.2.4)
                                                 n=       1
h opoa enai periodik me perodo             2, opìte parathroÔme ìti oi suntelestè ak
mporoÔn na ekfrastoÔn w
                                                 1
                                            ak = X (k 0 )                           (5.2.5)
                                                   N
dhlad , oi suntelestè     ak lambˆnontai apì deigmatolhya th                          sunˆrthsh      X(      ) me
perodo deigmatolhya       0 = 2=N .
Enìthta 5.2             Metasqhmatismì         Fourier DiakritoÔ Qrìnou                                         145



    àtsi, to s ma x         ~(n), dhlad            , h periodik epèktash tou      x(n), dnetai apì th sqèsh
                                        x~(n) =
                                                       X       1 X (k )ejk   0n
                                                               N      0                                      (5.2.6)
                                                      k=hN i

kai, epeid          0 = 2=N           1=N =          0 =2, èqoume
                                       x~(n) =
                                                     1 X X (k 0 )ejk         0n   0
                                                    2 k=hN i                                                (5.2.7)


ParathroÔme ìti, ìtan              N    ! 1, tìte x~(n) = x(n), dhlad             ,

                     x(n) =      lim x~(n) = lim
                                                   1 X X (k )ejk                           0n
                                N !1         N !1 2
                                                             0                                   0
                                                     k=hN i

                                           = 21 X ( )ej n d
                                                Z
                                                                                                             (5.2.8)
                                                 2
ìpou qrhsimopoi jhke to Sq ma 5.7, gia na èqoume thn teleutaa isìthta. àtsi èqoume
ti exis¸sei sÔnjesh kai anˆlush gia to metasqhmatismì Fourier diakritoÔ qrìnou
(discrete time Fourier transform (DTFT)).

                      x(n) =
                              1 Z

                             2 2 X ( )e
                                          j                nd    ;     Exswsh sÔnjesh                       (5.2.9)

                                       1
                                       X
                       X(      )=              x(n)e     j n           Exswsh anˆlush                    (5.2.10)
                                     n=    1

                   X(Ù)e jÙn
                                  X(kÙ0)e jkÙ n0




                            kÙ0
 -2ð          -ð          0            ð            2ð Ù             Sq ma 5.7        H grafik       ermhnea   tou
                                                                                      P
                                                                                       k=hN i X (k 0 )e
                                  Ù0                                 ajrosmato
                                                                                                       jk 0 n 0 .


    H exis¸sh (5.2.9) ekfrˆzei thn anˆlush tou s mato diakritoÔ qrìnou x n se ek-                       ()
jetikˆ s mata ej n , ta opoa ektenontai se èna suneqè fˆsma kuklik¸n suqnot twn
                                           [0 2 )
periorismèno sto diˆsthma ;  , gegonì pou ofeletai sthn periodikìthta th
sunˆrthsh X       .   ( )
    H sunˆrthsh X              ( )
                         h opoa orzetai apì thn (5.2.10) enai o metasqhmatismì
Fourier diakritoÔ qrìnou suqnˆ anafèretai kai w fˆsma tou x n , giat perièqei thn       ()
146                             Seirˆ - Metasqhmatismì      Fourier DiakritoÔ Qrìnou         Kefˆlaio 5




                         ()
plhrofora pw to x n suntjetai apì ekjetikˆ s mata diaforetik¸n suqnot twn.
To fasmatikì perieqìmeno sto apeirostì diˆsthma suqnot twn   ;       d enai    [       + ℄
  ( )
X kai h suneisforˆ twn suqnot twn P;
                                        1
                                                  [
                                             d èqei plˆto X + ℄   d =.             ( )( 2 )
   Shmei¸netai ìti to ˆjroisma X          ( )=
                                        n= 1  x n e           ()
                                                    j n upˆrqei ìtan
                           1
                           X                          1
                                                      X
                                    jx(n)j < 1                  jx(n)j2 < 1                    (5.2.11)
                          n=   1                      n=    1
dhlad , h akolouja èqei peperasmènh enèrgeia.
   O metasqhmatismì Fourier diakritoÔ qrìnou èqei dÔo diaforè apì to metasqh-
matismì Fourier suneqoÔ qrìnou, oi opoe ofelontai sto gegonì ìti ta ekjetikˆ
s mata diakritoÔ qrìnou enai periodikˆ me perodo  .            2
  1.    OX  ( )                                  ()
                enai periodikì en¸ o X ! ìqi. àtsi to olokl rwma sthn exswsh
        sÔnjesh (5.2.9) èqei peperasmèno diˆsthma olokl rwsh .
  2.    Sthn perptwsh tou suneqoÔ qrìnou, oi qamhlè suqnìthte perigrˆfontai apì
        diast mata mikroÔ eÔrou kentrarismèna sthn arq twn suntetagmènwn, en¸ oi
        uyhlè suqnìthte enai topojethmène makriˆ apì thn arq twn axìnwn pro ta
        aristerˆ pro ta dexiˆ tou ˆxona suqnot twn. Sthn perptwsh tou diakritoÔ
        qrìnou h periodikìthta tou metasqhmatismoÔ Fourier epibˆllei mia diaforetik
        eikìna. Oi qamhlè suqnìthte antistoiqoÔn se diast mata gÔrw apì th jèsh
          =0  , , lìgw th periodikìthta , gÔrw apì ti jèsei                    = 2
                                                                      k. Oi uyhlè
        suqnìthte topojetoÔntai kontˆ se perioqè ìpou          ,       =  k      = (2 + 1)
                                                                                  ,
        blèpe Sq ma 5.8.


Parˆdeigma 5.2.1
        Na upologiste o metasqhmatismì         Fourier    diakritoÔ qrìnou tou aitiatoÔ ekjetikoÔ
        s mato    diakritoÔ qrìnou

                                    x(n) = an u(n);        jaj < 1 kai a 2 C                    (5.2.12)


        LÔsh     Me th bo jeia th    (5.2.10) o metasqhmatismì        Fourier diakritoÔ   qrìnou enai

                                          1
                                          X                 X1       n
                               X(   )=        an u(n)ej n =     ae j                            (5.2.13)
                                         n= 1               n=0
        To ˆjroisma apotele gewmetrik        seirˆ h opoa sugklnei, epeid

                                       ae j     = jaj e     j   = jaj < 1
        O metasqhmatismì    Fourier diakritoÔ    qrìnou tou aitiatoÔ ekjetikoÔ s mato          enai


                                           X(    ) = 1 ae1        j                             (5.2.14)
Enìthta 5.2           Metasqhmatismì                      Fourier DiakritoÔ Qrìnou                                                      147


                 x1(n)                                                                    X1(Ù)



                          0                                    n      -3ð     -2ð     -ð        0              ð              2ð   3ð Ù
                         (a)                                                                   (â)

                 x2(n)
                                                                                          X2(Ù)



                             0                                 n      -3ð     -2ð     -ð           0           ð              2ð   3ð Ù

                                                       (ã)                                     (ä)


Sq ma 5.8       (a) S ma diakritoÔ qrìnou                          x1 (n) pou èqei (b) MF diakritoÔ qrìnou X1 ( ) me
qamhlè suqnìthte . (g) S ma diakritoÔ qrìnou                             x2 (n) pou èqei (d) MF diakritoÔ qrìnou X2 ( )
me uyhlè      suqnìthte .



      Sto Sq ma 5.9 èqoun sqediaste to mètro kai h fˆsh tou metasqhmatismoÔ                                                        Fourier
      diakritoÔ qrìnou tou aitiatoÔ ekjetikoÔ s mato                                  diakritoÔ qrìnou gia pragmatikè
      timè     tou   a, me 0 < a < 1 kai                       1 < a < 0.
                     X(Ù)                             0<a <1                                 X(ù)                         -1< a<0
                             1                                                                     1
                         1       a                                                             1       a


                                 1                                                                 1
                             1       a                                                         1       a
    -2ð        -ð                    0                ð        2ð Ù         -2ð       -ð                 0                ð             Ù

                arg X(Ù)                                                               arg X(Ù)
                                         tan1 a                                            tan1 a
                                             1    a
                                                  2
                                                                                               1    a2
   -2ð                                                                                                                             2ð
               -ð                0                    ð        2ð Ù         -2ð      -ð                    0          ð                 Ù
                 tan1 a                                                                                      tan1 a
                       1     a   2                                                                               1    a
                                                                                                                      2




Sq ma 5.9      To mètro kai h fˆsh tou metasqhmatismoÔ                              Fourier diakritoÔ qrìnou tou aitiatoÔ
ekjetikoÔ s mato           x(n) =            an u     (n); jaj < 1; a 2 R.
148                                         Seirˆ - Metasqhmatismì        Fourier DiakritoÔ Qrìnou          Kefˆlaio 5




Parˆdeigma 5.2.2
      Na upologiste o metasqhmatismì                         Fourier diakritoÔ   qrìnou tou s mato

                                                 x(n) = ajnj ;       jaj < 1 kai a 2 R                        (5.2.15)


      LÔsh     O metasqhmatismì                   Fourier diakritoÔ       qrìnou enai

                                        1
                                        X                                X1             X1
                    X(    )=                     ajnj e j n     =           a n e j n + an e j n
                                    n=      1                         n= 1              n=0
                                                                      X1           X1
                                                                =         an ej n + an e j n
                                                                      n=1          n=0
                                                                      X1               X1
                                                                =         an ej n 1 + an e j n
                                                                      n=0              n=0
                                                                      X1        n  X1        n
                                                                =          aej +         ae j    1
                                                                      n=0           n=0
                                                                = 1 1aej + 1 ae1            j        1
                                                                             2
                                                                = 1 + a21 2aa os( )                           (5.2.16)


      Sto Sq ma 5.10 eikonzetai to s ma kai o metasqhmatismì                             Fourier    diakritoÔ qrìnou
      tou. ParathroÔme ìti h                 X(     ) enai pragmatik         sunˆrthsh tou     , afoÔ   a enai prag-
      matikì arijmì . Genikˆ ta ˆrtia s mata èqoun pragmatikoÔ metasqhmatismoÔ                                Fourier
      diakritoÔ qrìnou .


                          x ( n)




        -20
        -     -15
              -     -10
                    -      -5
                           -            0    5      10   15     20   n
                          X(Ù)
                                1   a
                                1   a


                                                                                  Sq ma 5.10    To s ma    x(n) = ajnj
        -2ð         -ð                  0           ð          2ð Ù               kai to fˆsma tou.



Parˆdeigma 5.2.3
      Na upologiste o metasqhmatismì                         Fourier diakritoÔ   qrìnou tou orjog¸niou palmoÔ
                                                                
                                                     x(n) =          1; jnj  N1
                                                                     0; jnj > N1                              (5.2.17)
Enìthta 5.2          Metasqhmatismì     Fourier DiakritoÔ Qrìnou                                         149




        LÔsh     O metasqhmatismì        Fourier diakritoÔ qrìnou tou orjog¸niou palmoÔ diakritoÔ
        qrìnou enai

                           N1                           2N1                                2N1
                           X                 m=n+N1     X
                                                                  j (m N1 )
                                                                                           X
                X(   )=           e    j n       =            e                =   ej N1         e j m
                          n= N1                         m=0                                m=0
        An efarmìsoume thn (5.1.11) gia          N   1 = 2N1       N   = 2N1 + 1 kai gia thn perptwsh
        pou     6= 0, o metasqhmatismì       Fourier diakritoÔ    qrìnou apoktˆ th morf



                        X(       ) =    ej N1
                                              1 e j (2N1 +1)
                                                 1 ej
                                              e (N1 + 2 ) ej (N1 + 2 )         e j (N1 + 2 )
                                               j        1          1                     1
                                  =     ej N1
                                                e j 12       ej 12           e j 21
                                           
                                  =     sin N1 + 12
                                            sin 12                                                    (5.2.18)



        Sto Sq ma 5.11 èqei sqediaste o orjog¸nio         palmì       kai to fˆsma tou.


                                                                       X(Ù)
                        x(n)                                        2Í+1
                                                                      1

                                                                                 2ð
                                                                                2Í+1
                                                                                  1


                     -N1     0    N1         n           2ð        ð       0       ð       2ð     Ù

              Sq ma 5.11     O orjog¸nio     palmì    diakritoÔ qrìnou kai to fˆsma tou.


    Parathr sei

   1.   Gia th tim         =0
                            o metasqhmatismì Fourier diakritoÔ qrìnou enai X                         (0) =
        2 +1
         N1 .
   2.   Oi timè pou mhdenzoun ton X     ( )
                                         enai oi suqnìthte gia ti opoe         N1              sin[ ( +
        1 2)℄ = 0
         =        , dhlad ,   N1 = ( + 1 2) = ) =
                                                     2N21+1 ;  Z .                2
   3.   äso megalÔtero enai to eÔro N1   2 +1  tou palmoÔ, tìso megalÔtero enai o
                                                 ( )
        arijmì twn suqnot twn pou mhdenzoun ton X       , tìso mikrìtero to eÔro tou
        kentrikoÔ loboÔ kai tìso megalÔterh h tim tou sto mhdèn.
   4.   Gia N1   !1   o metasqhmatismì Fourier diakritoÔ qrìnou tenei pro th sunˆrth-
        sh dèlta.
   5.   H anakataskeu tou s mato apì suqnìthte                     j j
                                                             W dnei to s ma:

                                        x^(n) =
                                                 1 Z W

                                                2 W X ( )e
                                                           j            nd
150                              Seirˆ - Metasqhmatismì       Fourier DiakritoÔ Qrìnou                  Kefˆlaio 5




  6.   gia W =  , dhlad , ìtan qrhsimopoioÔntai ìle oi suqnìthte ,                                 enai   x^(n)   =
       x(n). ParathroÔme ìti den èqoume emfˆnish fainomènwn Gibbs.

Parˆdeigma 5.2.4
       Na upologiste to s ma diakritoÔ qrìnou            x(n), tou opoou o metasqhmatismì                  Fourier
       diakritoÔ qrìnou enai orjog¸nio periodikì kÔma (Sq ma 5.12a), dhlad ,
                                                
                                      X(     ) = 01;; W
                                                      j jW
                                                         <j j                                             (5.2.19)




                                              X(Ù)
                                                 1

                          2ð           ð     W     0      W      ð             2ð           Ù
                                              x(n)
                                                 W
                                                 ð




                                      ð              0           ð                           n
                                      W                          W


Sq ma 5.12      O metasqhmatismì      Fourier diakritoÔ qrìnou tou s                mato sto Parˆdeigma 5.2.4

kai h apokatˆstas      tou sto qrìno.


       LÔsh     To s ma   x(n)   lambˆnetai apì ton         X(       ) mèsw tou antistrìfou metasqhma-
       tismoÔ   Fourier diakritoÔ   qrìnou,


                                    x(n) =
                                              1 Z W ej      nd       = sin(n
                                                                            W n)
                                             2 W                                                           (5.2.20)


       ParathroÔme anˆlogh sumperiforˆ me aut                 tou Paradegmato             3.3.4.

Parˆdeigma 5.2.5

         1. Na upologiste o metasqhmatismì              Fourier diakritoÔ qrìnou tou s             mato    x(n) =
              Æ(n) kai tou olisjhmènou monadiaou degmato .
         2.   Na gnei h anakataskeu tou s mato x(n) apì to fˆsma tou.

       LÔsh

         1. Epeid    x(n) = 0 gia kˆje n 6= 0, brskoume X (               ) = x(0)ej0 = 1, dhlad               , to
              fˆsma tou monadiaou degmato          ektenetai se ìle         ti    suqnìthte . Genikìtera to
              fˆsma tou olisjhmènou monadiaou degmato                enai


                                      x(n) = Æ(n k) F! X (               )=e          jk                    (5.2.21)
Enìthta 5.3          Idiìthte       tou MetasqhmatismoÔ      Fourier DiakritoÔ Qrìnou                         151



              To mètro tou fˆsmato             enai
                                                              jX ( )j = 1                                 (5.2.22)

              H fˆsh tou fˆsmato              enai grammik        se ma perodo.

                                                            arg X ( ) =     k                             (5.2.23)

              Sto Sq ma 5.13 èqoun sqediaste to mètro kai h fˆsh tou                        MF   diakritoÔ qrìnou
              tou olisjhmènou katˆ            k degmata monadiaou degmato           .


                     X(Ù)
                        1


      -2ð       -ð              0        ð           2ð Ù

                arg X(Ù)

                                                                   Sq ma 5.13   To mètro kai h fˆsh tou      MF
      -2ð      -ð           0            ð           2ð Ù          diakritoÔ qrìnou tou monadiaou olsjh-

                                                                   mènou degmato .


            2. H anakataskeu           tou   x(n) apì to fˆsma tou enai
                                                             = 21
                                                                   Z W
                                                    x^(n)               ej      nd
                                                                     W
                                                             = sin( W n)
                                                                                                          (5.2.24)
                                                                      n
              Sto Sq ma 5.14 upˆrqei to              x^(n) gia diaforetikè      timè   tou   W . ParathroÔme ìti
              x^(n) = Æ(n) ìtan W            = .
5.3     IDIOTHTES TOU METASQHMATISMOU                                           FOURIER DIAKRITOU
       QRONOU

O metasqhmatismì Fourier diakritoÔ qrìnou parousiˆzei dÔo idiìthte diaforetikè
apì to metasqhmatismì Fourier suneqoÔ qrìnou, ti opoe parajètoume ston Pnaka
5.1.
     H pr¸th diaforˆ upˆrqei sthn idiìthta diafìrish sto pedo tou qrìnou, ìpou èna
s ma diakritoÔ qrìnou den enai diaforsimo sunart sei tou qrìnou, epeid lambˆnei
diakritè timè .
     H deÔterh diaforˆ brsketai sthn idiìthta th allag klmaka . Sthn perptwsh
                                                        ( )
tou suneqoÔ qrìnou ìpou to s ma x at èqei pˆntote ènnoia kai antiproswpeÔei
                        1                                      1
sumpesh eˆn a > kai diastol eˆn a < . To antstoiqo s ma x dn den orzetai                   ( )
eˆn o d den enai akèraio . Epsh , ìpw ja doÔme, upˆrqei diaforˆ kai sthn idiìthta
th olokl rwsh .
152                                 Seirˆ - Metasqhmatismì   Fourier DiakritoÔ Qrìnou         Kefˆlaio 5




                           x(n)                                             x(n)
                       1                                                3
                       4          W= ð4                                 8           W= 38ð



                                                                            x(n)
                                                                            3
                           x(n)                                             4       W= 3ð
                           1                                                           4
                           2        W= ð2




                                                                            x(n)
                           x(n)                                             1
                           7      W= 78ð
                           8                                                         W=ð




Sq ma 5.14       H prosèggish tou monadiaou degmato             apì thn   x^(n)   = sin(W n)=n gia
diˆfore   timè   th   paramètrou     W.
5.3.1   Apodekˆtish sto qrìno


Ma kathgora apì sust mata apaitoÔn antiproswpeutik apoj keush kai metˆdosh
shmˆtwn me diaforetikoÔ rujmoÔ deigmatolhya .
                                                       ()
    àstw ìti to s ma diakritoÔ qrìnou x n prokÔptei apì èna analogikì s ma s t                        ()
me rujmì deigmatolhya Fs            =1                      ( )= ( )
                                =Ts , dhlad , x n s nTs . An o rujmì elattwje
   ~ =1 ~
se Fs    =Ts , tìte to yhfiakì s ma enai
                                                !
                                T~
                  s(nT~s ) = s n s Ts               = s(nMTs) = x(nM ) = xM (n)                   (5.3.1)
                                Ts

ìpou o akèraio M orzetai w o lìgo twn rujm¸n deigmatolhya M           Ts =Ts               =~       =
   ~        1                                               ()
Fs =Fs > . ParathroÔme ìti to s ma xM n lambˆnetai me deigmatolhya tou
 ()
x n gia kˆje M degmata. H elˆttwsh tou rujmoÔ deigmatolhya antistoiqe se
apodekˆtish sthn anaparˆstash diakritoÔ qrìnou. Sto Sq ma 5.15 fanetai o trìpo
                                                                 ()
me ton opoo prokÔptei h apodekatismènh morf x2 n tou s mato x n . Gia na ka-           ()
jorsoume ta apotelèsmata th apodekˆtish sto pedo suqnot twn orzoume to s ma
 ()                                        ()
z n to opoo sumpptei me to x n gia kˆje tim tou n pou enai pollaplˆsio tou M
Enìthta 5.3      Idiìthte   tou MetasqhmatismoÔ             Fourier DiakritoÔ Qrìnou                            153




                                                                                x(n)


                       -8       -6   -4      -2       0     2       4     6     8     n

                                                                                x2(n)


                       -8       -6   -4      -2       0     2       4     6     8     n

                                                                                z(n)


                       -8       -6   -4      -2       0     2       4     6     8     n

Sq ma 5.15    Apodekˆtish sto qrìno (a) to s ma                         x(n), (b) h apodekatismènh morf x2 (n)
kai (g) to bohjhtikì s ma   z (n).

kai enai mhdèn opoud pote alloÔ, dhlad ,
                                          
                             z (n) =              x(n);         an n     = 0modM
                                                  0;            alli¸
                                                                                                            (5.3.2)


O metasqhmatismì Fourier diakritoÔ qrìnou                           XM (       ) tou s    mato   xM (n) enai
                                                            1
                                                            X
                        XM (         )        =                         xM (n)e     j n
                                                           n=    1
                                                            1
                                                            X
                                              =                         x(Mn)e      j n
                                                           n=    1
                                          m=Mn                  X
                                              =                               x(m)e
                                                                                         m
                                                                                       j M
                                                           m=0modM
Enai ìmw
                                                         1
                                                           X
                            Z
                                     M
                                                  =                 z (m)e      jMm
                                                          m=    1
                                                            1
                                                            X
                                                  =                      x(m)e      jMm
                                                          m=0modM
154                                 Seirˆ - Metasqhmatismì          Fourier DiakritoÔ Qrìnou                Kefˆlaio 5




ètsi                                                                   
                                          XM (        )=Z                                                     (5.3.3)
                                                                    M
Ja ekfrˆsoume to fˆsma tou apodekatismènou s mato se sqèsh me to arqikì. Enai
gnwstì ìti
                           1   X1
                               M
                                         2
                                                      
                                                           1;    an n    = 0modM
                                      ej M kn =            0;                                                 (5.3.4)
                       M k=0                                     alli¸

àtsi to s ma   z (n) mpore na grafe w
                                                  1             X1
                                                                M
                                                                         2
                                     z (n) = x(n)                      ej M kn
                                                          M k=0
kai o metasqhmatismì Fourier diakritoÔ qrìnou enai:
                      1
                      X                                     1
                                                            X                 1    X1
                                                                                   M
                                                                                           2
          Z(    )=             z (n)e     j n         =               x(n)              ej M kne    j n
                      n=   1                               n=    1            M k=0
                                                                 X1 X
                                                                    1
                                                      = M1
                                                                 M
                                                                                   x(n)e   j   (   M  )
                                                                                                   2 k n

                                                                 k=0 n= 1
                                                                 X1                 2 k
                                                      = M1
                                                                 M
                                                                        X                                     (5.3.5)
                                                                 k=0
                                                                                     M
Sunduˆzonta thn teleutaa exswsh me thn                        XM (    ) = Z M  èqoume:
                                        1 X1 
                                          M
                                                                           2 k
                               XM ( ) =     X                                                                 (5.3.6)
                                        M      M      k=0
                                                                              M
To apodekatismèno fˆsma lambˆnetai me dieÔrunsh tou fˆsmato X       katˆ M ,                         ( )
                  2            (2
metatìpish katˆ =M , =M , ..., =M M   )2       (2             )(
                                                  kai upèrjesh. H diadikasa  1)
apeikonzetai sto Sq ma 5.16 gia M .             =2
5.3.2   Parembol

H mèjodo th parembol pragmatopoie aÔxhsh tou rujmoÔ deigmatolhya . àstw
           ()         ~( )
ta s mata x n kai x n ta opoa prokÔptoun apì to analogikì s ma s t me diafore-                     ()
tikoÔ rujmoÔ deigmatolhya , dhlad ,

                                              x(n)        = s(nTs)
                                              x~(n)       = s(nT~s)                                           (5.3.7)
Enìthta 5.3      Idiìthte   tou MetasqhmatismoÔ          Fourier DiakritoÔ Qrìnou                               155


                                                  X(Ù)




                 -3ð        -2ð           -ð            0          ð                2ð        3ð Ù
                                                       (á)

                                                 X2(Ù)
                                        2(
                                     ×( Ù                        × ( Ù-2ð
                                                                      2 (
                                 1                           1
                                 2                           2



                 -3ð        -2ð           -ð            0          ð                2ð        3ð Ù
                                                       (â)

Sq ma 5.16     (a) To arqikì fˆsma           X(       ) kai (b) to fˆsma tou apodekatismènou s                mato

XM (   ) gia M = 2.
ìpou Fs   =1           ~ =1 ~                           ~
           =Ts kai Fs =Ts me Fs < Fs Ts > Ts kai èqoun lìgo Fs =Fs L > .~                            ~   =        1
H aÔxhsh tou rujmoÔ deigmatolhya katˆ èna parˆgonta L apaite upologismì tou
 ()
x n sti timè n=L h opoa enai efikt mìno eˆn to n enai pollaplˆsio tou L. Oi
upìloipe timè ja prèpei na paremblhjoÔn. àtsi orzoume to s ma
                                             
                                                 x    n               = 0modL
                            xL (n) =                  L ; an n
                                                 0;          alli¸
                                                                                                             (5.3.8)


                                                      ()
Sto Sq ma 5.17 parˆgoume to s ma x2 n parˆgetai apì to s ma x n parembˆllon-                    ()
                                                                        ()
ta èna mhdenikì anˆmesa se diadoqikè timè tou x n . Me anˆlogo trìpo parˆgetai
                ()
kai to s ma x3 n .
    To fˆsma tou s mato xL n enai     ()
                             1
                             X                                       1
                                                                     X
               XL (    )=                xL (n)e      j n    =                  xL (kL)e      j kL
                            n=       1                             k=  1
                                                                     1
                                                                     X                   
                                                                                         kL
                                                             =                  x
                                                                                          L
                                                                                            e   j kL
                                                                   k=       1
                                                                     1
                                                                     X
                                                             =                  x(k)e j (L )k
                                                                   k=       1
                                                             =     X (L         )                            (5.3.9)

ParathroÔme ìti to fˆsma XL              ( ) lambˆnetai apì to arqikì fˆsma X ( ) me allag
klmaka suqnot twn katˆ L.
156                                  Seirˆ - Metasqhmatismì     Fourier DiakritoÔ Qrìnou                         Kefˆlaio 5




                                                                                     X(Ù)
                          x(n)                                                            5

                                                                                                  2ð
                                                                                                  5

                             0                          n          2ð            ð            0        ð        2ð   Ù
                                                            (á)
                                                                                 X2(Ù)=×(2Ù)
                      x2(n)                                                               5



                             0                          n                                                            Ù
                                                                   2ð            ð            0        ð        2ð
                                                            (â)
                                                                                 X3(Ù)=×(3Ù)
                      x3(n)                                                               5



                             0                          n                                                            Ù
                                                                   2ð       4ð       2ð       0   2ð       4ð   2ð
                                                            (ã)              3        3            3        3


Sq ma 5.17    (a) To s ma x(n) kai to fˆsma tou. To s ma xL (n) pou parˆgetai apì to

x(n) parambˆllonta L 1 mhdenikˆ anˆmesa se diadoqikè timè tou x(n) kai to fˆsma tou
XL( ) gia (b) L = 2 kai (g) L = 3.

5.3.3    €jroisma


An x t( ) F! X (!), h idiìthta th            olokl rwsh tou metasqhmatismoÔ Fourier suneqoÔ
qrìnou enai
                           Z t
                                     x( ) d F!
                                                    1 X (!) + X (0)Æ(!)
                                 1                 j!
                                     ()
Me th bo jeia tou s mato x n orzoume to s ma y n                   ( ) = Pn
                                                      m= 1 x m kai parath-                             ( )
roÔme ìti y n()  yn   (          1) = ( )
                           x n . Efarmìzoume metasqhmatismì Fourier diakritoÔ
qrìnou kai sta dÔo mèlh th teleutaa exswsh kai, lìgw th idiìthta th gram-
mikìthta kai th qronik metatìpish , èqoume:

              F [y(n) y(n 1)℄ = F [x(n)℄ Y ( ) e j Y ( ) = X ( )
An      6= 0 èqoume
                                        Y(    ) = 1 1e      j     X(    )
Enìthta 5.3            Idiìthte   tou MetasqhmatismoÔ          Fourier DiakritoÔ Qrìnou                                 157



ApodeiknÔetaiy ìti h pl rh sqèsh h opoa ekfrˆzei thn idiìthta th ˆjroish enai:
              n
              X                            1                                       1
                                                                                   X
                       x(m) F!                        X(      ) + X (0)                 Æ(        2k)
             m=    1                  1     e    j
                                                                               k=    1
                                                                                                                  (5.3.10)



5.3.4      Idiìthta th         Diamìrfwsh

                                                 ()                ()
Me th bo jeia twn shmˆtwn x1 n kai x2 n , pou èqoun metasqhmatismoÔ Fourier
diakritoÔ qrìnou X1    kai X2  ( )              ( )
                                 antstoiqa, sqhmatzoume to s ma y n  x1 n                                  ( ) = ( )
  ()
x2 n . O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato y n ja enai:                             ()
                       1
                       X                                 1
                                                         X
        Y(    )=             y(n)e    j n        =                 x1 (n)  x2 (n)e       j n
                    n=   1                             n=     1
                                                         1
                                                         X                1 Z           
                                                 =              x2 (n) 
                                                                         2 2 X1()e d e
                                                                                     jn                          j n
                                                       n=     1                "                              #
                                             1
                              = 21 X1 ()
                                   Z        X
                                                x2 (n)  ej ( )n d
                                     2    n= 1
                                 1 Z
                              = 2 X1 ()X2 ( ) d                (5.3.11)
                                     2
H teleutaa exswsh apotele thn             twn X1 ( ) kai X2 ( ). H di-
                                                      periodik          sunèlixh
amìrfwsh s mato diakritoÔ qrìnou me th bo jeia th idiìthta aut                                                epexhgetai
sto parˆdeigma pou akolouje.
Parˆdeigma 5.3.1
         àstw     x1 (n) h periodik       akolouja, me perodo 2

                                                      x1 (n) = ejn = (            1)n                             (5.3.12)

         kai to s ma      x2 (n);    tou opoou o metasqhmatismì                     Fourier    diakritoÔ qrìnou    X2 (    )
         fanetai sto Sq ma 5.18b. Na prosdioriste grafikˆ o metasqhmatismì                                   Fourier     di-
         akritoÔ qrìnou tou s mato               y(n) = x1 (n)  x2 (n).
         LÔsh      O   MF diakritoÔ       qrìnou th        periodik          akolouja        x1 (n) enai
                                                               1
                                                               X
                                          X1 (       ) = 2             Æ(         (2r + 1))                      (5.3.13)
                                                              r=    1
         H grafik        parˆstash tou          X1 ( ) enai sto Sq ma 5.18a.                   Sto Sq ma 5.18g èqoume
         sqediˆsei ta    X1 () kai X2 (            ). ParathroÔme ìti
                          X1 ()  X2 (          ) = 2X2 (                 )Æ( ) gia 0 <  < 2
  y   Anaforˆ 5.4 kai 5.5 th   proteinìmenh     bibliografa
158                              Seirˆ - Metasqhmatismì                  Fourier DiakritoÔ Qrìnou            Kefˆlaio 5




                                          X1(Ù)
                                               2ð

                                                                                                       (á)
               -3ð      -2ð        -ð               0                ð         2ð       3ð         Ù

                                          X2(Ù)
                                                1
                                                                                                       (â)
               -3ð       -2ð       -ð                   0            ð          2ð      3ð         Ù
                                          X1(è)
                                               2ð


                -3ð     -2ð        -ð               0                ð         2ð       3ð         è

                                        X2(Ù-è)                                                        (ã)
                                                1
               -3ð                 -ð                                ð                  3ð
                        -2ð                             0        Ù             2ð                  è
                                                               ðåñéï÷Þ
                                                             ïëïêëÞñùóçò
                                          Y(Ù)
                                                1
                                                                                                       (ä)
                -3ð     -2ð        -ð                   0            ð        2ð         3ð        Ù


Sq ma 5.18      H idiìthta th      diamìrfwsh                diakritoÔ qrìnou.         (a) O      DTFT   tou s mato

x1 (n) = (   1)n, (b) o DTFT tou s      mato    x2 (n), (g) oi posìthte               oi opoe qreiˆzontai gia ton

prosdiorismì tou periodikoÔ sugkerasmoÔ kai (d) o                    DTFT tou s      mato     y(n) = x1 (n)x2 (n) =
( 1)nx2(n)

      ètsi èqoume
                                        Z 2
                           Y(     )=           X2 (              )Æ( ) = X2 (              )               (5.3.14)
                                          0
      O   Y(   ) èqei sqediaste sto Sq       ma 5.18d.

    Ja mporoÔsame na broÔme thn teleutaa sqèsh me thn bo jeia th idiìthta th
olsjhsh fˆsh tou metasqhmatismoÔ Fourier diakritoÔ qrìnou

                          ejn x(n) = (             1)n x(n) F! X ( )
ParathroÔme ìti o pollaplasiasmì               enì s mato me    ( 1)n                èqei w apotèlesma thn al-
lag   tou pros mou stou        perittoÔ       ìrou          th   akolouja . Sto de q¸ro twn suqnot twn
èqei w    apotèlesma thn olsjhsh tou periodikoÔ fˆsmato                              X2 (    )   katˆ mis    perodo
Enìthta 5.3       Idiìthte   tou MetasqhmatismoÔ     Fourier DiakritoÔ Qrìnou                                 159




         PINAKAS 5.4      Idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou
          Idiìthta                    Pedo qrìnou                      Pedo suqnìthta

     Suzuga sto qrìno                      x? (n)                                X?(        )
   Suzuga sth suqnìthta                   x? ( n)                                 X?()
          Anˆklash                          x( n)                                X( )
         Grammikìthta                   ax1 (n)+bx2 (n)                     aX1 ( )+bX2 ( )
  €rtio mèro s mato                xe (n)= 12 [x(n)+x? ( n)℄                <e[X ( )℄=R( )
Pragmatikì mèro fˆsmato

 Perittì mèro s mato               xo (n)= 12 [x(n) x? ( n)℄               j =m[X (     )℄=jI ( )
Fantastikì mèro fˆsmato

    Qronik    metatìpish                  x(n n0 )                              e j n0 X (        )
   Olsjhsh suqnìthta                     ej 0 n x(n)                            X(          0)
                                                                             X ( )=X ? ( )
                                                                        <e[X ( )℄=<e[X ( )℄
     Pragmatikì s ma                     x(n)=x? (n)                  =m[X ( )℄= =m[X ( )℄
                                                                           jX ( )j=jX ( )j
                                                                       arg X ( )= arg X ( )
                                       Pn                                             P1
                                        m= 1 x(m)               1+e j X ( )+X (0) k= 1 Æ( 2k)
          €jroisma                                                 1

                                          x(n)y(n)                      1 R
         Diamìrfwsh                                                     2 2 X ( )Y () d
           Sunèlixh                       x(n)?y(n)                           X ( )Y ( )
         Apodekˆtish                   xM (n)=x(Mn)                 XM ( )= M1 M
                                                                                P 1
                                                                                  k=0 X M M
                                                                                             2k  (       )
      Diafìrish sto                     ( j )k nk x(n)                          dk X ( )
                                                                                      d k
     pedo suqnot twn

           Diaforˆ                      x(n) x(n      1)                    (1    e j X( )            )
         Parembol                      xM (n)=x Mn( )                             X (M       )
     Je¸rhma   Parseval              Ex =P1
                                          n 1 jx(n)j
                                                     2                   Ex = 21 R2 jX (        )j2 d




(dhlad    katˆ p).
                Lìgw th periodikìthta thn opoa parousiˆzoun ta fˆsmata twn
diakrit¸n shmˆtwn, autì èqei w apotèlesma thn enallag twn uyhl¸n kai qamhl¸n
suqnot twn.
160                         Seirˆ - Metasqhmatismì           Fourier DiakritoÔ Qrìnou           Kefˆlaio 5




5.3.5   O metasqhmatismì     Fourier       diakritoÔ qrìnou gia periodikˆ s mata

Ja prosdiorsoume to s ma x      (n) tou opoou to fˆsma enai h periodik                   epèktash th
sunˆrthsh dèlta, dhlad ,
                                               1
                                               X
                                 X(       )=            Æ(        2k)                           (5.3.15)
                                               k=   1
Me th bo jeia tou antstrofou metasqhmatismoÔ Fourier diakritoÔ qrìnou èqoume


                   x(n) =
                           1 Z 

                          2  X ( )e d
                                       j n

                           1 Z  X 1
                        = 2          Æ(   2k)ej                             nd                 (5.3.16)
                                k= 1

                                  2
Epeid kˆje diˆsthma me m ko  perièqei ma mìno sunˆrthsh dèlta apì ton kroustikì
surmì tou ajrosmato , (dhlad , sto diˆsthma                 (         )
                                               ;  upˆrqei ma sunˆrthsh dèlta
sth jèsh    =0), èqoume:


                   x(n) =
                           1 Z 
                                                                 = 21 ej0n = 21
                          2  Æ( )e
                                     j               nd


àtsi èqoume to zeÔgo metasqhmatismoÔ Fourier:
                                                             1
                                                             X
                   x(n) = 1       F! X (        ) = 2                Æ(      2k)               (5.3.17)
                                                             k=   1
Lìgw th idiìthta th olsjhsh sto pedo twn suqnot twn èqoume:
                                                             1
                                                             X
               x(n) =   ej 0 n    F! X (       ) = 2                 Æ(             2k)
                                                                              0                  (5.3.18)
                                                         k=       1
Sto Sq ma 5.19 èqei sqediaste o metasqhmatismì Fourier diakritoÔ qrìnou tou s -
mato x n( )= ej 0 n .
                             X(Ù)
                                  2ð


           Ù0-4ð          Ù0-2ð       0         Ù0                    Ù0+2ð          Ù0+4ð Ù

  Sq ma 5.19   O metasqhmatismì        Fourier diakritoÔ          qrìnou tou s mato     x(n) = ej 0 n .
Enìthta 5.3          Idiìthte        tou MetasqhmatismoÔ           Fourier DiakritoÔ Qrìnou                           161



    ParathroÔme ìti, epeid to s ma suneqoÔ qrìnou x t          ej!0 t èqei metasqhma-        ()=
tismì Fourier ma sunˆrthsh dèlta sth suqnìthta !     !0 , to s ma diakritoÔ qrìnou  =
 ( )=
xn        j   n
         e , lìgw th periodikìthta e
            0                            j 0 n   e +2r)n , èqei metasqhmatismì
                                                  j ( 0                   =
Fourier diakritoÔ qrìnou èna kroustikì surmì ston opoo ta kroustikˆ s mata enai
topojethmèna sti suqnìthte     0 ; 0 ; 0 ; :::            2             4
    Gnwrzoume ìti kˆje periodikì s ma diakritoÔ qrìnou me perodo N anaptÔssetai
se seirˆ Fourier diakritoÔ qrìnou

                                                            NX1
                                                                               2
                                              x(n) =                 am ejm N n                                   (5.3.19)
                                                            m=0


              x(n) = a0 + a1 ej N n + a2 ej 2 N n + :::                                  1 ej (N 1) N n
                                        2                  2                                      2
                                                                              + aN                                (5.3.20)

kai o metasqhmatismì Fourier diakritoÔ qrìnou enai:

                                             1
                                             X
                   X(   ) =            a0              2Æ(           2k)
                                             k=    1
                                                  1
                                                  X
                                                                 
                                                                          2 2k
                                       +a1                 2Æ            N
                                              k=      1
                                ..
                                 .
                                                       1
                                                       X              
                                                                                                2 
                                                                                                      
                                       +aN        1            2Æ             (N            1) N 2k
                                                      k=   1
Efarmog twn parapˆnw sqèsewn gnetai sto Sq ma 5.20 gia N           . Lìgw th peri-                     =4
odikìthta twn suntelest¸n a0 ; a1 ; :::; aN 1 , dhlad , al    aNk+l a Nk+l ,          2     =2            =2
  = 0 1 2
k ; ; ; ::: kai l ; ; :::; N         =0 1                      1
                                           apì thn teleutaa sqèsh èqoume

                          NX1                                         1                            
                                      am
                                               2
                                           ejm N n         F! 2      X
                                                                              al Æ             l
                                                                                                 2
                                                                                                                  (5.3.21)
                          m=0                                        l=   1                     N

 Parˆdeigma 5.3.2

      Oi suntelestè       Fourier th          periodik           epèktash       tou monadiaou degmato       periìdou   N
      (Sq ma 5.21a)
                                              1
                                              X
                                 x(n) =                   Æ(n kN );            k = 0;        1; 2; :::          (5.3.22)
                                              k=      1
162                                    Seirˆ - Metasqhmatismì                Fourier DiakritoÔ Qrìnou          Kefˆlaio 5




                                               ∞
                                       2ðá0 Ó ä(Ù-2ðk)
                                              k=-∞
                   2ðá-4=2ðá0                        2ðá0                            2ðá4=2ðá0


                         -2ð                              0                              2ð                        Ù

                                                     ∞
                                          2ðá1 Ó ä(Ù- 2ð
                                              k=-∞    Í -2ðk
                                                             (
                               2ðá-3=2ðá1           2ðá1                                  2ðá5=2ðá1

                                       2ð                          2ð                              2ð              Ù
                                (-N+1) Í                                                      (N+1) Í
                                                                   Í

                                                               ∞
                                                     2ðá2 Ó ä( Ù-2 2ð
                                                         k=-∞      Í -2ðk
                                                                         (
      2ðá-6=2ðá2                  2ðá-2=2ðá2                                2ðá2                 2ðá6=2ðá2

              2ð                             2ð                              2ð                         2ð         Ù
       (-2N+2) Í                      (-N+2) Í                              2Í                     (N+2) Í


                                                              2ðá3 Ó ä( Ù-3 Í -2ðk (
                                                                        ∞           2ð
                                                                  k=-∞
            2ðá-5=2ðá3                      2ðá-1=2ðá3                    2ðá3                          2ðá7=2ðá3


                    2ð                               2ð                             2ð                        2ð   Ù
             (-2N+3) Í                        (-N+3) Í                             3Í                    (N+3) Í


                                                                    N-1
                                                               2ð Ó ál ä(Ù-l 2ð
                                                                             Í(
                                                                    l=0
                                                     2ðá0
                                                              2ðá1 2ðá 2ðá3
                                                                      2



                         -2ð                              0        2ð        2ð     2ð   2ð                        Ù
                                                                   Í        2Í     3Í



                                                                                              x(n) =
                                                                                                        PN  1 jm 2 n
Sq ma 5.20         O   DTFT     enì   periodikoÔ s mato                 diakritoÔ qrìnou                  m=0 am e N
ìpou   N   = 4.
        enai



                                              = N1
                                                          X                  2
                                      ak                            x(n)e jk N n
                                                         n=hN i
                                                         NX1 X 1
                                              = N1                                     2
                                                                          Æ(n kN )e jk N n
                                                         n=0 k=1
                                              = 1    N
                                                                                                                   (5.3.23)
Enìthta 5.4         Deigmatolhpthmèna S mata sto Pedo Suqnot twn                                                163



      Epomènw , h periodik         epèktash tou monadiaou degmato anaptÔssetai se seirˆ                     Fouri-
      er   diakritoÔ qrìnou w
                                                     1       1
                                                             X
                                          x(n) =                  ejk(2=N )n                                (5.3.24)
                                                   N k= 1
      O metasqhmatismì         Fourier diakritoÔ     qrìnou th            periodik       epèktash   tou monadiaou
      degmato      lìgw th   (5.3.21) enai
                                                         1            
                                                                               2k 
                                             ) = 2N
                                                         X
                                        X(                        Æ                                          (5.3.25)
                                                         k=   1                 N
      Sto Sq ma 5.21b èqei sqediaste o metasqhmatismì                         Fourier   diakritoÔ qrìnou tou s -
      mato    x(n).
                                                   x(n)
                                                   1


                              -N                    0                             N                    n
                                                  (a)
                                               X(Ù)
                                                 2ð
                                                 Í


               4ð                  2ð               0                        2ð                4ð      Ù
               Í                   Í                                         Í                 Í
                                                   (â)

   Sq ma 5.21       (a) H periodik      epèktash tou monadiaou degmato                  kai (b) to fˆsma th .

Parˆdeigma 5.3.3
      Na upologiste o metasqhmatismì            Fourier diakritoÔ             qrìnou th    monadiaa      bhmatik
      akolouja .

      LÔsh     Gnwrzoume ìti       x(n) = Æ(n) F! X (                ) = 1. Me th bo       jeia th   idiìthta   tou
      ajrosmato       o metasqhmatismì        Fourier       diakritoÔ qrìnou th            bhmatik     akolouja
      u(n) enai
                      n
                      X                                  1                  1
                                                                            X
                             Æ(m) = u(n) F!                       +                Æ(     2k)
                    m=   1                       1       e j              k=    1
                                                                                                             (5.3.26)



   Ston Pnaka 5.2 parousiˆzontai merikˆ zeÔgh metasqhmatism¸n Fourier diakritoÔ
qrìnou.


5.4   SHMATA APO DEIGMATOLHYIA STO PEDIO SUQNOTHTWN

                                        ()
Dnetai to analogikì s ma xa t to opoo èqei metasqhmatismì Fourier X ! . An                               ()
                               ()
lˆboume degmata tou xa t me perodo Ts , dhlad , an metr soume ti timè tou s -
164                          Seirˆ - Metasqhmatismì   Fourier DiakritoÔ Qrìnou               Kefˆlaio 5




           PINAKAS 5.5       DTFT basik¸n sunart sewn diakritoÔ qrìnou
 A/A                Pedo qrìnou                                  Pedo suqnìthta

  1
                P
                   k=<N> ak
                                   ( )
                                    2
                                ejk N n
                                                                  P1
                                                             2 k= 1 ak Æ                2k 
                                                                                         N
  2                    ej 0 n                               2 P1l= 1 Æ (         0 2l)
  3                      os( 0n)                       P
                                                       1l= 1 [Æ( 0      2l)+Æ( + 0 2l) ℄
  4                     sin( 0n)                       P
                                                       1
                                                      j l= 1 [Æ(
                                                              P1
                                                                  0      2l) Æ( + 0 2l) ℄
  5                     x(n) = 1                            2 k= 1 Æ( 2k)
                          8
                         < 1;    jnjN1                                             2k 
  6       x(n+N )=x(n)=:
                          0; N1 <jnjN=2
                                                           2 P1k= 1 ak Æ            N
                 P1                                         2 P1 Æ                2k 
  7                k= 1 Æ (n kN )                           N    k= 1               N
                  an u(n); jaj < 1                                      1 j
  8
                       
                                                                    1 ae
                x(n) = 10;; jjnnj N1                            sin[ (N1 + 12 )℄
  9
                                j>N1                                 sin( 2 )
                                                                         8
        sin(W n) = W sin     Wn ;                                       < 1; 0j jW
  10      n                       0<W <            X ( +2k)=X ( )=:
                                                                             0; W <j j
  11                     Æ(n)                                                1
                         u(n)                                1j   +   P1
  12                                                    1   e           k=       1 Æ(       2k)
  13                   Æ(n n0 )                                         e    j n0

  14           (n + 1)an u(n); jaj < 1                                       1
                                                                       (1   ae j )2
               (n+r+1)! an u(n); jaj < 1                                     1
  15            n!(r 1)!                                               (1   ae j )r

mato suneqoÔ qrìnou se diakritè qronikè stigmè pou enai pollaplˆsia th                             Ts ,
parnoume to s ma diakritoÔ qrìnou

                                     xs (n) = xa (nTs )                                        (5.4.1)

To qronikì diˆsthma Ts enai gnwstì w perodo deigmatolhya kai fs        1              =
                                                                          Ts enai
h suqnìthta deigmatolhya . H epilog th Ts ja prèpei na gnetai ètsi, ¸ste na
mh qaje plhrofora pou perièqetai sto analogikì s ma, (dhlad , na enai dunat h
anakataskeu tou apì ta degmatˆ tou), allˆ oÔte na auxhje qwr lìgo h apaitoÔmh
mn mh.
   Ja prosdiorsoume th sqèsh anˆmesa sto metasqhmatismì Fourier diakritoÔ qrìnou
  ( )                   ()
Xs tou s mato xs n , pou èqei proèljei apì deigmatolhya, kai tou antistoqou
Enìthta 5.4     Deigmatolhpthmèna S mata sto Pedo Suqnot twn                                165



tou suneqoÔ qrìnou   Xa (!). O metasqhmatismì                Fourier diakritoÔ qrìnou tou s ma-
       ()
to xs n enai
                                            1
                                            X
                               Xs (   )=            xs (n)e     j n                       (5.4.2)
                                           n=   1
H exswsh sÔnjesh tou     xs(n) enai

                          xs (n) =
                                    1 Z 

                                   2  Xs( )e d
                                               j n                                        (5.4.3)


H exswsh sÔnjesh tou xa (t) enai


                          xa (t) =
                                    1 Z 1

                                   2 1 Xa (!)e d!
                                                j!t                                       (5.4.4)


Efarmìzoume thn (5.4.4) gia t = nTs


                       xa (nTs ) =
                                    1 Z 1

                                   2 1 Xa (!)e d!
                                                j!nTs                                     (5.4.5)


H sÔgkrish twn (5.4.5) kai (5.4.3) ma kajodhge sto metasqhmatismì !Ts , pou          =
enai h gnwst sqèsh metaxÔ analogik kai yhfiak kuklik suqnìthta (1.4.11).
àtsi h (5.4.5) dnei
                                           
                      xa (nTs) =
                                  1  Z 1
                                                j                     nd
                                 2Ts 1 Xa Ts e                                           (5.4.6)


H (5.4.6) diafèrei apì thn (5.4.3) w pro ta ìria tou oloklhr¸mato . Qwrzoume to
olokl rwma se ˆjroisma oloklhrwmˆtwn se diast mata m kou  , dhlad ,        2
                             1    X1 Z (2k+1)  
                xa (nTs ) =                           j                    nd
                            2Ts k= 1 (2k 1) Xa Ts e                                     (5.4.7)


Allag th metablht          =          2k odhge sthn
                             1 Z  X1    
                                           + 2  
                                              k j
                xa (nTs) =                                                 nd
                           2Ts  k= 1 Xa Ts e                                            (5.4.8)


H sÔgkrish th (5.4.3) me thn (5.4.8) dnei thn

                                  1        1
                                           X
                                                         
                                                               + 2k 
                         Xs ( ) =                   Xa                                    (5.4.9)
                                  Ts       k=   1               Ts
166                                Seirˆ - Metasqhmatismì         Fourier DiakritoÔ Qrìnou                                    Kefˆlaio 5




 , w pro thn analogik kuklik suqnìthta,

                                                       1        
          xs (n) = xa (nTs )        F! X (!T ) = 1 X X ! + 2k                                                                  (5.4.10)
                                        s   s
                                                 Ts k = 1 a   Ts

    O metasqhmatismì Fourier diakritoÔ qrìnou tou s mato pou èqei proèljei apì
deigmatolhya prokÔptei apì to fˆsma tou analogikoÔ s mato me ti ex diadikase :
(blèpe Sq ma 5.22)


              xa(t)                                 Xá(ù)                                Õ(Ù)= 1 Xá Tù      ((
                                                                                              Ts      s
                                                                                                                    1
                                                          1                                                         Ts



                  0                t        ù              0            ù            ù               ù        0          ù        Ù
                                                                                                     2 Ts                2 Ts
                                               0                            0                         0                   0

                                            2                           2
                 (a1)                                     (a2)                                               (a3)
                                                                        Xs(Ù)
              xs(n)
                                                                                1
                                                                                Ts



                  0                n                -2ð          -ð    ù              0      ù ð                 2ð               Ù
                                                                       2 Ts                  2 Ts
                                                                        0                        0


                 (â1)                                                      (â2)
                                                                        Xs(Ù)
              xs(n)
                                                                                1
                                                                                Ts



                     0             n                -4ð          -2ð    ù             0     ù 2ð                 4ð               Ù
                                                                        2 Ts                2 Ts
                                                                            0                0


                    (ã1)                                                             (ã2)

Sq ma 5.22      (     1)   Analogikì s ma, (       1)
                                          kai ( 1 ) s mata apì deigmatolhya me diafore-

tikì rujmì deigmatolhya . Ta fˆsmata (   2 ) tou analogikoÔ s mato , ( 3 ) metˆ thn allag
klmaka , (   2) olsjhsh kai upèrjesh qwr epikˆluyh kai ( 2 ) olsjhsh kai upèrjesh me
epikˆluyh fasmˆtwn.




      - Allag klmaka           Xs (  ) ! Y ( ) = Xs(                 =Ts )
      - Olisj sei          Y ( ) ! Y ( + 2k)
      - Upèrjesh twn olisjhmènwn fasmˆtwn kai diabˆjmish me                                           1=Ts
Enìthta 5.4      Deigmatolhpthmèna S mata sto Pedo Suqnot twn                                        167



                                                              ()
    Diapist¸noume ìti, an to analogikì s ma xa t èqei periorismèno eÔro suqnot twn,
dhlad , Xa !  ( )=0          j j          2
                    gia ! > !0 = , kai an gnei deigmatolhya me rujmì deigmato-
lhya megalÔtero apì to eÔro z¸nh tou s mato !0 , to fˆsma Xa ! diathretai                  ()
anallowto mèsa sto fˆsma Xs            ( )
                                     twn deigmˆtwn tou. Kˆtw apì ti propojèsei
autè , anamènoume ìti to analogikì s ma mpore na anakataskeuaste apì ta degmatˆ
tou. Prˆgmati,
                                        1         1
                                                  X             
                                                                      2 k
                                                                           
                            Xs (!Ts ) =                    Xa      !+                             (5.4.11)
                                        Ts       k=    1                   Ts
apì thn opoa èqoume gia         =Ts < !  =Ts

                                        Xs (!Ts ) =
                                                          1 Xa (!)                                (5.4.12)
                                                         Ts
àtsi èqoume gia to analogikì s ma xa            (t)
          xa (t) =
                    1 Z 1              Z
                                     Ts =Ts
                   2 1 Xa (!)e d! = 2 =Ts Xs(!Ts )e d!
                               j!t                    j!t                                         (5.4.13)


Lìgw th (5.4.2)

                                   Ts
                                        Z =Ts     1
                                                   X
                   xa (t)    =                               xs (n)e      j!Ts n ej!t d!
                                   2        =Ts n=     1
                                    1
                                    X            T
                                                              Z =Ts
                             =          xa (nTs ) s                       ej!(t   Ts n) d!
                                   n= 1          2               =Ts

                             =
                                    1
                                    X
                                             xa (nTs )
                                                         sin Ts (t    nTs)
                                                           Ts (t      nTs )
                                                            
                                   n=    1
                                    1
                                    X
                                                              
                                                                  t nTs
                                                                             
                             =               xa (nTs )sin
                                                                    Ts
                                                                                                  (5.4.14)
                                   n=    1
Apì th (5.4.14) parathroÔme ìti to anakataskeuasmèno s ma sumpptei me to xa t                         ()
sti stigmè deigmatolhya (blèpe Sq ma 5.23). Shmei¸netai ìti to ˆjroisma sumpptei
me to arqikì s ma gia ìle ti endiˆmese qronikè stigmè .


5.4.1    Je¸rhma deigmatolhya

An xa   (t) analogikì s   ma   periorismènou eÔrou            suqnot twn,         dhlad ,

                                                        !
                                    Xa (!) = 0 gia j!j > 0
                                                                      2                           (5.4.15)
168                                          Seirˆ - Metasqhmatismì                 Fourier DiakritoÔ Qrìnou           Kefˆlaio 5




kai o rujmì deigmatolhya ikanopoie to krit rio Nyquist

                                                                  !0 
                                                                          2                                               (5.4.16)
                                                                          Ts
                        ()
tìte to s ma xa t anakataskeuˆzetai apì ta degmatˆ tou sÔmfwna me thn (5.4.14).
                    2
H suqnìthta =Ts onomˆzetai suqnìthta Nyquist.

            xa(t)




                0                                                                                                     t
                                                                  (á)
           xs(n)




                   0        Ts        2Ts        3Ts        4Ts 5Ts                 6Ts       7Ts     8Ts   9Ts        t
                                                               (â)
            x(t)
                        x (Ts( sinc t-Ts
                                  ( (       x (2Ts ( sinc t-2Ts
                                                        (     (     x (3Ts ( sinc t-3Ts
                                                                                (         (
                                     Ts                    Ts                      Ts




                                                                                                                      t
                   0        Ts        2Ts        3Ts        4Ts 5Ts                 6Ts       7Ts     8Ts   9Ts
                                                               ( ã)

Sq ma 5.23        H anakataskeu               tou analogikoÔ s mato apì ta degmatˆ tou. (a) To analogikì

s ma    xa (t),   (b) to s ma diakritoÔ qrìnou                       xs (n)     kai (g) h anakataskeu             tou analogikoÔ

s mato     apì ta degmatˆ tou sÔmfwna me thn exswsh (5.4.14) gia                                      !0 = 2=Ts.

5.4.2    Oi Suntelestè                 Fourier        w      degmata se ma perodo tou metasqhmatismoÔ
         Fourier
àstw to periodikì s ma x                   ~(n) me perodo N kai to s                         ma    x(n), pou antistoiqe se ma
          ~( )
perodo tou x n , dhlad ,
            
 x(n) = 0x~;(n);               M     nM +N 1
                                 alli¸
                                                                         , ìpou         M     pragmatikì akèraio           (5.4.17)

Gnwrzoume (5.2.5)                                                                
                                                        Nak = X               k
                                                                                2
                                                                                                                           (5.4.18)
                                                                                    n
Enìthta 5.4       Deigmatolhpthmèna S mata sto Pedo Suqnot twn                                       169



ìpou ak enai oi suntelestè th seirˆ Fourier diakritoÔ qrìnou tou x n , kai X             ~( )        ( )
                                                                     ()
enai o metasqhmatismì Fourier diakritoÔ qrìnou tou x n . Me th bo jeia tou Pa-
radegmato 5.4.1 pou akolouje, ja dexoume ìti o X                ( )
                                                       exartˆtai apì thn tim tou
                                                                   (2 )
M , en¸ oi timè tou sti suqnìthte deigmatolhya k =N den exart¸ntai apì thn
tim tou M .

Parˆdeigma 5.4.1
       An orsoume to s ma        x1 (n)   (Sq ma 5.24b), to opoo antistoiqe se mia perodo th


                                         x(n)
                                         1


                   -N                      0                   N                 2N          n
                                                   (a)
                                    x1(n)=ä(n)
                                        1


                   -N                      0                   N                 2N          n
                                                   (â)
                                                     x2(n)=ä(n-N)
                                                           1


                   -N                      0                   N                 2N          n
                                                   (ã)

Sq ma 5.24    (a) H periodik     epèktash tou monadiaou degmato kai (b), (g) dÔo mh periodikè

akolouje , h kˆje mia apì ti      opoe    enai sh me to   x(n) sth diˆrkeia mia       periìdou.


      periodik    epèktash      tou monadiaou degmato        periìdou    N x(n) (Sq     ma 5.24a) w :

                            
                 x1 (n) =       x(n);    0nN 1                          x1 (n) = Æ(n)
                                0;         alli¸
                                                              , dhlad ,                           (5.4.19)



      apì thn exswsh anˆlush          ) = P1n= 1 x1(n)e j n upologzoume to metasqh-
                                        X1 (
      matismì Fourier diakritoÔ qrìnou tou x1 (n) w


                                          X1 ( ) = 1                          (5.4.20)


      en¸, an orsoume to s ma x2 (n) (Sq ma 5.24g),

                       
              x2 (n) = x0;(n); M     n  M + N 1 ìpou 0 < M < N
                                  alli¸
                                                                              (5.4.21)
170                    Anˆptugma - Metasqhmatismì          Fourier Diakrit¸n Shmˆtwn        Kefˆlaio 5




      dhlad ,   x2 (n) = Æ(n N ), o metasqhmatismì            tou   x2 (n) enai
                                                X2 (   )=e    j N                             (5.4.22)


      ParathroÔme ìti   X1 (    ) 6= X2( ) allˆ gia ti suqnìthte = k(2=N ) enai
                                                         
                                     X1 k
                                           2            2
                                                 = X2 k = 1                       (5.4.23)
                                                N               N

5.5   DIAKRITOS METASQHMATISMOS                                 FOURIER

O metasqhmatismì Fourier diakritoÔ qrìnou enai suneq periodik sunˆrthsh me
        2
perodo  . Gia na epexergastoÔme to metasqhmatismì Fourier me yhfiakˆ mèsa a-
paitetai h metatrop tou se akolouja arijm¸n peperasmènh akrbeia . Ja prèpei,
loipìn na gnei katˆllhlh deigmatolhya tou metasqhmatismoÔ Fourier ètsi, ¸ste na
enai dunat h anakataskeu tou apì ta degmatˆ tou.
                                                              ()
    Dnetai h peperasmènou m kou N akolouja x n , dhlad , h x n      gia n   N.   ( )=0         
O metasqhmatismì Fourier diakritoÔ qrìnou th akolouja x n , ìpw enai gnwstì,()
enai
                                      X1
                                      N
                           X(   )=          x(n)e      j n;   0       < 2                   (5.5.1)
                                      n=0
    Eˆn gnei deigmatolhya th suneqoÔ sunˆrthsh X                     ( ) se M diakritè kuklikè
suqnìthte pou enai pollaplˆsie th     s sto diˆsthma                   0  < 2, parnoume ta
degmata:

                                      NX1
      XM (k) = X (    )j   =k   s =         x(n)ejk     sn;      k = 0; 1; : : : ; M   1      (5.5.2)
                                      n=0
O arijmì twn deigmˆtwn pou ja lhfjoÔn ja prèpei na enai katˆllhlo ètsi ¸ste
afenì na enai dunat h anˆkthsh tou metasqhmatismoÔ Fourier diakritoÔ qrìnou
gia kˆje tim th kuklik suqnìthta        , afetèrou na mhn auxhjoÔn h apaitoÔmenh
mn mh kai h taqÔthta epexergasa .
    To je¸rhma deigmatolhya sto pedo tou qrìnou anafèrei ìti gia èna analogikì
        ()
s ma xa t me periorismèno eÔro z¸nh qamhl¸n suqnot twn W , dhlad , X !                         ( )=
0     j j
  gia !      W enai dunat h anakataskeu tou arqikoÔ s mato xa t apì thn               ()
                                   f (
akolouja twn deigmˆtwn tou xa nTs 1             )g
                                         n= 1 , ìtan h perodo deigmatolhya Ts
plhro to krit rio tou Nyquist, dhlad , Ts    1        
                                             2W .
    Me anˆlogo trìpo to je¸rhma deigmatolhya sto pedo suqnot twn anafèrei
ìti o metasqhmatismì Fourier diakritoÔ qrìnou mpore na anakthje apì ta degmatˆ
        ()
tou XM k ; k       =01
                     ; ; :::; M             1
                                     efìson to s ma diakritoÔ qrìnou x n enai              ()
Enìthta 5.5            Diakritì      Metasqhmatismì     Fourier                                                 171



peperasmènh diˆrkeia                 N   kai isqÔei   M        N  sthn perptwsh aut         isqÔei h sunj kh
Nyquist, dhlad ,
                                                          s    2N                                          (5.5.3)

Gia thn oriak perptwsh ìpou s                        =2 , dhlad , ìtan gnetai deigmatolhya tou
                                                       N
  ( )
X sti suqnìthte k k s                    =        = k 2N  ; k = 0; 1; : : : ; N 1, h (5.5.2) grˆfetai
                                                                   
           XN (k) = X (         )j             =    X         k
                                                                2 
                                      =k 2N                    N
                                                    NX1
                                                                        2
                                               =              x(n)ejk N n ;      k = 0; 1; : : : ; N       1 (5.5.4)
                                                      n=0
Ta degmata XN k     ()                   ()
                     aplˆ X k tou metasqhmatismoÔ Fourier diakritoÔ qrìnou X                                    ( )
apoteloÔn to diakritì metasqhmatismì Fourier (Disctete Fourier Transform, DFT) th
akolouja x n .    ()
    ApodeiknÔetaiz ìti mporoÔme na anakataskeuˆsoume thn akolouja x n apì ta                          ()
                   ()
degmata XN k tou metasqhmatismoÔ Fourier diakritoÔ qrìnou me thn


                     x(n) =
                                  1 NX1 X (k)e            jk 2N n ;     n = 0; 1; : : : ; N   1             (5.5.5)
                                         N
                                  N    k=0
H (5.5.5) apotele ton antstrofo diakritì metasqhmatismì Foureir (inverse DFT, IDFT).
    Oi exis¸sei (5.5.4) kai (5.5.5) apoteloÔn tou zeÔgo diakritoÔ metasqhmatismoÔ
FourierN -shmewn kai ja to sumbolzoume w x(n) DFT!N XN (k).
   Oi akolouje x(n) kai XN (k ) èqoun dio m ko N kai enai periodikè                                  me pero-
do N .

Parˆdeigma 5.5.1
         Dnetai h 4-shmewn akolouja             x(n)
                                                            
                                                x(n) =          1; 0  n  3
                                                                0; alli¸                                     (5.5.6)




             1. Na breje o metasqhmatismì             Fourier diakritoÔ qrìnou X       ( ) kai na gnei h grafik
                parˆstash tou mètrou tou se sunˆrthsh me thn kuklik                      suqnìthta     .

             2. Na breje o diakritì           metasqhmatismì           Fourier 4-shmewn th   akolouja      x(n).


  z   Anaforˆ 5.4 kai 5.5 th   proteinìmenh    bibliografa
172                       Anˆptugma - Metasqhmatismì            Fourier Diakrit¸n Shmˆtwn                Kefˆlaio 5




      LÔsh

       1. O metasqhmatismì            Fourier diakritoÔ         qrìnou th        akolouja   x(n) enai
                                                         3
                                                         X
                                      X(      ) =              x(n)e j n
                                                         n=0
                                                   = 1 + e j + e j2 + e                j3
                                                            j4
                                                   = 11 ee j
                                                      sin(2 ) e j3 =2
                                                   = sin(  =2)
             Sto Sq ma 5.25 èqei gnei h grafik             parˆstash tou mètrou tou metasqhmatismoÔ
             Fourier diakritoÔ     qrìnou     jX ( )j se sunˆrthsh me thn              .

       2. Gia to diakritì metasqhmatismì                 Fourier 4-shmewn th         akolouja    x(n) èqoume
                                                   3
                                                   X                 2
                                     X4 (k) =            x(n)ejk N n ; k = 0; 1; 2; 3:
                                                   n=0
             Gia   k = 0 èqoume
                              3
                              X                          3
                                                         X
                                    x(n)ej0 N n =
                                              2
                   X4 (0) =                                    x(n) = x(0) + x(1) + x(2) + x(3) = 4
                              n=0                        n=0
             kai gia   k = 1; 2;   kai   3 èqoume
                                              3
                                              X                           3
                                                                          X
                                                    x(n)ej1 N n =
                                                                2
                                   X4 (1) =                                     x(n)( j )n = 0
                                              n=0                         n=0

                                              3
                                              X                           3
                                                                          X
                                                    x(n)ej2 N n =               x(n)( j )2n = 0
                                                               2
                               X4 (2) =
                                              n=0                         n=0
                                              3
                                              X                           3
                                                                          X
                                                    x(n)ej2 N n =               x(n)( j )3n = 0
                                                               3
                               X4 (3) =
                                              n=0                         n=0
             O diakritì metasqhmatismì              Fourier 4-shmewn th           akolouja   x(n) enai, loipìn
                                                   X4 (k) = [ 4; 0; 0;          0℄                          (5.5.7)
                                                                     "
             O diakritì     metasqhmatismì           Fourier    4-shmewn th         akolouja    x(n)   brsketai
             kai eˆn gnei deigmatolhya tou metasqhmatismoÔ                     Fourier diakritoÔ qrìnou X    ( )
Enìthta 5.5             Diakritì   Metasqhmatismì   Fourier                                           173



               se   4 isapèqouse      kuklikè suqnìthte pou apèqoun anˆ dÔo katˆ          = 2 . àqou-
               me, loipìn, ta degmata


                                               X4 (k )   = X ( )j =k 2
                                                         = sin(2 k 2 ) j3k 4
                                                            sin(k 4 ) e
                                                         = [ 4; 0; 0; 0 ℄                           (5.5.8)
                                                                  "
               Sto Sq ma 5.25 èqoume kai grafik               parˆstash tou diakritoÔ metasqhmatismoÔ
               Fourier 4-shmewn th          akolouja   x(n).
 X(Ù)
    4



        0                      ð                  2ð     Ù
 X4(k)
     4
                                                               Sq ma 5.25     H grafik   parˆstash tou

                                                               MF     diakritoÔ qrìnou tou s mato    x(n)
                                                               sto Parˆdeigma 5.5.1 kai o diakritì    MF
        0           1          2         3          4    k     4-shmewn tou.


Shmei¸netai ìti to degma gia mhdenik kuklik suqnìthta                         XN (0) enai pˆntote so
me to ˆjroisma twn stoiqewn th akolouja x n .                   ()
5.5.1       Kuklik      anˆklash akolouja

                                                             ()
H anˆklash mia akolouja N -shmewn, x n , dnei thn akolouja x n , h opoa             ( )
den enai akolouja N -shmewn, kai ètsi den enai dunatì na upologiste o diakritì
metasqhmatismì Fourier. H kuklik anˆklash mia akolouja mpore na parastaje
me th bo jeia twn upolopwn (modulo) w x                      (( ))
                                                 n N , ìpou o sumbolismì m N                    (( ))
diabˆzetai w m modulo N kai shmanei to upìloipo th diaresh tou m dia tou N
kai enai                       
                                 x(0);
                            x(( n))N     =   n=0
                                 x(N n); 1  n  N 1                 (5.5.9)

Sto Sq ma 5.26 fanetai h akolouja 11-shmewn x(n) = n ìpou 0  n  10 kai
0 < < 1 h anˆklas th h opoa den enai akolouja 11-shmewn kai h kuklik
anˆklas th h opoa enai akolouja 11-shmewn.
174                               Anˆptugma - Metasqhmatismì           Fourier Diakrit¸n Shmˆtwn          Kefˆlaio 5




                 x(n)=an                      0 ≤ n ≤ 10
                                               0<a<1


           -10     -5     0          5   10      15        n
                         (a)
                    x(-n)


           -10     -5     0          5   10      15        n
                         (â)
                 x((-n))11
                                                                   Sq ma 5.26       KÔklik   anˆklash akolouj-

                                                                   a    (a) h akolouja   N -shmewn x(n),     (b) h

           -10     -5        0       5   10      15        n       anˆklash th      akolouja      kai (g) h kuklik
                            (ã)                                    anˆklash th     akolouja .



5.5.2     Kuklik        olsjhsh akolouja

H periodik epèktash anˆ N degmata th peperasmènou m kou akolouja                                        x(n) pou
èqei N degmata sto diˆsthma ; ; : : : ; N  01                      1
                                           enai h periodik akolouja
                                                           1
                                                           X
                                           x~(n) =                 x(n     kN )                             (5.5.10)
                                                          k=   1
H olsjhsh (metatìpish) th periodik akolouja                                  x~(n) katˆ m degmata pro          ta
dexiˆ dnei thn epsh periodik akolouja
                                                           1
                                                           X
                                     x~(n m) =                     x(n m + kN )                             (5.5.11)
                                                          k=   1
H peperasmènou m kou akolouja
                                                      
                        x~(n m)RN (n) =                    x~(n m);         0nN 1
                                                           0;               alli¸
                                                                                                            (5.5.12)

ìpou    RN (n) enai to orjog¸nio parˆjuro m  N , dhlad ,           kou
                                                      
                        RN (n) = 10;; 0alli¸
                                         nN 1                     (5.5.13)

apotele thn kuklik olsjhsh M -shmewn th akolouja x(n). ParathroÔme ìti h
kuklik olsjhsh m shmewn mia akolouja N shmewn proèrqetai apì thn para-
jÔrwshx th grammikˆ olisjhmènh katˆ m shmea periodik epèktash th akolou-
  x   O pollaplasiasmì      mia   sunˆrthsh   me ma ˆllh, me skopì to mhdenidmì th     pr¸th   èxw apì èna diˆsthma,

enai gnwstì   w   parajÔrwsh
Enìthta 5.5        Diakritì        Metasqhmatismì   Fourier                                               175



ja . H periodik epèktash mia akolouja mpore na parastaje me th bo jeia twn

                                                              ~
                         x(n)=an 0 ≤ n ≤ 10                   x(n-3)= x((n-3))11
                                       0<a<1




              -5     0         5     10    15       n         -5     0     5         10   15    20    n
                         (a)                                                   (ã)

                   ~
                   x(n)= x((n))11                                  x((n-3))11R11(n)



                                                                    x(n)


              -5     0         5     10    15           n     -5     0     5 10           15    20    n
                         (â)                                                (ä)

Sq ma 5.27    Kuklik      olsjhsh akolouja (a) arqik             akolouja    x(n), (b) periodik   epèktash

th   x(n) (g) grammik     olsjhsh katˆ tra degmata th            periodik         epèktash , kai d) kuklikˆ

olisjhmènh akolouja katˆ tra degmata.

upolopwn w
                                          x~(n m) = x((n m))N                                        (5.5.14)
opìte h kuklik olsjhsh ekfrˆzetai kai w

                               x~(n m)RN (n) = x((n m))N RN (n)                                      (5.5.15)

Sto Sq ma 5.27 fanetai h akolouja 11-shmewn x n     n (ìpou      n( )=    kai               0   10
0             1
  < < ), h periodik epèktash th akolouja katˆ 11 degmata, h grammik
olsjhsh th periodik epèktash katˆ tra degmata pro ta dexiˆ kai h kuklik
olsjhsh katˆ tra degmata pro ta dexiˆ th akolouja x n , h opoa enai epsh  ()
akolouja 11-shmewn.


5.5.3   Kuklik      sunèlixh akolouji¸n

H  kuklik sunèlixh dÔo akolouji¸n x1 (n) kai x2 (n), n = 0; 1; : : : ; N                         1 dhl¸netai
x1 (n) x2 (n) kai orzetai apì th sqèsh
                                        NX1
                y(n) = x1 (n) x2 (n) =       x1 (m)  x2 ((n m))N                                    (5.5.16)
                                        m=0
176                     Anˆptugma - Metasqhmatismì                   Fourier Diakrit¸n Shmˆtwn               Kefˆlaio 5




                  ()
H akolouja y n èqei m ko N , ìso, dhlad , kai to m ko kajemiˆ apì ti arqikè
akolouje , kai ìqi m ko N            2         1
                                 , ìpw sumbanei sthn perptwsh th grammik
sunèlixh twn dÔo aut¸n akolouji¸n.
   Ta b mata gia ton upologismì th kuklik sunèlixh dÔo akolouji¸n enai:
  1. kuklik anˆklash (katoptrismì ) th mia akolouja ,

  2.   kuklik olsjhsh (metatìpish) th katoptrik                                 akolouja ,
  3.   pollaplasiasmì th metatopismènh katoptrik                                  akolouja me th ˆllh akolou-
       ja shmeo pro shmeo, kai
   4. ˆjroish twn ginomènwn.
Ta b mata autˆ epanalambˆnontai.

Parˆdeigma 5.5.2
       Na upologiste h kuklik            sunèlixh 4-shmewn twn akolouji¸n                    x1 (n) = [ 3; 2;   1 ℄ kai
       x2 (n) = [ 1; 2; 3;   4℄
       LÔsh      H kuklik    sunèlixh 4-shmewn dnetai apì th

                                                                 3
                                                                 X
                               x1 (n)      4    x2 (n) =              x1 (m)x2 ((n m))4                        (5.5.17)
                                                                m=0
       gia n = 0 èqoume
       P3                                      P3
          m=0 x1 (m)x2 ((0        m))4 =            m=0      [f3; 2; 1; 0gf1; 4; 3; 2g℄ = P3m=0f3; 8; 3; 0g = 14;
       gia n = 1 èqoume
       P3                                      P3
          m=0 x1 (m)x2 ((1        m))4 =            m=0      [f3; 2; 1; 0gf2; 1; 4; 3g℄ = P3m=0f6; 2; 4; 0g = 12;
       gia n = 2 èqoume
       P3                                      P3
          m=0 x1 (m)x2 ((2        m))4 =            m=0      [f3; 2; 1; 0gf3; 21; 4g℄ = P3m=0f9; 4; 1; 0g = 14;
       gia n = 3 èqoume
       P3                                     P3
          m=0 x1 (m)x2 ((3     m))4 =            m=0         [f3; 2; 1; 0gf4; 3; 2; 1g℄ = P3m=0f12; 6; 2; 0g = 20;
       epomènw    h kuklik     sunèlixh enai


                                          x1 (n)     4       x2 (n) = [14; 12; 14; 20℄                         (5.5.18)



Parˆdeigma 5.5.3
       Me th bo jeia th      idiìthta      th       kuklik        sunèlixh      na upologiste h kuklik       sunèlixh
       4-shmewn twn akolouji¸n           x1 (n) kai x2 (n) tou Paradegmato                   5.5.2


                                                                              X (k)   = 1 x(n)e j 2N kn
                                                                                          PN
       LÔsh      Me th bo jeia th             exswsh           anˆlush                     n=0                   pros-
       diorzetai o diakritì      metasqhmatismì                Fourier twn shmˆtwn x1 (n) kai x2 (n)
                                  h       p                      p        i
                     X1 (k) = 6; 2          2e      j 4 ;   2; 2 2 ej 4 = [6; 2         j 2; 2; 2 + j 2℄
Enìthta 5.5         Diakritì   Metasqhmatismì   Fourier                                            177

                          h         p             p              i
               X2 (k) =       10; 2 2 ej 34 ; 2; 2 2 e   j 4       = [10; 2 + j 2; 2; 2   j 2℄
        To ginìmeno twn diakrit¸n metasqhmatism¸n           Fourier enai
                                        
                X1 (k)  X2 (k) =60; 8 ej 2 ; 4ej ; 4e j 2  = [60; j 8; 4; j 8℄ (5.5.19)


        Me th bo jeia th exswsh sÔnjesh x(n) =
                                                           1 PN 1
                                                          N k=0 X (k )e N prosdiorzetai to
                                                                            j 2 kn
        s ma x(n), dhlad , h kuklik sunèlixh twn shmˆtwn x1 (n) kai x2 (n)


                                 x1 (n) 4 x2 (n) = [14; 12; 14; 20℄
        h opoa enai dia me thn kuklik     sunèlixh pou upologsthke sto Parˆdeigma 5.5.2, sto
        opoo melet same to prìblhma sto pedo tou qrìnou.



5.5.4    Idiìthte    tou diakritoÔ metasqhmatismoÔ                    Fourier
Sthn enìthta aut ja parousiasjoÔn oi basikè idiìthte pou èqei o diakritì metasqh-
matismì Fourier.
    Merikè idiìthte tou diakritoÔ metasqhmatismoÔ Fourier enai anˆloge me ti an-
tstoiqe idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou. Upˆrqoun ìmw kai
diaforè , oi opoe ofelontai sto peperasmèno m ko tìso twn diwn twn akolouji¸n,
ìso kai tou diakritoÔ metasqhmatismoÔ Fourier tou . Ston Pnaka 5.3 parousiˆzontai
oi idiìthte tou diakritoÔ metasqhmatismoÔ Fourier.

5.5.5    H grammik      sunèlixh me th bo jeia tou diakritoÔ metasqhmatismoÔ Fourier

Gnwrzoume ìti, ìtan èna grammikì qronikˆ anallowto sÔsthma diakritoÔ qrìnou me
                               ()                                            ()
kroustik apìkrish h1 n diegerje apì thn akolouja x1 n , h èxodì tou y n enai              ()
                                    ()
h grammik sunèlixh twn x1 n kai h1 n , dhlad ,  ()
                                                          1
                                                          X
                       y(n) = h1 (n) ? x1 (n) =                      x1 (k)h1 (k n)
                                                      k=     1
An h akolouja eisìdou enai akolouja N1 -shmewn, kai h kroustik apìkrish enai
akolouja N2 -shmewn, tìte h èxodo tou sust mato enai akolouja N1 N2         -      ( +         1)
shmewn.
   Apì ti idiìthte tou metasqhmatismoÔ Fourier diakritoÔ qrìnou gnwrzoume ìti

                          y(n) = h1 (t) ? x1 (n) F! H1 (                )  X1 ( )             (5.5.20)

    ParathroÔme ìti, gia na anakataskeuˆsoume thn akolouja exìdou apì ta deg-
mata tou Y    ( )
               , dhlad , apì to diakritì metasqhmatismì Fourier Y k , ja prèpei na    ()
gnei deigmatolhya th Y         ( )
                             se toulˆqiston N1 N2            +           1
                                                       shmea sth diakrit kuklik
178                          Anˆptugma - Metasqhmatismì   Fourier Diakrit¸n Shmˆtwn          Kefˆlaio 5




               PINAKAS 5.6        Idiìthte tou diakritoÔ metasqhmatismoÔ Fourier
                   Idiìthta                    Pedo qrìnou              Pedo suqnìthta

                                                     x1 (n)                    X1 (k)
                                                     x2 (n)                    X2 (k)
                 Grammikìthta                   ax1 (n)+bx2 (n)            aX1 (k)+bX2 (k)
            Anˆklash sto qrìno                     x(( n))N                  X (( k))N
               Suzug       akolouja                 x? (n)                   X ? (( k))
                                                                      <e[X (k)℄=<e[X (( k))N ℄
           Summetrikè        idiìthte             x(n)=x? (n)       =m[X (k)℄= =m[X ((N k))N ℄
         gia pragmatikè       akolouje                                 jX (k)j=jX (( k))N j
                                                                      arg X (k)= arg X (( k))N
                                                                                2
        KÔklik     olsjhsh sto qrìno            x((n n0 ))N               e jk N n0 X ( k)
                                                      2
      KÔklik     olsjhsh sth suqnìthta          ejk0 N n x(n)               X ((k k0 ))N
               KÔklik      sunèlixh              x1 (n) x2 (n)                X1 (k)X2 (k)
               Pollaplasiasmì                      x1 (n)x2 (n)            1 X1 (k) N X2 (k)
                                                                           N
           Je¸rhma tou        Parseval         Ex =PNn=01 jx(n)j2       Ex = N1 PNk=01 jX (k)j2

suqnìthta. àpomènw , o diakritì metasqhmatismì Fourier ja prèpei na èqei m ko
  
N N1 N2 . +            1
                             ()           ()
    Oi akolouje x1 n kai h1 n èqoun m ko mikrìtero tou N  prèpei, loipìn, na
prostejoÔn stoiqea mhdenik tim se kˆje ma apì autè ètsi, ¸ste to m ko tou na
                                                          ()        ()
gnei so me N sqhmatzonta ti akolouje x n kai h n . H prìsjesh mhdenik¸n se
kˆje ma apì ti akolouje autè den ephreˆzei to metasqhmatismì Fourier diakritoÔ
qrìnou, allˆ èqei w apotèlesma na auxhjoÔn ta shmea deigmatolhya pèra apì to
elˆqisto m ko N1 kai N2 antstoiqa, pou enai o elˆqisto arijmì .
    Pollaplasiˆzonta tou diakritoÔ metasqhmatismoÔ Fourier N -shmewn twn
                   ()              ()
akolouji¸n x1 n kai h1 n brsketai o epsh N shmewn diakritì metasqhma-
                    ()
tismì Fourier Y k . Sth sunèqeia me antstrofo diakritì metasqhmatismì Fourier
N -shmewn brsketai h akolouja exìdou tou sust mato .
      H kuklik    sunèlixh twn akolouji¸n        x(n) kai h(n) enai isodÔnamh me th grammik
sunèlixh twn akolouji¸n           x1 (n) kai h1 (n). Me ˆlla lìgia o diakritì
                                                             metasqhmatismì
Fourier mpore na qrhsimopoihje gia ton upologismì th grammiksunèlixh , an oi
akolouje èqoun katˆllhla epimhkunje me thn prìsjesh mhdenik¸n stoiqewn sth
kˆje ma apì autè .
Enìthta 5.5            Diakritì   Metasqhmatismì    Fourier                                                    179



Parˆdeigma 5.5.4
      H kroustik           apìkrish enì    GQA sust mato       enai   h1 (n) = [ 3; 2; 1 ℄: Me th bo          jeia
      tou diakritoÔ metasqhmatismoÔ              Fourier na upologsete thn èxodo tou sust            mato , ìtan
      h esodo             x1 (n) = [ 1; 2; 3; 4 ℄.
                      enai to s ma

      LÔsh   H èxodo tou sust mato y (n) enai akolouja N1 + N2     1 = 3 + 4 1 = 6-
      shmewn. Sti akolouje h1 (n) kai x1 (n) ja prèpei na prostejoÔn tra kai dÔo mh-
      denikˆ antstoiqa ¸ste na gnoun akolouje              6-shmewn. Oi diakrito metasqhmatismo
      Fourier twn      akolouji¸n      h(n) = [ 3; 2; 1; 0; 0; 0 ℄ kai x(n) = [ 1; 2; 3; 4; 0; 0 ℄ enai
                            5
                            X
             H (k )    =                    2
                                  h(n)  ejk 6 n = h(0) + h(1)  ejk 6
                                                                          2
                                                                               + h(2)  ejk 26 2
                            n=0
       kai
                            5
                            X
             X (k )    =                    2
                                  x(n)  ejk 6 n = x(0) + x(1)  ejk 6
                                                                          2
                                                                               + x(2)  ejk 26 2 + x(3)  ejk 26 3
                            n=0
      antstoiqa. O diakritì           metasqhmatismì      Fourier   th    akolouja       exìdou brsketai me
      pollaplasiˆsmì twn             H (k) kai X (n)
                            Y (k )
                              = h(0)  x(0)
                                  + [h(1)x(0) + h(0)x(1)℄  ejk 26 1
                                  + [h(2)x(0) + h(1)x(1) + h(0)x(2)℄  ejk 26 2
                                  + [h(2)x(1) + h(1)x(2) + h(0)x(3)℄  ejk 36 3
                                  + [h(2)x(2) + h(1)x(3)℄  ejk 26 4
                                  + [h(2)x(3)℄  ejk 26 5
        Y (k) = 3 + 8  ejk 6 1 + 14  ejk 6 2 + 20  ejk 6 3 + 11  ejk 6 4 + 4  ejk 6 5
                           2             2               3           2            2
                                                                                                           (5.5.21)

      h akolouja exìdou tou sust mato brsketai me antstrofo diakritì metasqhmatismì
      Fourier    6-shmewn kai enai
                                            y(n) = [ 3; 8; 14; 20; 11; 4 ℄                                 (5.5.22)



Sto Prìblhma 2.12 h èxodo tou sust mato brèjhke me th bo jeia tou ajrosma-
to th sunèlixh . An prosdiorsoume thn èxodo tou sust mato qrhsimopoi¸nta
kuklik sunèlixh 5-shmewn, tìte prosdiorzetai h akolouja ; ;   ; ; , èn-             [7 8 14 20 11℄
w, an prosdiorsoume thn èxodo tou sust mato qrhsimopoi¸nta kuklik sunèlixh
4-shmewn tìte prosdiorzetai h akolouja                 [14 12 14 20℄
                                              ; ; ; , h opoa enai sh me thn
kuklik sunèlixh pou upologsthke sta Parˆdeigma 5.5.2 kai 5.5.3. ParathroÔme
ìti h akolouja        [14 12 14 20℄
                   ; ; ;         èqei proèljei apì thn y n           ( ) = [3 8 14 20 11 4℄
                                                             ; ; ; ; ;
me anadplwsh twn stoiqewn       11
                                  kai   prˆgmati,  4; ; ;      [14 12 14 20℄ = [3 + 11 8 +
                                                                         ;
4 14 20℄
 ; ; .
180                           Anˆptugma - Metasqhmatismì                   Fourier Diakrit¸n Shmˆtwn                 Kefˆlaio 5




5.5.6     O diakritì          metasqhmatismì               Fourier          se morf           pinˆkwn

An efarmìsoume thn exswsh anˆlush tou diakritoÔ metasqhmatismoÔ Fourier
                                       NX1
                     XN (k ) =               x(n)e        jk 2N n ;        k = 0; 1; : : : ; N             1          (5.5.23)
                                       n=0
gia    k = 0; 1; 2; : : : ; N          1, èqoume ti         exis¸sei :

  XN (0)       =e0 x(0) +e0 x(1)                     +e0 x(2)                        : : : +e0 x(N 1)
  XN (1)       =e0 x(0) +e j 2N x(1)                +e j 2N 2 x(2)                 : : : +e j 2N (N 1) x(N 1)
  XN (2)       =e0 x(0) +e j2 2N x(1)               +e j2 2N 2 x(2)                : : : +e j2 2N (N 1) x(N 1)
  ..           ..        ..                          ..                              ..         ..
   .            .         .                           .                                   .      .
  XN (N )      =e0 x(0) +e      j (N 1) 2N x(1)     +e      j (N 1) 2N 2 x(2)      : : : +e        j (N 1) 2N (N 1) x(N   1)
An     x enai to diˆnusma twn N             stoiqewn th akolouja                       x(n), dhlad           ,

                                x = [x(0); x(1); x(2); : : : ; x(N                            1)℄T                     (5.5.24)

ìpou o ekjèth T dhl¸nei ton anˆstrofo pnaka,                                    X enai to diˆnusma twn N               sunte-
              ()
lest¸n X k  dhlad ,

                       X = [XN (0); XN (1); XN (2); : : : ; XN (N                                    1)℄T              (5.5.25)

kai    W o N  N DFT pnaka
                               2
                                 1           1                1             :::                1            3
                               6 1        WN                WN2             :::           WNN 1             7
                    W=6        6
                                  .          ..               ..            ..                 ..
                                                                                                            7
                                                                                                            7          (5.5.26)
                               4 ..           .                .                 .              .           5
                                   1    WNN 1 WN2(N 1) : : : WN(N 1)(N 1)
                2
ìpou WN       =
            e j N enai h Nost rza th monˆda . Me th bo jeia twn orism¸n aut¸n
oi exis¸sei pou dnoun to diakritì metasqhmatismì Fourier ekfrˆzontai se morf
pinˆkwn w
                                   X W x                    =          (5.5.27)
Eˆn o antstrofo tou               W upˆrqei kai enai o W 1 , èqoume apì thn (5.5.27)
                                                   x=W 1X                                                             (5.5.28)

Oi sqèsei (5.5.5) ekfrˆzetai se morf pinˆkwn w

                                                   x=
                                                             1 W?  X                                                  (5.5.29)
                                                             N
Enìthta 5.5           Diakritì   Metasqhmatismì   Fourier                                          181



ìpou W? enai o suzug    migadikì tou pnaka                    W.    SÔgkrish twn dÔo teleutawn
exis¸sewn odhge sto sumpèrasma

                                             W 1=
                                                        1 W?                                  (5.5.30)
                                                       N
apì thn opoa èqoume
                                            W  W? = N  I                                    (5.5.31)

ìpou I enai o monadiao pnaka diastˆsewn N                 N . ParathroÔme ìti o pnaka         W
enai summetrikì kai orjog¸nio pnaka .


5.5.7       TaqÔ   metasqhmatismì         Fourier
O diakritì metasqhmatismì Fourier mia akolouja                      N -shmewn x(n); n = 0; 1; : : : ;
N       1
      , orzetai w h akolouja N ìrwn

                      X1
                      N
            X (k) =         x(n)WNnk ; k = 0; 1; 2; : : : ; N    1 kai WN = e       j 2N     (5.5.32)
                      n=0
Gia na upologisje kˆje ìro th akolouja tou diakritoÔ metasqhmatismoÔ Foureir,
apaitoÔntai N pollaplasiasmo kai N                   1
                                              prosjèsei . Gia na upologiste, epomè-
nw , olìklhrh h akolouja X k , qreiˆzontai N 2 pollaplasiasmo kai N N
                                        ()                                                   (      1)
prosjèsei . Gia parˆdeigma, o upologismì tou diakritoÔ metasqhmatismoÔ Fourier
mia akolouja me m ko N                apaite N 2
                                        = 512                   = 262144
                                                              pollaplasiasmoÔ kai
NN  (       1) = 261632
                     prosjèsei . O arijmì twn prˆxewn auxˆnetai lìgw tou gegonìto
ìti upˆrqoun kai prˆxei metaxÔ migadik¸n arijm¸n.
    O pnaka W, o opoo qrhsimopoietai katˆ ton upologismì tou diakritoÔ metasqh-
matismoÔ Fourier, enai summetrikì . Axiopoi¸nta th summetra kai thn periodikìthta
twn tim¸n tou pnaka katal goume se mejìdou upologismoÔ tou diakritoÔ metasqh-
matismoÔ Foureir me arketˆ ligìtere prˆxei .
    àqoun anaptuqje èna pl jo apì diaforetikoÔ algìrijmou pou epitugqˆnoun
to skopì autì. Oi diaforè tou brskontai sto pl jo kai to edo twn prˆxewn
kaj¸ kai sto mègejo th apaitoÔmenh mn mh . Ja anafèroume ton algìrijmo twn
Cooley-Tukey, o opoo protˆjhke to 1965. O algìrijmo autì mpore na efarmoste
se akolouje N          =2
                       n -shmewn. Me to parˆdeigma pou akolouje ja parousiaste
h dunatìthta periorismoÔ twn apaitoÔmenwn prˆxewn lìgw twn idiot twn th sum-
metra kai th periodikìthta pou parousiˆzei o pnaka W.
Parˆdeigma 5.5.5
        Na breje o diakritì        metasqhmatismì    Fourier 4-shmewn th     akolouja


                                            [ x(0); x(1); x(2); x(3) ℄
182                       Anˆptugma - Metasqhmatismì          Fourier Diakrit¸n Shmˆtwn                      Kefˆlaio 5




      LÔsh      An efarmìsoume thn exswsh anˆlush tou diakritoÔ metasqhmatismoÔ                               Fourier
                              NX1
                                                                                      2
                 XN (k) =           x(n)W4nk ;          0  k  3;        W4 = ej      4   =       j           (5.5.33)
                              n=0
      gia   k = 0; 1; 2; 3 kai ekfrˆsoume ti            exis¸sei     se morf        pinˆkwn, èqoume
                          2             3       2                               3 2                3
                              X4 (0)   W40                W40 W40 W40                 x(0)
                      6         7 6 W0
                              X4 (1)                      W41 W42 W43           7 6 x(1) 7
                      6         7=6      4                                      76        7
                      4         5 4 W40
                              X4 (2)                      W42 W44 W46           5 4 x(2) 5            (5.5.34)

                              X4 (3)   W40                W43 W46 W49                 x(3)
      Epeid    W40 = W44 = 1, W41 = W49 =                j , W42 = W46 =        1 kai W43 = j , èqoume
                              2             3       2
                                  X4 (0)        1 1 1 1 3 2                           x(0)
                                                                                               3
                              6   X4 (1)    7 6 1
                                            7=6    j 1 j 7 6                          x(1)     7
                                                   1 1 1 54
                              6                          7 6                                   7
                              4   X4 (2)    5 4 1                                     x(2)     5               (5.5.35)

                                  X4 (3)        1 j 1 j                               x(3)
      Ekmetalleuìmenoi th summetra èqoume

              X4 (0)   = x(0) + x(1) + x(2) + x(3)                   = [x| (0) {z+ x(2)}℄ + [|x(1) {z+ x(3)℄}
                                                                               g1                      g2
              X4 (1)   = x(0)        jx(1) x(2) + jx(3)              = [|x(0) {z x(2)℄} j [|x(1) {z x(3)℄}
                                                                               h1                       h2
              X4 (2)   = x(0)        x(1) + x(2) x(3)                = [|x(0) {z
                                                                              + x(2)℄} [|x(1) {z+ x(3)℄}
                                                                               g1                      g2
              X4 (3)   = x(0) + jx(1)               x(2) jx(3)       = [|x(0) {z x(2)℄} +j [|x(1) {z x(3)℄}
                                                                               h1                       h2
      Oi sqèsei    autè   odhgoÔn se ènan apotelesmatikì algìrijmo pou èqei dÔo b mata

                                            B ma I                       B ma II
                                   g1 = x(0) + x(2)              XN (0) = g1 + g2
                                   g2 = x(1) + x(3)              XN (1) = h1 jh2                               (5.5.36)
                                   h1 = x(0) x(2)                XN (2) = g1 g2
                                   h2 = x(1) x(3)                XN (1) = h1 + jh2
      O algìrijmo autì qreiˆzetai mìno dÔo migadikoÔ pollaplasiasmoÔ . Sto Sq ma 5.28
      dnetai to diˆgramma ro           tou algìrijmou.

      O algìrijmo (5.5.36) mpore na ulopoihje me diaforetikì trìpo. Arqikˆ h akolouja
      4-shmewn x(n) diairetai se dÔo akolouje 2-shmewn, oi opoe                         dieujetoÔntai se dÔo
      dianÔsmata st lh        w
                                                                                 
                                        x(0) ; x(1)              =       x(0) x(2)
                                        x(2)   x(3)                      x(1) x(3)
Enìthta 5.5       Diakritì       Metasqhmatismì       Fourier                                                             183


    x(0)                                                                                                           X(0)
                                            g1

    x(1)                                                                                                           X(1)
                            -1              h1                                                      -j
    x(2)                                                                                       -1                  X(2)
                                            g2

     x(3)                                                                                                         X(3)
                            -1              h2                                       j

                    Sq ma 5.28          Diˆgramma ro              sto Parˆdeigma 5.5.5.


       Sth sunèqeia brsketai o mikrìtero                2-shmewn diakritì               metasqhmatismì         Fourier
                                                                                                    
                    W2           x(0) x(1)
                                  x(2) x(3)
                                                               1
                                                         = 1 1     1)                   x(0) x(1)
                                                                                         x(2) x(3)
                                                                                                            
                                                         = xx(0)     + x(2)
                                                                 (0) x(2)
                                                                                          x(1) + x(3)
                                                                                          x(1) x(3)
                                                                               
                                                         =        g1 g2
                                                                  h1 h2
       Katìpin, kˆje stoiqeo tou pnaka pou prokÔptei pollaplasiˆzetai me                                   fW4pq g, ìpou p
       enai o dekth   gramm         kai   q enai o dekth       st lh . Dhlad , ekteletai to eswterikì
       ginìmeno
                                 
                                     1 1   ?  g1           g2
                                                                    
                                                                        =
                                                                            
                                                                                g1         g2
                                                                                                    

                                     1 j         h1           h2                h1         jh2
                                                                                                    
                            g1
                            h1
                                      g2
                                      jh2         W2 =            g1 g2
                                                                   h1 jh2  1 j
                                                                                  1 1
                                                                                   
                                                          =         g1 + g2 g1 g2
                                                                   h1 jh2 h1 + jh2
                                                                                
                                                          =        X4 (0) X4 (2)
                                                                   X4 (1) X4 (3)                                    (5.5.37)


       An kai o diaforetikì          autì    trìpo       ulopohsh      apaite perissìterou                 pollaplasias-
       moÔ apì ton apotelesmatikì algìrijmo (5.5.36), upodeiknÔei ma susthmatik                                    prosèg-
       gish prosdiorismoÔ enì          diakritoÔ metasqhmatismoÔ                Foureir megˆlh           tˆxh    me th bo -
      jeia diakrit¸n metasqhmatism¸n Foureir mikrìterh tˆxh .

    Sth sunèqeia ja genikeÔsoume ta sumperˆsmata tou paradegmato  dhlad , ja
dexoume ìti, gia ˆrtio N , o diakritì metasqhmatismì Fourier m kou N upologzetai
me katˆllhlo sunduasmì dÔo akolouji¸n diakrit¸n metasqhmatism¸n Foureir m kou
   2                    2
N= . An kai o N= enai ˆrtio , tìte to dio mpore na gnei gia kˆje ma apì ti
dÔo akolouje  dhlad , na upologisjoÔn me katˆllhlo sunduasmì dÔo diakrit¸n
                                                     4
metasqhmatism¸n Foureir m kou N= . An o N enai dÔnamh tou 2 (N              p ), h                              =2
184                       Anˆptugma - Metasqhmatismì           Fourier Diakrit¸n Shmˆtwn                 Kefˆlaio 5




diadikasa aut suneqzetai mèqri na ftˆsoume se diakritì metasqhmatismì Foureir
2-shmewn, poÔ enai eÔkolo na upologiste.
                                                     ()
    Arqikˆ, h akolouja twn N ìrwn x n qwrzetai se dÔo akolouje m kou N=                                       2
h kˆje ma, ti g1 n   ( ) = (2 )
                        x n kai g2 n        x n    ( ) = (2 + 1)
                                                   , gia n    ; ; : : : ; N2 , oi       =0 1                 1
opoe apoteloÔntai apì tou ìrou me ˆrtiou kai perittoÔ dekte antstoiqa. H
(5.5.32) grˆfetai

                                   X1
                                   N
               X (k)       =              x(n)WNnk
                                   n=0
                                    2 1                        2 1
                                   N                           N
                                    X                          X
                           =              x(2n)WN2nk +                 x(2n + 1)WN(2n+1)k
                                   n=0                         n=0
                                    2 1                                2 1
                                   N                                   N
                                    X                                  X
                           =              x(2n)WN2nk + WNk                    x(2n + 1)WN2nk              (5.5.38)
                                   n=0                                 n=0
                       j 2N 2nk            2 nk
àpeid   WN2nk = e                  =e     j N=2     = WN=
                                                       nk h (5.5.38) grˆfetai
                                                          2
                                   2 1                             2 1
                               N                                   N
                                   X                               X
                   X (k ) =              x(2n)    nk
                                                 WN=2      +WNk            x(2n + 1)WN=
                                                                                     nk
                                                                                       2
                                   n=0                             n=0
                               |           {z          }           |             {z           }
                                          G1 (k)                               G2 (k)


           X (k) = G1 (k) + WNk  G2 (k); k = 0; 1; 2; : : : ; N                          1               (5.5.39)
Epiplèon, epeid

          WNk+ 2  = e j 2N (k+ N2 ) = e                                                             N
                  N
                                                    j e j 2N k   =       WNk ; k = 0; 1; : : : ;
                                                                                                     2
h (5.5.39) an k = k + N
                      2 dnei
                          
                       N                                              N
  X (k) = X k +         = G1 (k) + WNk  G2 (k); k = 0; 1; 2; : : : ;
                    2                                                 2 1 (5.5.40)
ParathroÔme ìti o upologismì tou X (k ) èqei ekfraste me th bo jeia dÔo diakrit¸n
metasqhmatism¸n Fourier me pl jo shmewn N=2 o kajèna .
    H diadikasa anˆlush pou akolouj jhke prohgoumènw mpore na suneqiste
kai gia ton upologismì twn dÔo nèwn diakrit¸n metasqhmatism¸n Fourier G1 (k ) kai
G2 (k). H diadikasa aut suneqzetai mèqri na ftˆsoume se diakritì metasqhmatismì
Fourier 2-shmewn pou enai eÔkolo na upologiste.
Enìthta 5.5        Diakritì    Metasqhmatismì   Fourier                                         185



  x(0)                                                                                        X(0)
                                                                                          0
                          WN
                               0
                                                          WN
                                                              0
                                                                                      WN
  x(4)                4                                                                       X(1)
                    WN                                    WN
                                                              2
                                                                                      WN
                                                                                          1



  x(2)                                                    4                                   X(2)
                               0                      WN                             WN
                                                                                          2
                          W   N
  x(8)               4                                    6                                   X(3)
                   WN                                 WN                              WN
                                                                                          3



  x(1)                                                                               4        X(4)
                               0                              0                    WN
                          WN                              WN
  x(5)                4                                                               5       X(5)
                    WN                                        2                     WN
                                                          WN
  x(3)                                                    4                           6       X(6)
                               0                      WN                            WN
                          WN
  x(7)                4                                   6                           7       X(7)
                    WN                                WN                            WN


      Sq ma 5.29     Diˆgramma ro       diakritoÔ metasqhmatismoÔ       Fourier okt¸ shmewn.

    Sto Sq ma 5.29 fanetai to diˆgramma ro tou diakritoÔ metasqhmatismoÔ Fourier
okt¸ shmewn.
    H diˆtaxh twn deigmˆtwn tou diakritoÔ metasqhmatismoÔ Fourier sthn èxodo e-
nai kanonik  dhlad , X            (0) (1)       (7)
                             ; X ; : : : ; X . Antjeta, h diˆtaxh twn deigmˆtwn
                                      (0) (4) (2) (6) (1) (5) (3) (7)
eisìdou enai mh kanonik : x ; x ; x ; x ; x ; x ; x ; x . H diˆtaxh
aut prokÔptei apì thn kanonik diˆtaxh twn deigmˆtwn me antistrof th seirˆ
twn duadik¸n yhfwn sth duadik anaparˆstash twn deikt¸n bit reversal.

              x(0); x(1); x(2); x(3); x(4); x(5); x(6); x(7); !
              x(000); x(001); x(010); x(011); x(100); x(101); x(110); x(111); !
              x(000); x(100); x(010); x(110); x(001); x(101); x(011); x(111); !
              x(0); x(4); x(2); x(6); x(1); x(5); x(3); x(7):
Apì to sq ma parathroÔme ìti se kˆje stˆdio oi èxodoi mporoÔn na apojhkeÔontai
sti die jèsei mn mh , sti opoe     tan apojhkeumène oi antstoiqe esodoi tou
stadou.
    Shmei¸netai ìti o taqÔ metasqhmatismì Fourier den apotele nèo metasqhma-
tismì Fourier, allˆ apotele ma apodotik algorijmik mèjodo, me thn ènnoia ìti
elatt¸nei thn upologistik poluplokìthta, dhlad , to sunolikì pl jo prˆxewn
(pollaplasiasm¸n kai prosjèsewn). Prˆgmati, h upologistik poluplokìthta tou
taqèo metasqhmatismoÔ Fourier enai th tˆxew N     2 N , kai ìqi N 2 tou diakritoÔ
                                                                  log
metasqhmatismoÔ Fourier.
186                       Anˆptugma - Metasqhmatismì         Fourier Diakrit¸n Shmˆtwn                 Kefˆlaio 5




5.6   EFARMOGES TOU METASQHMATISMOU                                                  FOURIER          DIAKRI-
      TOU QRONOU

äpw kai sthn perptwsh twn susthmˆtwn suneqoÔ qrìnou, me th bo jeia th idiìth-
ta th sunèlixh mporoÔme na upologsoume thn èxodo, y n enì GQA sust mato         ()
                                                                        ()
diakritoÔ qrìnou to opoo èqei kroustik apìkrish h n , ìtan gnwrzoume thn esodì
      ()
tou x n .
Parˆdeigma 5.6.1
      Dnetai to grammikì qronikˆ anallowto sÔsthma to opoo èqei kroustik                           apìkrish

                                                  h(n) = Æ(n n0 )                                         (5.6.1)

      Na upologiste h sqèsh metaxÔ th             akolouja         eisìdou-exìdou tou sust mato .

      LÔsh      H apìkrish suqnìthta          tou sust mato           enai

                                              1
                                              X
                                  H(    )=            Æ(n n0 )e j n = e j n0                              (5.6.2)
                                             n=   1
      An h esodo   tou sust mato enai to s ma x(n), to opoo èqei MF diakritoÔ qrìnou
      X(   ), o MF diakritoÔ qrìnou th exìdou ja enai
                              Y ( ) = H ( )  X ( ) = e j n0 X ( )               (5.6.3)

      Me th bo jeia th       idiìthta    th   qronik        metatìpish         parathroÔme ìti h èxodo       tou
      sust mato      enai sh me thn esodo tou sust mato                  metatopismènh qronikˆ katˆ       n0 ,
      dhlad ,
                                                  y(n) = x(n n0 )                                         (5.6.4)


Parˆdeigma 5.6.2
      Dnetai to grammikì qronikˆ anallowto sÔsthma me kroustik                           apìkrish

                                                   h(n) =       nu(n)                                     (5.6.5)

      An h esodo    tou sust mato        enai to s ma:

                                                   x(n) = n u(n)                                          (5.6.6)

      na prosdioriste h èxodo         tou sust mato .

      LÔsh      Oi   MF   diakritoÔ qrìnou th         kroustik         apìkrish       kai tou s mato     eisìdou
      tou sust mato       enai


                                H(     ) = 1 1e       j   kai   X(     ) = 1 1e        j                  (5.6.7)


      Me th bo jeia th       idiìthta    th   sunèlixh      prosdiorzetai o         MF    diakritoÔ qrìnou th
      exìdou tou sust mato


                           Y(     ) = H ( )  X ( ) = (1                       1
                                                                      e j     ) (1    e j    )            (5.6.8)
Enìthta 5.6            Efarmogè    tou DiakritoÔ MetasqhmatismoÔ           Fourier                                187



        An      6=   , h anˆlush th       Y(    ) se aplˆ klˆsmata dnei
                                                            C1                   C2
                                          Y(    )= 1                  +1                                       (5.6.9)
                                                             e j                  e j
        Oi timè      twn stajer¸n    C1 kai C2 enai
                                           C1 =               kai   C2 =                                      (5.6.10)


        Me antstrofo        MF diakritoÔ       qrìnou prosdiorzetai h èxodo                 tou sust mato


                                    y(n)       =              nu    (n)                  nu (n)
                                               =        1     n+1             n+1  u(n)                     (5.6.11)


        An      =    , o   MF diakritoÔ    qrìnou th        exìdou enai

                                                                               2
                                                   Y(   ) = 1 1e           j                                  (5.6.12)


        Me th bo jeia tou zeÔgou           14   MF diakritoÔ qrìnou ston Pnaka 5.2 prosdiorzetai                 to
        s ma exìdou tou sust mato

                                                y(n) = (n + 1) n u(n + 1)                                     (5.6.13)

        H èxodo      tou sust mato        mpore na grafe kai w

                                                   y(n) = (n + 1) n u(n)                                      (5.6.14)

        kaj¸      oi dÔo ekfrˆsei        dnoun thn dia akolouja             :::; y(    1) = 0; y(0) = 1; y(1) =
        2    ; y(2) = 3 2 ; :::.

5.6.1    H apìkrish suqnìthta                  gia sust mata ta opoa qarakthrzontai
         apì grammikè            exis¸sei       diafor¸n me stajeroÔ                     suntelestè

Ma megˆlh kathgora apì grammikˆ qronikˆ anallowta (GQA) sust mata diakritoÔ
qrìnou enai autˆ sta opoa h esodo kai h èxodo ikanopoioÔn ma grammik exswsh
diafor¸n me stajeroÔ suntelestè th morf
                                    N
                                    X                          M
                                                               X
                                          ak y(n k) =                bk x(n k)                                (5.6.15)
                                    k=0                        k=0
Efarmìzoume MF diakritoÔ qrìnou kai sta dÔo mèlh th exswsh
                                 " N                    #           "M                        #
                                  X                                  X
                             F           ak y(n k)          =F             bk x(n k)                          (5.6.16)
                                   k=0                               k=0
188                     Anˆptugma - Metasqhmatismì                     Fourier Diakrit¸n Shmˆtwn             Kefˆlaio 5




Lìgw th idiìthta th grammikìthta pou èqei o MF diakritoÔ qrìnou èqoume

                            N
                            X                                    M
                                                                 X
                                  ak F [y(n k)℄ =                       bk F [x(n k)℄                            (5.6.17)
                            k=0                                  k=0
kai, lìgw th idiìthta th qronik                         metatìpish pou èqei o MF diakritoÔ qrìnou,
èqoume thn exswsh

                                       N
                                       X                                   M
                                                                           X
                            Y(     )         ak e       jk    = X( )             bk e    jk                      (5.6.18)
                                       k=0                                 k=0
Qrhsimopoi¸nta thn idiìthta th sunèlixh èqoume
                                                               PM
                                                  Y(         )=P k=0 bk e
                                                                                  jk
                                  H(    )=        Y(         )   N                                               (5.6.19)
                                                                                  jk
                                                                 k=0 ak e
ParathroÔme ìti h apìkrish suqnìthta enì GQA sust mato enai rht sunˆrthsh
dhlad , mpore na ekfraste w lìgo dÔo poluwnÔmwn th metablht e j .

Parˆdeigma 5.6.3 (SÔsthma         pr¸th      tˆxh       ).
      Dnetai to GQA sÔsthma diakritoÔ qrìnou, to opoo arqikˆ brsketai se hrema, kai
      qarakthrzetai apì thn exswsh diafor¸n


                                       y(n) ay(n               1) = x(n) me jaj < 1                              (5.6.20)


      Na brejoÔn h apìkrish suqnìthta , h kroustik                          apìkrish tou sust mato           kai h apì-
      krish tou sust mato         sto monadiao b ma.

      LÔsh      Efarmìzonta        MF     diakritoÔ qrìnou kai sta dÔo mèlh th                         exswsh   èqoume,
      lìgw twn idiot twn th        grammikìthta               kai th     qronik         metatìpish ,


                                      F [y(n) ay(n 1)℄ = F [x(n)℄
                                  F [y(n)℄ aF [y(n 1)℄ = F [x(n)℄
                                        Y(        )     ae j Y (   ) = X( )
                                                                H( ) =
                                                                          1
                                                                       1 ae                   j                  (5.6.21)


      H kroustik   apìkrish tou sust mato                      enai


                                                         h(n) = an u(n)                                          (5.6.22)


      Sto Sq ma 5.30 èqei sqediaste h kroustik                    apìkrish tou sust mato pr¸th tˆxh gia
      diˆfore   timè   th    stajerˆ         a.       ParathroÔme ìti       h(n) sugklnei sthn telik th tim
      me rujmì o opoo      exartˆtai apì to rujmì me ton opoo h                  jajn sugklnei sto mhdèn. H
Enìthta 5.6            Efarmogè    tou DiakritoÔ MetasqhmatismoÔ     Fourier                               189



   h(n)                                                   h(n)

                                       a   1                                                   a     1
                                           4                                                         4

          0                                        n             0                                           n


   h(n)                                                   h(n)
                                           1                                                         1
                                       a   2                                                   a     2

          0                                       n              0                                           n


   h(n)                                                   h(n)

                                       a   3                                                   a     3
                                           4                                                         4

          0                                       n              0                                           n


   h(n)                                                   h(n)

                                       a   7                                                   a     7
                                           8                                                         8

          0                                       n              0                                           n




Sq ma 5.30         H kroustik      apìkrish tou sust mato        pr¸th         tˆxh , gia diˆfore   timè    th

stajerˆ       a.

      stajerˆ      a èqei parìmoio rìlo me th stajerˆ qrìnou              tou sust mato      pr¸th      tˆxh
      suneqoÔ       qrìnou.


      Sto Sq ma 5.31 èqei sqediaste h apìkrish plˆtou                 tou sust mato      pr¸th     tˆxh    gia
      diˆfore timè th stajerˆ             a. ätan h stajerˆ a > 0, to sÔsthma prokale exasjènhsh
      sti      uyhlè     suqnìthte
                                      dhlad , to jH ( )j èqei mikrè timè , ìtan to lambˆnei timè
      sthn perioq         tou    se sÔgkrish me th   timè   pou èqei, ìtan to         lambˆnei timè      sthn
      perioq       tou   0. To antjeto sumbanei, ìtan a < 0.
      ParathroÔme epsh     ìti gia mikrè timè th stajerˆ jaj h mègisth tim tou mètrou
      jH ( )j pou enai 1=(1 + a) kai h elˆqisth tim tou 1=(1 a) èqoun mikr diaforˆ gia
      a < 0, me apotèlesma to mètro jH ( )j na enai sqetikˆ stajerì, se antjesh me thn
      perptwsh sthn opoa to jaj èqei megˆle timè .
190                          Anˆptugma - Metasqhmatismì                      Fourier Diakrit¸n Shmˆtwn                   Kefˆlaio 5




                                                             20 log 10 H(Ù)
                                       a    7
                                            8
                             3                                   20
                     a       4
                                       a        1
                                                2                10
                     a   1
                         4
                                                        -ð                             ð
                                 -2ð                                0                                    2ð   Ù

                                                             20 log 10 H(Ù)
                                                                                           a     7
                                                    3            20                              8
                                       a            4

                                                                                            a        1
                                       a            1            10                                  2
                                                    4
                                 -2ð                                0                                    2ð
                                                        -ð                             ð                      Ù


Sq ma 5.31    H apìkrish plˆtou                         tou sust mato        pr¸th         tˆxh , gia diˆfore     timè    th   sta-

jerˆ   a.

       H apìkrish tou sust mato                         pr¸th    tˆxh    sto monadiao b ma enai


                                                                                  1        an+1
                                            y(n) = h(n) ? u(n) =                                u(n)
                                                                                       1     a
                                                                                                                           (5.6.23)




Parˆdeigma 5.6.4
       Dnetai to GQA sÔsthma diakritoÔ qrìnou, to opoo arqikˆ brsketai se hrema, kai
       qarakthrzetai apì thn exswsh diafor¸n



                                           y(n)
                                                          3 y(n 1) + 1 y(n 2) = 2x(n)
                                                          4          8                                                     (5.6.24)


       Na brejoÔn h apìkrish suqnìthta                           kai h kroustik             apìkrish tou sust mato .

       An h esodo   tou sust mato                       enai

                                                                         n
                                                             x(n) =
                                                                         1        u(n)
                                                                         4                                                 (5.6.25)



       na breje to s ma exìdou tou sust mato .

       LÔsh   H apìkrish suqnìthta                           tou sust mato             enai



                                                        H(   )= 1                 2
                                                                        3     j       + 18 e    j2                         (5.6.26)
                                                                        4e
Enìthta 5.6          Efarmogè   tou DiakritoÔ MetasqhmatismoÔ         Fourier                                    191



      AnalÔoume ton paranomast            se ginìmeno poluwnÔmwn pr¸tou                         deutèrou bajmoÔ w
      pro     e j   ètsi èqoume


                                    H(     )= 1                   2
                                                       1     j       1        1e    j                      (5.6.27)
                                                       2e                      4
      h anˆlush se aplˆ klˆsmata dnei


                                  H(     ) = 1 14e          j            1     1
                                                                                 2
                                                                                      j                     (5.6.28)
                                               2                                4e
      Me th bo jeia antistrìfou          MF diakritoÔ qrìnou prosdiorzetai h kroustik                      apìkrish
      tou sust mato
                                                 n                       n
                                   h(n) = 4
                                            1           u(n)     2 14                u(n)
                                            2                                                                (5.6.29)


                                                            ma x(n) =
                                                                                 1 n u(n), an qrhsimopoihje to
      ätan h esodo      tou sust mato         enai to s                        4
      zeugˆri   MF diakritoÔ     qrìnou

                                          n
                                x(n) =
                                           1      u(n) F! X (             ) = 1 11e
                                           4                                          4     j

      o metasqhmatismì      Fourier diakritoÔ       qrìnou th         exìdou tou sust mato            ja enai


                   ) = H ( )  X ( ) = 1 1 e j 2 1 1 e j   1 11e
                    Y(                                                                                j 
                                           2            4       4
      H anˆlush se aplˆ klˆsmata tou Y ( ) èqei th morf


                     Y( )=
                                     4             2  + 8
                                1 14 e j     1 4 e j 2 1 12 e j
                                                  1                                                          (5.6.30)



      Me th bo jeia antistrìfou          MF diakritoÔ       qrìnou an qrhsimopoihjoÔn ta zeugˆria                MF
      diakritoÔ qrìnou 8 kai 14, prosdiorzetai h èxodo                       tou sust mato

                            n              n         n
                y(n) =    4 41 u(n) 2(n + 1) 14 u(n) + 8 12 u(n)                                             (5.6.31)




Parˆdeigma 5.6.5
      Dnetai sÔsthma diakritoÔ qrìnou tou opoou h sqèsh metaxÔ twn shmˆtwn eisìdou
      exìdou perigrˆfetai apì thn exswsh diafor¸n


                                          y(n) =
                                                    1 (x(n) + x(n 1))
                                                    2                                                        (5.6.32)


      Na breje h kroustik        apìkrish, h apìkrish suqnìthta                      tou sust mato     kai na gnei
      h grafik      parˆstash th    apìkrish        plˆtou .
192                       Anˆptugma - Metasqhmatismì            Fourier Diakrit¸n Shmˆtwn                  Kefˆlaio 5




      LÔsh       H kroustik     apìkrish tou sust mato               enai

                                                               1
                                     h(n) = SfÆ(n)g = Æ(n) + Æ(n
                                                                             1           1)
                                                               2             2                               (5.6.33)


      H apìkrish suqnìthta           tou sust mato         enai o       MF      diakritoÔ qrìnou th       kroustik
      apìkrish
                    ètsi h (5.6.33) dnei

                                              H(     ) = 12 + 12 e       j                                   (5.6.34)


      an qrhsimopoi je to zeugˆri 11             MF     diakritoÔ qrìnou kai h idiìthta th                 qronik
      metatìpish . H kroustik          apìkrish tou sut mato              mpore na grafe w
                                                                                              
                                H(    )=e    j2   ej 2   +e     j2
                                                                      =e      j2      os 2
                                                         2                                                   (5.6.35)


      apì thn opoa parathroÔme ìti h apìkrish plˆtou                        enai
                                                                         
                                             jH ( )j = os 2                                                  (5.6.36)


      kai h apìkrish fˆsh        enai

                                              argfH ( )g = 2                                                 (5.6.37)

      Sto Sq ma 5.32 èqei gnei h grafik            parˆstash th             apìkrish          plˆtou   se sunˆrthsh
      me th      . ParathroÔme ìti to sÔsthma enai èna qamhloperatì fltro.


                     H(Ù)
                          1

                                                               Sq ma 5.32             H grafik     parˆstash th

                                                               apìkrish plˆtou se sunˆrthsh me th
            -ð              0                 ð     Ù          tou sust mato            sto Parˆdeigma 5.6.5.



Parˆdeigma 5.6.6
      H sqèsh metaxÔ twn shmˆtwn eisìdou                 x(t)      kai exìdou         y(t)   se èna thlepikoinwniakì
      kanˆli sto opoo parousiˆzetai to fainìmeno twn pollapl¸n diadrom¸n perigrˆfetai
      apì thn exswsh
                                                         NX1
                                             y(t) =            ak x(t tk )                                   (5.6.38)
                                                         k=0
      ìpou    ak enai o parˆgonta exasjènhsh o sqetikì me thn k-sth diadrom                               diˆdosh ,
      kai   tk enai h antstoiqh qronik kajustèrhsh diˆdosh .
      Na breje h kroustik        apìkrish kai h apìkrish plˆtou                       thlepikoinwniakoÔ kanalioÔ
      sto opoo parousiˆzontai dÔo diadìsei , dhlad , perigrˆfetai apì thn exswsh di-
      afor¸n,
                                          y(n) = x(n) + ax(n                     1)                          (5.6.39)
Enìthta 5.6         Efarmogè      tou DiakritoÔ MetasqhmatismoÔ       Fourier                                       193



       LÔsh      H kroustik       apìkrish tou sust mato           enai


                                     h(n) = SfÆ(n)g = Æ(n) + aÆ(n                      1)                        (5.6.40)


       H apìkrish suqnìthta          tou sust mato       enai o      MF      diakritoÔ qrìnou th           kroustik
       apìkrish
                    ètsi h (5.6.40) dnei

                                                 H(    ) = 1 + ae       j                                        (5.6.41)


       ìpou   a = jajej argfag . H apìkrish suqnìthta           tou sut mato                mpore na grafe w


                                          H(     ) = 1 + jaje    j(         argfag)                              (5.6.42)


       Qrhsimopoi¸nta          thn tautìthta     Euler èqoume

                    H(    ) = 1 + jaj os(           argfag)      j jaj sin(            argfag)                   (5.6.43)


       H apìkrish plˆtou         enai


                jH ( )j = (1 + jaj os( argfag))2 + jaj2 sin2 (                                    argfag)1=2
                        = (1 + jaj2 + 2jaj os( argfag))1=2                                                       (5.6.44)


       lìgw th    trigonwmetrik          tautìthta     os2  + sin2  = 1.
       Sto Sq ma 5.33 èqoun gnei oi grafikè              parastˆsei            th     apìkrish       plˆtou      gia ti
       peript¸sei    ìpou a)     a = 0; 5ej=3 , dhlad      , ìtan sto dèkth ftˆnei ektì                 apì to s ma
       aupeujea    diˆdosh      kai èna s ma me exasjènhsh sh me 0,5 kai qronik                       kajustèrhsh
       sh me   t = T=6 kai b) a = 0; 9ej2=3.
                    H(Ù)                                                    H(Ù)
                       2                                                       2
                         1,5                                                    1,5
                          1                                                      1
                       0,5                                                            0,5

       -ð                  0                 ð     Ù      -ð                       0                    ð    Ù
                          (a)                                                    (â)

Sq ma 5.33      H grafik       parˆstash th      apìkrish      plˆtou se sunˆrthsh me th                    tou sust -

mato   sto Parˆdeigma 5.6.5. a) ìtan        a = 0; 5   ej=3   kai b)   a = 0; 9       ej2=3 .
    Se pollè efarmogè pragmatikoÔ qrìnou h akolouja eisìdou enì FIR fltrou
èqei megˆlo m ko  paradegmato qˆrin, h akolouja pou proèrqetai apì s ma omila
enì mikrof¸nou, h opoa mpore na jewrhje w ma akolouja aperou m kou . Upo-
logzoume thn èxodo tou fltrou me th bo jeia grammik sunèlixh qrhsimopoi¸nta
194                    Anˆptugma - Metasqhmatismì           Fourier Diakrit¸n Shmˆtwn          Kefˆlaio 5




taqÔ metasqhmatismì Fourier, o opoo ja èqei, fusikˆ, megˆlo m ko . Epiplèon den
enai dunatì o upologismì th exìdou, prin epexergastoÔme ìla ta degmata th
eisìdou, kai autì dhmiourge megˆlh kajustèrhsh.
    Sti peript¸sei autè me th bo jeia taqÔ metasqhmatismoÔ Fourier pou t¸ra èqei
mikrì m ko upologzontai oi epimèrou èxodoi tou sust mato , ìtan enai gnwstì
èna tm ma (mplok) th akolouja eisìdou. Sth sunèqeia upologzetai h èxodo tou
fltrou me th bo jeia twn epimèrou exìdwn tou fltrou. Ta parapˆnw epexhgoÔntai
sto parˆdeigma pou akolouje.
Parˆdeigma 5.6.7
      Dnetai to GQA sÔsthma diakritoÔ qrìnou pou èqei kroustik                   apìkrish

                                               h(n) = [ 1; 0;     1℄
                                                        "
      An h esodo   tou sust mato       enai h akolouja       x(n) = n + 1;     0  n  9, na breje h
      èxodo    tou sust mato     me th bo jeia kuklik           sunèlixh    6-shmewn.

      LÔsh       H kroustik     apìkrish tou fltrou enai akolouja       N2 = 3-shmewn. An h
      akolouja eisìdou katatmhje se akolouje              N1 = 6-shmewn, tìte enai gnwstì ìti h
      grammik    sunèlixh kˆje upoakolouja me thn kroustik                apìkrish ja enai akolouja
      N1 + N2   1 = 8-shmewn. An qrhsimopoihje kuklik sunèlixh N = 6-shmewn, tìte
      ta pr¸ta N1 + N2 + 1  N = 2 stoiqea kˆje akolouja ja ena esfalmèna lìgw tou
      fainomènou th    epikˆluyh .

      H akolouja eisìdou     x(n) = [ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 ℄ enai akolouja 10-shmewn.
      Sthn akolouja aut       prostjentai sthn arq         dÔo mhdenikˆ, kai sqhmatzontai oi upoa-
      kolouje

                                     x1 (n)     = [ 0; 0; 1; 2; 3; 4 ℄
                                     x2 (n)     = [ 3; 4; 5; 6; 7; 8 ℄
                                     x3 (n)     = [ 7; 8; 9; 10; 0; 0 ℄
      Kˆje upoakolouja epikalÔptetai apì thn prohgoÔmen                   th   stou   dÔo pr¸tou    ìrou .
      Sthn teleutaa upoakolouja èqoun prosteje mhdenikˆ, ¸ste na gnei akolouja 6-
      shmewn.

      H kuklik    sunèlixh 6-shmewn kˆje upoakolouja            xk (n); k = 1; 2; 3 me thn kroustik
      apìkrish tou sust mato        dnei ti    akolouje

                       y1 (n) = x1 (n) 4 h(n) = [ 3; 4; 1; 2; 2; 2 ℄
                       y2 (n) = x2 (n) 4 h(n) = [ 4; 4; 2; 2; 2; 2 ℄
                       y3 (n) = x3 (n) 4 h(n) = [ 7; 8; 2; 2; 9; 10 ℄
      Apì ti    akolouje yk (n); k = 1; 2; 3 diagrˆfoume tou dÔo pr¸tou ìrou                  , oi opooi
      lìgw th    epikˆluyh     enai esfalmènoi, kai sqhmatzetai h akolouja


                              y(n) = [ 1; 2; 2; 2; 2; 2; 2; 2; 2; 2;       9; 10 ℄                  (5.6.45)
Enìthta 5.6       Probl mata                                                            195



       H akolouja aut      enai sh me thn grammik     sunèlixh


                           x(n) ? h(n) = [ 1; 2; 2; 2; 2; 2; 2; 2; 2; 2;   9; 10 ℄   (5.6.46)



    SÔnoyh Kefalaou
    Sto kefˆlaio autì perigrˆyame to anˆptugma se seirˆ Fourier diakritoÔ qrìnou
periodik¸n akolouji¸n, me th bo jeia tou opoou analÔoume èna periodikì s ma di-
akritoÔ qrìnou se seirˆ apì armonikˆ migadikˆ ekjetikˆ s mata diakritoÔ qrìnou,
dhlad , se s mata apl      suqnìthta . Perigrˆyame th mèjodo prosdiorismoÔ twn
suntelest¸n tou anaptÔgmato kai d¸same th fusik tou shmasa. DieurÔname ta
parapˆnw apotelèsmata kai ètsi perigrˆyame to MF diakritoÔ qrìnou enì s mato
diakritoÔ qrìnou. Parathr same, ìti, ìpw to anˆptugma se seirˆ Fourier twn peri-
odik¸n shmˆtwn diakritoÔ qrìnou, ètsi kai o MF diakritoÔ qrìnou twn mh periodik¸n
shmˆtwn diakritoÔ qrìnou anaparistˆ mh periodikˆ s mata me ekjetikˆ s mata kai
me ton trìpo autì apokalÔptei to fasmatikì tou perieqìmeno.
    Perigrˆyame ti basikè idiìthte sti opoe diafèroun o MF diakritoÔ qrìnou
apì ton MF suneqoÔ . Parousiˆsame leitourge , ìpw h diamìrfwsh kai to je¸rhma
th sunèlixh , me th bo jeia tou opoou h upologistikˆ polÔplokh sqèsh th sunèli-
xh metasqhmatizìmenh katˆ Fourier katal gei s' èna aplì ginìmeno sunart sewn.
Me th bo jeia tou jewr mato tou Parseval edame ìti mporoÔme na upologsoume thn
enèrgeia enì s mato ete sto pedo tou qrìnou ete sto pedo twn suqnot twn.
    Gia na epexergastoÔme to MF diakritoÔ qrìnou me yhfiakˆ mèsa prob kame se
katˆllhlh deigmatolhya tou MF kai sqhmatsame to diakritì MF. Parousiˆsjhkan
oi idiìthte tou diakritoÔ MF. Sth sunèqeia perigrˆfhke o taqÔ MF, me ton opoo
epiteÔqjhke shmantik upologistik elˆttwsh.
    Sto kefalao parousiˆzontai trei pnake . Ston pr¸to upˆrqoun oi idiìthte
tou MF diakritoÔ qrìnou, en¸ ston deÔtero oi MF diakritoÔ qrìnou merik¸n basik¸n
akolouji¸n kai ston trto pnaka oi idiìthte tou diakritoÔ MF. Ja prèpei, telei¸non-
ta to diˆbasma tou kefalaou, na gnwrzete kalˆ ti idiìthte kai na mporete, ba-
sizìmenoi sta paradegmata tou kefalaou kai sti idiìthte , na brskete tou MF
twn basik¸n akolouji¸n pou upˆrqoun sto deÔtero pnaka.


PROBLHMATA


 5.1   Na upologiste o metasqhmatismì Fourier diakritoÔ qrìnou gia ta s mata
                       
              x(n) =    1; 0  n  3
         1.
                        0; alli¸
         2.   x(n) = 3n u( n)
                        
         3.   x(n) = 31 n u(n)
196                    Anˆptugma - Metasqhmatismì    Fourier Diakrit¸n Shmˆtwn   Kefˆlaio 5




              x(n) =  1 n
         4.
                      2  os( 0 n)u(n)
              x(n) =  1 n [u(n + 2) u(n        3)℄
         5.
                      3
              x(n) = n 13 jnj
                          
         6.

              x(n) = n 12 jnj os( 0 n)
                          
         7.
                               
         8.   x(n) = os 125 n + sin(3n)
 5.2   Na upologistoÔn oi akolouje twn opown o metasqhmatismì Fourier diakritoÔ
       qrìnou enai
                       
         1.   X(   ) = 10;; W      <j j
                               0j jW
         2.   X(   ) = 1 4e j3 + 2e j2 + 5e j6
         3.   X(   ) = P1m= 1( 1)m Æ       m
                                            2
         4.   X(   ) = sin2
                       
         5.   X(   ) =  ; 0  j jj j < 0
         6.   X(   ) = 6+e 6je j e j2
 5.3   Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo èqei kroustik apìkrish


                                      h(n) =
                                                sin(n=6)
                                                      n
       Na upologiste h èxodo tou sust mato , ìtan h esodì tou enai to s ma di-
       akritoÔ qrìnou                            n 
                                                n
                                 x(n) = sin                2 4
                                                 8
 5.4   Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo qarakthrzetai apì thn exswsh
       diafor¸n
                                           1
                                  y(n) + y(n          1) = x(n)
                                           2
         1.   Na upologiste h apìkrish suqnìthta tou sust mato .
         2.   An h esodo tou sust mato enai to s ma
                                                      n
                                         x(n) =
                                                      1     u(n)
                                                      2
              na upologiste h èxodo tou sust mato .
Enìthta 5.6        Probl mata                                                                   197



 5.5   Dnontai dÔo GQA sust mata diakritoÔ qrìnou ta opoa èqoun apìkrish suqnìth-
       ta

                          ) = 11+ 1ee j                                       1
                                     j
                   H1 (                              H2 (   )= 1     1
                                   2
                                               kai
                                                                     2e   j       + 14 e   j2
       antstoiqa. Ta dÔo sust mata sundèontai se seirˆ. Na upologiste h exswsh
       diafor¸n h opoa qarakthrzei to sunolikì sÔsthma.
 5.6   Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo qarakthrzetai apì thn exswsh
       diafor¸n
                                    y(n)
                                                1
                                                9 y(n 1) = x(n)
         1.   Na upologiste h apìkrish suqnìthta tou sust mato .
         2.   An h esodo tou sust mato enai to s ma
                                                               n
                                       x(n) = (n + 1)
                                                                1    u(n)
                                                                3
              na upologiste h èxodo tou sust mato .
 5.7   Dnetai GQA sÔsthma diakritoÔ qrìnou to opoo èqei kroustik apìkrish
                                          n
                                h(n) =
                                           1         u(n) +
                                                              1  1 n u(n)
                                           2                  2 4
       Na upologiste h exswsh diafor¸n h opoa sundèei thn esodo kai thn èxodo
       tou sust mato .
 5.8   Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik apìkrish

                                          h(n) = [ 1; 2;       1℄
                                                        "
         1.   Na gnoun oi grafikè parastˆsei tou mètrou kai th fˆsh th apìkrish
              suqnìthta tou sust mato se sunˆrthsh me th kuklik suqnìthta.
         2.   Na breje h èxodo tou sust mato sth mìnimh katˆstash, an to s ma
              eisìdou enai                          
                                       x(n) = 1 + 2         os 3 n 6
 5.9   Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik apìkrish

                                         h(n) = [ 1; 0;         1℄
                                                       "
       H esodo tou sust mato enai to s ma diakritoÔ qrìnou

                                  x(n) = 2(n           1); 0  n  3
       Qrhsimopoi¸nta kuklik sunèlixh na prosdiorsete thn èxodo tou sust mato .
198                      Anˆptugma - Metasqhmatismì    Fourier Diakrit¸n Shmˆtwn           Kefˆlaio 5


                                  
                         x(n) =       1; 0  n  4
5.10   Dnetai to s ma
                                      0; alli¸
         1.   Na apodeiqje ìti o metasqhmatismì Fourier diakritoÔ qrìnou                X(   ) enai
                                         X(
                                                      sin(2 ) e
                                                 ) = sin(            j 32
                                                           =2)
         2.   An gnei omoiìmorfh deigmatolhya tou metasqhmatismoÔ Fourier diakri-
              toÔ qrìnou se suqnìthte pou apèqoun metaxÔ tou katˆ           2 , na    =
                                                                             N
              sqediˆsete to anakataskeuasmèno s maapì ta degmata tou metasqhma-
              tismoÔ Fourier diakritoÔ qrìnou X k 2N gia N   kai N     .   =4        =8
5.11   Na upologiste kai na sqediaste h apìkrish plˆtou tou sust mato pou peri-
       grˆfetai apì thn exswsh diafor¸n

                             y(n) =
                                        1 [x(n + 1) + x(n) + x(n 1)℄
                                        3
5.12   Dnetai to analogikì s ma

                               x(t) =    os(200t) + 0; 6 os(624t)
       Gnetai deigmatolhya tou s mato me suqnìthta 512 Hz. Me th gnwst sqèsh
                                         1
                                         X
                                                                
                                                                    t nTs
                                                                             
                             xa (t) =            xa (nT s)sin
                                        n=   1                        Ts
                                                       ()
       anakataskeuˆzetai to analogikì s ma xa t . Na sugkrnete ta arqikì analogikì
               ()                                               ()
       s ma x t kai to anakataskeuasmèno s ma xa t . Poie enai oi parathr sei
       sa kai pw autè dikaiologoÔntai;


      Bibliografa

5.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
5.2     N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”,                  Daulo   , Aj na, 1994.
5.3     S. Haykin, B. Veen, “Signal and Systems”, John           & Wiley Sons, Inc. 2003
5.4  J. G. Proakis, D. G. Manolakis, “Introduction to Digital Signal Processing”,
 MacMillan Publishing Company, 1994.
5.5   A. V. Oppenheim, R. W. Schafer, “Digital Signal Processing”, Prentice - Hall Inc.,
 N. Y., 1975.
5.6   A. V. Oppenheim, R. W. Schafer, J. R.Buck “Discrete-Time Signal Processing”,
 2nd ed. Prentice - Hall Inc., N. Y., 1999.
                                                              ÊÅÖÁËÁÉÏ      6
                  ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ LAPLACE




    Skopì tou kefalaou enai na orsei ton amfpleuro metasqhmatismì Laplace
 , apl¸ , metasqhmatismì Laplace (ML) kai to monìpleuro metasqhmatismì Laplace
(MML), na perigrˆyei ti basikè tou idiìthte kai na upologsei tou antstoiqou
metasqhmatismoÔ stoiqeiwd¸n shmˆtwn, pou antimetwpzoume sth melèth grammik¸n
susthmˆtwn. Epsh , sto kefˆlaio autì ja parousiˆsoume th dunatìthta pou èqei
o MML na epilÔei diaforikè exis¸sei , oi opoe èqoun mh mhdenikè arqikè sun-
j ke kai sth sunèqeia ja ekmetalleutoÔme th dunatìthta aut gia th melèth GQA
susthmˆtwn. Tèlo , skopì tou kefalaou enai na anadexei th sqèsh pou upˆrqei
metaxÔ th aitiìthta , th eustˆjeia enì GQA sust mato , tou pedou sÔgklish
th sunˆrthsh metaforˆ tou kai th jèsh twn pìlwn aut sto migadikì eppedo,
ìpou orzetai o metasqhmatismì Laplace.


   EISAGWGH

    Sto Kefˆlaio 2, edame ìti h esodo kai h èxodo enì analogikoÔ GQA sust -
mato sundèontai me ma diaforik exswsh me stajeroÔ suntelestè . àtsi, gia na
prosdiorsoume thn èxodo enì sust mato an gnwrzoume thn esodì tou, prèpei na
epilÔoume thn antstoiqh diaforik exswsh. Sto dio Kefˆlaio parathr same ìti
mporoÔme na upologsoume thn èxodo enì sust mato an gnwrzoume thn esodì tou,
me th bo jeia tou oloklhr¸mato th sunèlixh . Sto Kefˆlaio 3 orsame to MF,
o opoo parèqei th dunatìthta metˆbash apì to pedo tou qrìnou sto pedo th
suqnìthta . H idiìthta th sunèlixh tou MF metatrèpei to olokl rwma th sunèli-
xh se èna aplì ginìmeno twn antistoqwn metasqhmatism¸n, me th bo jeia tou opoou
upologzetai o MF th exìdou kai sth sunèqeia me èna antstrofo MF prosdiorzetai
h èxodo tou sust mato sto pedo tou qrìnou. O MF, loipìn, èdwse ma eÔkolh lÔsh
sto prìblhma eÔresh th exìdou enì sust mato , sthn perptwsh pou gnwrzoume
thn esodì tou kai thn kroustik tou apìkrish. Dustuq¸ , ìmw , upˆrqoun pollˆ
s mata, ta opoa suqnˆ sunantˆme sthn prˆxh, gia ta opoa den upˆrqei o MF.
   Sto kefˆlaio autì ja perigrˆyoume to Metasqhmatismì Laplace, o opoo meta-
trèpei èna s ma suneqoÔ qrìnou se ma analutik sunˆrthsh migadik metablht .
äpw ja doÔme, pollˆ apì ta s mata me praktik spoudaiìthta, gia ta opoa den
200                                            METASQHMATISMOS             LAPLACE        Kefˆlaio 6




upˆrqei o MF, upˆrqei o ML kai ètsi dieurÔnetai to sÔnolo twn shmˆtwn gia ta opoa
mpore na epiteuqje metˆbash apì to pedo tou qrìnou sto pedo suqnìthta .
    Sto Kefˆlaio 4, me th bo jeia tou MF upologsame thn èxodo enì GQA sust -
mato to opoo brsketai arqikˆ se katˆstash hrema . Sto kefˆlaio autì ja doÔme
ìti ìtan to sÔsthma de brsketai se katˆstash hrema , o MML ma epitrèpei na
sumperilˆboume ti arqikè sunj ke sth diaforik exswsh pou sundèei to s ma
eisìdou kai exìdou tou sust mato kai na prosdiorsoume thn èxodo tou sust mato .
    Tèlo , sto kefˆlaio autì ja doÔme ìti h qr sh tou migadikoÔ pedou suqnìthta
kai h jèsh twn pìlwn se autì ma epitrèpei na exˆgoume basikè idiìthte twn susth-
mˆtwn, ìpw h aitiìthta kai h eustˆjeia. Gia ìlou tou parapˆnw lìgou , o ML
apotele èna akìma basikì majhmatikì ergaleo gia th melèth GQA susthmˆtwn.

6.1    ORISMOI

Sthn Enìthta 2.5.1 èqoume dei ìti an h esodo enì grammikoÔ qronikˆ anallowtou
sust mato enai to s ma x t    ()=
                                 Aest , tìte to s ma exìdou enai
                                     y(t) = H (s)  Aest                                    (6.1.1)

ìpou                                       Z   1
                                 H (s) =           h(t)e   st dt                            (6.1.2)
                                               1
enai o metasqhmatismì Laplace th kroustik apìkrish tou sust mato kai enai
h sunˆrthsh metaforˆ tou sust mato .
    O metasqhmatismì Laplace antistoiqe sto s ma suneqoÔ qrìnou x t th sunˆrth-     ()
sh                                        Z          1
                             L[x(t)℄ = X (s)            x(t)e     st dt                    (6.1.3)
                                                     1
H   X (s)   enai migadik   sunˆrthsh th migadik           metablht          + j!   kai onomˆzetai
Metasqhmatismì                                       ()
                Laplace (ML) tou s mato x t . Merikè forè anafèretai kai w
amfpleuro metasqhmatismì Laplace gia na toniste h diaforˆ tou apì to monìpleuro
metasqhmatismì Laplace pou ja orsoume sthn Enìthta 6.3. To sÔnolo twn migadik¸n
arijm¸n      +                                     ()
             j!, gia to opoo upˆrqei h X s , dhlad to antstoiqo olokl rwma
orismoÔ th sugklnei, onomˆzetai perioq sÔgklish (PS) th X s . Gia eukola, o  ()
                      ()                                           [ ( )℄
ML tou s mato x t merikè forè sumbolzetai w L x t kai h sqèsh metaxÔ tou
 ()
x t kai tou ML upodeiknÔetai w
                                      x(t)     ! X (s)
                                               L
                                                                                            (6.1.4)

h de perioq sÔgklish dhl¸netai w         R.
Enìthta 6.1                 Orismo                                                                                                      201



    Parathr sei

   1.    An o ML upˆrqei kai gia timè me 
         R                                         , dhlad s    j!, tìte X j!
           1 x t e j!t dt pou den enai tpote ˆllo apì to MF th sunˆrthsh x
                                                                               =0                        =                         ( )=
            1      ()                                                                                                                (t),
         dhlad
                                                            X (s)js=j! = F [x(t)℄                                                   (6.1.5)


   2.    O ML sqetzetai me to MF kai sthn perptwsh ìpou h metablht                                                          s den enai
         fantastikì arijmì (    ). Prˆgmati,       6= 0
                                            Z   1                                     Z    1            t  e j!t dt
               X ( + j!) =                         x(t)e (+j!)t dt =                          x(t)e                               (6.1.6)
                                                1                                          1
                                 ()
         O ML th x t mpore na ermhneuje kai w o MF th sunˆrthsh x t                                                              () =
          ()
         x t e t . Epomènw , gia na upˆrqei o metasqhmatismì Laplace tou s mato
          ()
         x t prèpei na upˆrqei o metasqhmatismì Fourier tou s mato x t e t , dhlad                                    ()
                            ()
         to s ma x t e t na enai apolÔtw oloklhr¸simo
                                                        Z   1
                                                                  x(t)e          t   dt < 1
                                                             1
         H parousa tou ìrou e t parèqei th dunatìthta sÔgklish tou oloklhr¸ma-
         to kai katˆ sunèpeia thn Ôparxh tou ML akìma kai an den upˆrqei o MF th
          ()
         x t . Gia parˆdeigma, h ekjetikˆ aÔxousa sunˆrthsh (s ma) x t      eat u t                                         () =         ()
         gia a jetik pragmatik stajerˆ den enai apolÔtw oloklhr¸simh kai w
         ek toÔtou den upˆrqei o metasqhmatismì Fourier. An epilege  > a, tìte
         h sunˆrthsh x t e t      e(a )t u t enai apolÔtw oloklhr¸simh, epomè-
                                      ()            =                     ()
         nw upˆrqei o metasqhmatismì Laplace. Sto Sq ma 6.1 upˆrqoun oi grafikè
                                                           ()
         parastˆsei twn shmˆtwn x t , e t kai x t e t se sunˆrthsh me to qrìno.     ()
           x(t)                                                  e- ó t                                 x(t) e -ó t

               1                                                                 ó>á
                             e atu(t)                               1                                           1            ó>á

                  0                     t                             0                    t                      0                  t
                      (á)                                                 ( â)                                        (ã)

Sq ma 6.1                  x(t) = eat u(t) gia to opoo den upˆrqei o MF (b) o parˆgonta exas-
                  (a) To s ma

jènish    e t kai (g) to s ma x(t)e t = e(a )t u(t) to opoo enai apolÔtw oloklhr¸simo.
202                                                           METASQHMATISMOS          LAPLACE              Kefˆlaio 6




6.1.1    Metasqhmatismì             Laplace        stoiqeiwd¸n shmˆtwn

Sthn parˆgrafo aut ja upologsoume tou ML orismènwn stoiqeiwd¸n shmˆtwn.

Parˆdeigma 6.1.1 (Migadikì          aitiatì ekjetikì s ma)

        Na upologiste o      ML    tou s mato           x(t) = e at u(t), ìpou a migadikì        arijmì .

        LÔsh     Apì ton orismì tou              ML èqoume
                                    Z    1                               Z T
                          X (s) =            e   at e st dt    = Tlim           e (a+s)t dt
                                     0                             !1       0
                                              = Tlim       1 he (a+s)T 1i
                                                    !1 a + s
                                                                                                                 (6.1.7)


        Allˆ limT !1 e
                        (a+s)T = 0, eˆn <e[a + s℄ > 0, sunep¸ parnoume

          x(t) = e atu(t) L! X (s) =
                                         1 me perioq sÔgklish <e[s℄ > <e[a℄
                                       s+a
                                                                                                                 (6.1.8)


        ParathroÔme ìti h perioq             sÔgklish        R tou migadikoÔ aitiatoÔ ekjetikoÔ s          mato enai
        to dexiì hmieppedo me sÔnoro th gramm                  pou enai kˆjeth ston pragmatikì ˆxona sth
        jèsh    <e[a℄, (blèpe Sq         ma 6.2).



                   x(t)                                                  ℑm

                      1

                                                                     ℜe a                       ℜe

                          0    (á)                   t
                                                                                ( â)

        Sq ma 6.2     (a) To s ma         x(t) = e at u(t) kai (b) h perioq            sÔgklish      tou   ML.
Parathr sei

   1.   An   a = 0, tìte x(t) enai h sunˆrthsh monadiaou b                           mato ,   x(t) = u(t) kai o
        ML enai

                          X (s) = L[u(t)℄ =
                                                         1 me perioq    sÔgklish        <e[s℄ > 0                (6.1.9)
                                                         s
   2.   An     <[℄ 0
               e a < , mporoÔme na upologsoume to                          X (s) gia  = 0, dhlad           upˆrqei
        kai o MF kai enai
                                                   X (0 + j!) =
                                                                        1
                                                                      j! + a
                                                                                                             (6.1.10)


   3.   An     <e[a℄ > 0, o MF den upˆrqei, en¸ profan¸                         upˆrqei o ML.
Enìthta 6.1       Orismo                                                                                                           203




Parˆdeigma 6.1.2 (Austhrˆ          mh aitiatì ekjetikì s ma)

      Na upologiste o       ML    tou s mato            x(t) = e atu( t), ìpou a migadikì                               arijmì

      LÔsh    O   ML     tou s mato             enai
                                       Z   0                                                  Z   0
                        X (s) =                  e     lim   e (a+s)t dt
                                                     at e st dt
                                                      T !1 T
                                                                    =
                                1
                                                = s +1 a 1 Tlim
                                                          h              i
                                                                 e(a+s)T                                                       (6.1.11)
                                                             !1
      Enai limT !1 e
                      (a+s)T = 0 an <e[s + a℄ < 0. Sunep¸

                       X (s) =
                                 1 me perioq sÔgklish <e[s℄ < <e[a℄
                               s+a
                                                                                                                               (6.1.12)


      ParathroÔme ìti h perioq                  sÔgklish     R tou austhrˆ mh aitiatoÔ ekjetikoÔ s                                mato
      enai to aristerì hmieppedo me sÔnoro th gramm                                 pou enai kˆjeth ston pragmatikì
      ˆxona sth jèsh         <e[a℄ (blèpe Sq             ma 6.3).


                                   x(t)                                               ℑm
                                           0
                                                     t

                                                                                                       ℜe a        ℜe
                                           -1
                                 (á)                                                          ( â)

     Sq ma 6.3      (a) To s ma         x(t) = e at u( t) kai (b) h perioq                             sÔgklish         tou   ML.

    ParathroÔme ìti ta s mata x t                    () =                 ()
                                         e at u t (Parˆdeigma 6.1.1) kai x t                                                    () =
     at ( )
  e u t , (Parˆdeigma 6.1.2) èqoun thn dia sunˆrthsh w ML allˆ diaforetik
perioq sÔgklish . Gia to lìgo autì, pˆnta ektì apì thn X s ja prèpei na dnetai                       ()
kai h antstoiqh perioq sÔgklish ¸ste na prosdiorzetai monos manta to s ma x t .                                                   ()
Parˆdeigma 6.1.3
      Na upologiste o       ML    tou s mato            x(t) = e t u(t) + e 2t u(t).
      LÔsh    O   ML     tou s mato             enai
                    Z   1    
                                                                              Z       1                        Z   1
          X (s) =             e   tu   (t) + e 2tu(t) e          st dt   =               e    t e st dt   +           e 2t e st dt
                         1                                                        0                            0
                                                                                                                               (6.1.13)
      Kˆje èna apì ta oloklhr¸mata sthn (6.1.13) èqoun thn dia morf                                            me to olokl rwma
      sthn (6.1.7) ètsi, an qrhsimopoi soume to apotèlesma tou Paradegmato 6.1.1 èqoume


                                        X (s) =
                                                         1 + 1 = 2s + 3
                                                     s+1    s + 2 s2 + 3s + 2
                                                                                                                               (6.1.14)
204                                                    METASQHMATISMOS        LAPLACE            Kefˆlaio 6




      To s ma   x(t) enai ˆjroisma dÔo pragmatik¸n ekjetik¸n shmˆtwn kai apì thn (6.1.14)
      parathroÔme ìti o     X (s) enai so me to ˆjroisma twn ML twn epimèrou shmˆtwn.
      O pr¸to ìro enai o ML tou e u(t) me PS <e[s℄ >           1 kai o deÔtero enai o ML
                                           t
      tou e
            2 t u(t) me PS <e[s℄ > 2. Oi koinè timè tou s gia ti opoe kai oi dÔo ML
      sugklnoun enai autè gia ti opoe <e[s℄ >      1. àqoume, epomènw ,
                     e t u(t) + e 2t u(t) L! 2
                                               2s + 3 ;                    <e[s℄ > 1
                                            s + 3s + 2
                                                                   me PS                           (6.1.15)



Se kˆje èna apì ta tra parapˆnw paradegmata o ML enai rht                        sunˆrthsh,     dhlad
enai lìgo dÔo poluwnÔmwn th migadik metablht s, ètsi

                                                           N (s)
                                               X (s) =
                                                           D(s)
                                                                                                  (6.1.16)


                       ()
Ma sunˆrthsh X s onomˆzetai analutik sthn perioq R tou migadikoÔ epipèdou-s,
eˆn (a) enai monìtimh sunˆrthsh sthn R kai (b) enai paragwgsimh se kˆje shmeo
                 ()
th R. An h X s den enai analutik se èna shmeo s0 , tìte to shmeo autì lègetai
                                                            ()
shmeo anwmala . Oi rze tou arijmht N s onomˆzontai mhdenikˆ th X s kai                          ()
                        Æ
paristˆnontai me “ ” sto migadikì eppedo. Sta shmea autˆ h X s mhdenzetai. Oi   ()
                                     ()               ()
rze tou paronomast D s , ìpou h X s den orzetai, onomˆzontai pìloi th X s                             ()
                                
kai paristˆnontai me “ ” sto migadikì eppedo. Sto Sq ma 6.4 fanetai h perioq
sÔgklish , oi pìloi kai to mhdenikì tou ML tou s mato sto Parˆdeigma 6.1.3.

                       ℑm



                                                                   Sq ma 6.4    H perioq      sÔgklish , oi
                -2     -1                     ℜe
                                                                   pìloi kai to mhdenikì tou   ML tou s    -

                                                                   mato   x(t) sto Parˆdeigma 6.1.3.

Parˆdeigma 6.1.4
      Na upologiste o          ML   th   sunˆrthsh   Æ(t).
      LÔsh

                            Z   1
             L[Æ(t)℄ =               Æ(t)e st dt = 1 me perioq     sÔgklish   <e[s℄ > 1            (6.1.17)
                                1
      ìpou qrhsimopoi jhke h (1.4.19).

Parˆdeigma 6.1.5
      Dnetai to s ma       x(t) = e bjtj (blèpe Sq        ma 6.5a). Na upologiste o   ML.
Enìthta 6.1             Orismo                                                                                 205


                                x(t)                                           x(t)
                                  1

                                                                                 1
                                   0                     t                        0                  t
                                  (á)                                            ( â)

  Sq ma 6.5        H grafik       parˆstash tou s mato                x(t) = e bjtj gia (a) b > 0 kai (b) b < 0.

      LÔsh         To s ma grˆfetai

                                                   x(t) = e bt u(t) + ebt u( t)                              (6.1.18)

      Gnwrzoume ìti

                                   1 ; me PS <e[s℄ > b (Parˆdeigma 6.1.1)
                          e bt u(t) L!
                                 s+b
                    ebt u( t) L!
                                     1 ; me PS <e[s℄ < b (Parˆdeigma 6.1.2)
                                  s b
      ParathroÔme ìti, an b < 0, oi dÔo epimèrou ìroi den èqoun koin perioq                                sÔgklish
      kai to s ma x(t) den èqei ML. An b > 0, èqoume


              e bjtj L!
                            1       1 = 2b me PS b < <e[s℄ < b
                          s+b s b           s2 b2
                                                                                                             (6.1.19)


      Sto Sq ma 6.6 fanontai h perioq                   sÔgklish       kai oi pìloi tou   ML   tou s mato    x(t).

                   ℑm




                                       ℜe         Sq ma 6.6       H perioq       sÔgklish      tou   ML   tou s mato

                                                  x(t) = e bjtj
              -b            b
                                                                      sto Parˆdeigma 6.1.5 kai oi pìloi tou gia

                                                  b>0.

Parˆdeigma 6.1.6 (Poluwnumikì                   ekjetikì s ma).

      Na upologiste o          ML     tou ekjetikoÔ poluwnumikoÔ s mato                tˆxh    m, pou orzetai w
                                                                tm at
                                                       x(t) =      e u(t)
                                                                m!
                                                                                                             (6.1.20)



      LÔsh         Sto Parˆdeigma 6.1.1 èqoume dexei
                                   Z       1                      1
                                               e at e st dt =                 <e[s℄ > <e[a℄
                                                                s+a
                                                                        gia                                  (6.1.21)
                                       0
206                                                      METASQHMATISMOS          LAPLACE           Kefˆlaio 6




        Paragwgzonta        w   a kai ta dÔo mèlh th (6.1.21) èqoume
                                 pro

                d
                    Z   1                  1 Z 1 te ate st dt = 1
                       e at e st dt =
               da 0                   (s + a)2 0                       (s + a)2                       (6.1.22)


        H teleutaa isìthta dhl¸nei ìti to s ma x(t) = te
                                                           at u(t) èqei ML

                   x(t) = te at u(t) L! X (s) =
                                                              1
                                                           (s + a)2 me <e[s℄ > <e[a℄                  (6.1.23)


        An   a = 0, èqoume
                                       L [tu(t)℄ = L [r(t)℄ = 2
                                                                  1   me   <e[s℄ > 0                  (6.1.24)
                                                             s
        ìpou   r(t) enai h sunˆrthsh klsh . Nèa parag¸gish th (6.1.22) w                  pro   a dnei
                                     Z 1
                                          t2 e at e st dt =
                                                                2
                                      0                     (s + a)3
                                 t2 at                 1
        opìte

                                   e u(t) L!
                                 2                 (s + a)3 me PS <e[s℄ > <e[a℄                       (6.1.25)


        Genikˆ mpore na deiqje epagwgikˆ ìti

                             tm at
                                e u(t) L!
                                               1                            <e[s℄ > <e[a℄
                             m!           (s + a)m+1              me PS                               (6.1.26)




6.1.2    Idiìthte       th   perioq       sÔgklish        - Ìparxh metasqhmatismoÔ            Laplace
Apì ta prohgoÔmena paradegmata parathr same ìti o metasqhmatismì Laplace den
prosdiorzei monos manta to s ma ektì an èqei orisje h perioq sÔgklish . Epsh ,
parathr same ìti h morf th perioq       sÔgklish tou metasqhmatismoÔ Laplace
exartˆtai apì ta qarakthristikˆ tou s mato . Sthn enìthta aut ja broÔme ton
trìpo me to opoo sundèetai h perioq sÔgklish me ta qarakthristikˆ tou s ma-
        ()
to x t . Ja parousiˆsoume ti idiìthte qrhsimopoi¸nta diaisjhtikˆ epiqeir mata
parˆ austhrè majhmatikè apodexei . Gnwrzonta ti idiìthte enai efiktì o pros-
diorismì th perioq sÔgklish apì to metasqhmatismì Laplace X s kai èqonta                    ()
periorismènh gn¸sh twn qarakthristik¸n tou s mato x t .                      ()
   àna pr¸to sumpèrasma enai ìti h perioq sÔgklish tou metasqhmatismoÔ Laplace
pou enai rht sunˆrthsh th metablht s den perièqei pìlou .

      äpw parathr same sthn prohgoÔmenh enìthta, gia na upˆrqei o metasqhmatismì
Laplace tou s mato           ()
                    x t prèpei
                                               Z   1
                                     I () =           jx(t)j e   t dt < 1                          (6.1.27)
                                                   1
Enìthta 6.1            Orismo                                                                                          207



Oi timè th pragmatik metablht  pou ikanopoioÔn thn parapˆnw anisìthta or-
zoun thn perioq sÔgklish tou metasqhmatismoÔ. H posìthta  enai to pragmatikì
mèro tou migadikoÔ arijmoÔ s s              ( = + )
                                     j! , epomènw h perioq sÔgklish exartˆtai
apì to pragmatikì mèro , en¸ to fantastikì mèro den ephreˆzei th sÔgklish. Gia
to lìgo autì h perioq sÔgklish enai z¸ne parˆllhle sto fantastikì ˆxona tou
epipèdou-s.
                                              ()
    Gia èna peperasmèno s ma x t (upˆrqei jetikì arijmì M gia ton opoo enai
j ( )j 
 xt      M ), to opoo enai peperasmènh diˆrkeia (x t     gia t < T1 kai t > T2 ),  ( )=0
tìte
              Z   1                         Z T2                                 W  T2                T1  ;    6= 0
  I () =             jx(t)j e   t dt            Me        t dt     =           e                e
                  1                          T1                                 M (T2        T1 );                 =0
                                                     ()
Sthn perptwsh aut to olokl rwma I  enai peperasmèno gia ìle ti peperasmène
timè th metablht  . Sumperanoume, loipìn, ìti:

   H perioq sÔgklish enì peperasmènou s mato kai peperasmènh                                                       diˆrkeia
sumperilambˆnei olìklhro to eppedo-s.

    Sth sunèqeia ja exetˆsoume th genik perptwsh katˆ thn opoa to s ma x t                                                ()
den enai periorismènh diˆrkeia kai enai mh peperasmèno. To s ma autì onomˆzetai
amfpleuro s ma. Sthn perptwsh aut diaqwrzoume to I  se dÔo tm mata. Sto                  ()
                       ()
pr¸to tm ma I  ta ìria olokl rwsh enai           kai                     1             0
                                                     Z       0
                                       I () =                       jx(t)je    t dt
                                                             1
Sto deÔtero tm ma          I+ () ta ìria olokl              rwsh enai           0 kai 1
                                                     Z       1
                                       I+ () =                  jx(t)je        t dt
                                                         0
dhlad ,
                         Z   0                           Z       1
              I () =            jx(t)j e    t dt   +               jx(t)j e    t dt   = I () + I+()
                             1                               0
                       ()
Gia na enai to I  peperasmèno prèpei kai ta dÔo epimèrou oloklhr¸mata na enai
                                                             j ( )j
peperasmèna. Autì sunepˆgetai ìti to x t prèpei na enai fragmèno kai gia ti
jetikè kai gia ti arnhtikè timè tou qrìnou.
    A upojèsoume ìti mporoÔme na frˆxoume to x t gia ti jetikè kai gia ti        j ( )j
arnhtikè timè tou qrìnou brskonta ti elˆqiste stajerè M > kai # tètoie                                 0
¸ste
                              xt            j ( )j 
                                     Me# t ; t > ;                              0
208                                                       METASQHMATISMOS            LAPLACE               Kefˆlaio 6




kai th mègisth stajerˆ            tètoia ¸ste


                                        jx(t)j  Me t; t < 0;
            ()
To s ma x t to opoo ikanopoie ta frˆgmata autˆ qarakthrzetai w s ma ekjetik
                                                     j ( )j
tˆxh . Ta frˆgmata upodhl¸noun ìti to x t den auxˆnetai taqÔtera apì to ekjetikì
s ma e# t gia ti jetikè timè tou qrìnou kai e t gia ti arnhtikè timè tou qrìnou.
Shmei¸netai ìti upˆrqoun s mata ta opoa den enai ekjetik tˆxh , gia parˆdeigma
ta s mata et kai t3t . Ta s mata autˆ den emfanzontai se fusikè efarmogè kai ètsi
             2
den ma dhmiourgoÔn probl mata.
      Upojètonta ìti to s ma            x(t)   enai ekjetik         tˆxh èqoume gia to olokl rwma
I ()
                           Z   0                                    Z    0
                 I () =            jx(t)j e      t dt     M                e(     )t dt
                                1                                        1                          
                                                                    M                        0
                                                           =                   e(     )t                  (6.1.28)
                                                                                               1

kai gia to olokl rwma      I+ ()
                            Z      1                                 Z   1
                 I+ () =              jx(t)j e   t dt      M               e(# )t dt
                               0                                     0
                                                                    M         h         1i
                                                            =                  e(# )t                     (6.1.29)
                                                                #                     0
                       ()
ParathroÔme ìti to I  enai peperasmèno ìtan  <  kai to I+  enai peperas-                 ()
                                               ()
mèno ìtan  > # . To olokl rwma I  sugklnei gia ti timè tou  gia ti opoe kai
                        ()                     ()
ta dÔo oloklhr¸mata I  kai I+  sugklnoun. €ra, o metasqhmatismì Laplace
upˆrqei gia ti timè tou  oi opoe ikanopoioÔn th # <  <  .

    H perioq sÔgklish enì amfpleurou s mato enai ma z¸nh sto migadikì eppedo
me ìria ti eujee     =
                      kai  # .          =
    To s ma x t  ()=ebjtj , tou opoou o metasqhmatismì Laplace brèjhke sto Parˆdeigma
6.1.5, enai èna amfpleuro s ma.
   Shmei¸netai ìti sthn perptwsh ìpou #                      >   , den upˆrqoun timè tou                 gia ti
opoe o metasqhmatismì Laplace sugklnei.
      Sth sunèqeia ja exetˆsoume thn perptwsh katˆ thn opoa to s ma x t                                ( ) = 0 gia
t > T2 . àna s   ma pou ikanopoie thn idiìthta aut onomˆzetai aristerìpleuro                                 s ma.
Enìthta 6.1           Orismo                                                                209



Sthn perptwsh to        I () èqoume
                            Z 0                     Z T2
              I ()    =         jx(t)je dt + jx(t)jet dt
                                         t
                              1                      0 (       h             i
                                                    0                  0 ;  6= 0
                                                                    t jT2
                              M     h             i         W e
                          e         (    ) t        +                              (6.1.30)
                                                      1    M (T2     0);  = 0
Apì thn parapˆnw parathroÔme ìti h perioq                sÔgklish enì aristerìpleurou s -
mato apoteletai apì ti timè th metablht                 s gia ti opoe to pragmatikì mèro
ikanopoie th  <  , dhlad

    H perioq sÔgklish enì aristerìpleurou s mato enai to aristerì hmieppedo
me ìrio thn eujea   .   =
    To s ma x t   ()=e at u            ( t), to opoo melet   same sto Parˆdeigma 6.1.2, enai
èna aristerìpleuro s ma.
   Tèlo , ja exetˆsoume thn perptwsh katˆ thn opoa to s ma x t     gia t < T2 .( )=0
àna s ma pou ikanopoie thn idiìthta aut onomˆzetai dexiìpleuro s ma. Me ìmoio
trìpo parathroÔme ìti h perioq sÔgklish enì dexiìpleurou s mato apoteletai
apì ti timè th metablht s gia ti opoe to pragmatikì mèro ikanopoie th  > # .

    H perioq sÔgklish enì dexiìpleurou s mato enai to dexiì hmieppedo me ìrio
thn eujea      =
              # .
    To s      ma x(t) = e          (t), to opoo melet
                                at u                     same sto Parˆdeigma 6.1.1, enai èna
dexiìpleuro s ma.

6.1.3   Idiìthte       tou metasqhmatismoÔ        Laplace
Sthn parˆgrafo aut ja parousiˆsoume merikè idiìthte tou ML. Oi idiìthte autè
ja ma bohj soun ston upologismì tou ML shmˆtwn, qwr na qreiaste na upo-
logsoume to olokl rwma orismoÔ. Arketè apì ti idiìthte jumzoun ti idiìthte
tou MF. Gia ti apodexei twn idiot twn, ìpou autè den enai profane , o endiafe-
rìmeno anagn¸sth parapèmpetai sto [1℄.

(1) Grammikìthta

   An x1 t    ( ) L! X1 (s) me PS R1 kai x2(t) L! X2 (s) me PS R2, tìte gia opoies-
d pote stajerè        a kai b enai
                ax1 (t) + bx2 (t)       L
                                         ! aX1 (s) + bX2(s) me PS R = R1 \ R2
dhlad h perioq sÔgklish tou grammikoÔ sunduasmoÔ enai h tom twn epimèrou
                                       ()       ()
perioq¸n sÔgklish twn X1 s kai X2 s . Se orismène peript¸sei enai dunatìn h
210                                                      METASQHMATISMOS     LAPLACE             Kefˆlaio 6




perioq sÔgklish na enai megalÔterh, ìtan kˆpoia mhdenikˆ th ma sunˆrthsh
akur¸noun kˆpoiou pìlou th ˆllh .

(2) Metatìpish sto qrìno

      An   x(t)   ! X (s) me PS R tìte gia opoiad
                  L
                                                                 pote qronik tim     t0 isqÔei
                           x(t t0 )     L
                                            !e      st0 X   (s) me thn dia PS R
(3) Metatìpish sth migadik              suqnìthta


      An   x(t)   ! X (s) me PS R, tìte
                  L


                           es0 t x(t)   ! X (s s0) me PS R + <e[s0℄
                                        L

ìpou h stajerˆ s0 , sth genik perptwsh, enai migadik posìthta. H PS tou X                        (s   s0)
                      ()
enai h PS tou X s metatopismènh katˆ e s0 .             <[ ℄
(4) Klimˆkwsh sto qrìno kai sth suqnìthta

      An   x(t)   ! X (s) me PS 1 < <e[s℄ < 2, tìte gia opoiad
                  L
                                                                                   pote stajerˆ    a

                                  ! ja1j X as
                                                               1          
                       x(at)     L
                                                         me PS      < <e[s℄ < 2
                                                                 a            a
(5) Parag¸gish sth suqnìthta


      An   x(t)   ! X (s) me PS R, tìte
                  L


                                ( t)nx(t) L! d dsXn(s) me PS R
                                                            n


(6) Olokl rwsh sth suqnìthta


      An   x(t)   ! X (s) me PS R, tìte
                  L

                                 x(t)
                                                Z    1
                                            L
                                            !            X ( ) d me PS R
                                  t              s
(7) Metasqhmatismì            Laplace       parag¸gou


      An   x(t)   ! X (s) me PS R, tìte
                  L

                               dx(t)
                                dt
                                            ! sX (s) me thn dia PS R
                                            L
Enìthta 6.1              Antstrofo   Metasqhmatismì      Laplace                               211



                    ()
H PS tou sX s mpore na enai megalÔterh apì thn R, an h X s èqei w aplì pìlo   ()
ton s  =0o opoo akur¸netai me ton pollaplasiasmì me s. Epagwgikˆ mporoÔme na
genikeÔsoume thn parapˆnw idiìthta

                                   dn x(t)
                                    dtn
                                                   ! snX (s) me thn dia PS R
                                                   L


(8) Metasqhmatismì                 Laplace         oloklhr¸mato


      An   x(t)     ! X (s) me PS R, tìte
                    L


                                               ! 1s X (s) me PS thn R \ f<e[s℄ > 0g
                        Z t
                                x( ) d       L
                           1
              (1 ) ( )
H PS tou =s X s mpore na enai megalÔterh apì thn R                       \f<e[s℄ > 0g, an o pìlo
sto mhdèn akur¸netai me antstoiqo mhdenikì th X s .                ()
(9) Je¸rhma th             sunèlixh        sto qrìno

      An   x1 (t)   L
                        ! X1 (s) me PS R1 kai x2(t) L! X2 (s) me PS R2 , tìte
                              y(t) = x1 (t) ? x2 (t)     L
                                                          ! Y (s) = X1 (s)  X2(s)
                                           \
me perioq sÔgklish thn R1 R2 , dhlad h perioq sÔgklish tou ginomènou X1 s                       ( )
   ()
X2 s enai h tom twn epimèrou perioq¸n sÔgklish twn X1 s kai X2 s . Enai       ()         ()
dunatìn na orzetai kai megalÔterh perioq sÔgklish , an kˆpoia mhdenikˆ th mia
sunˆrthsh akur¸noun kˆpoiou pìlou th ˆllh . ParathroÔme, dhlad , ìti ìpw
kai sthn perptwsh tou MF, h sunèlixh metasqhmatzetai se ginìmeno.
    Pèra apì ta stoiqei¸dh s mata, ta opoa melet jhkan sta Paradegmata 6.1.1 -
6.1.6, upˆrqoun kai arketˆ ˆlla pou epsh emfanzontai w sustatikˆ mèrh ˆllwn
shmˆtwn, pou sunantˆme sth melèth grammik¸n susthmˆtwn. Oi ML twn shmˆtwn
aut¸n upologzontai me th bo jeia tou orismoÔ kai twn idiot twn tou metasqhmatismoÔ
Laplace. Ston Pnaka 6.1 upˆrqoun oi idiìthte tou ML, en¸ ston Pnaka 6.2 upˆrqoun
oi ML kai oi antstoiqe perioqè sÔgklish gia ti plèon sunhjismène kai qr sime
peript¸sei .



6.2    ANTISTROFOS METASQHMATISMOS                                     LAPLACE

An  enai èna pragmatikì arijmì , èqoume parathr sei ìti o ML X s tou s mato         ()
 ()                                                     ()= ()
x t sumpptei me to MF tou s mato x t x t e t se ìla ta shmea tou migadikoÔ
212                                               METASQHMATISMOS              LAPLACE       Kefˆlaio 6




               PINAKAS 6.7        Oi idiìthte tou MetasqhmatismoÔ Laplace
       Idiìthta                   S ma                            ML                 Pedo sÔgklish

                                  x(t)                          X (s)                R=fs:1 <<e[s℄<2 g
                                  x1 (t)                       X1 (s)                        R1
                                  x2 (t)                       X2 (s)                        R2
      Grammikìthta          ax1 (t) + bx2 (t)             aX1 (s) + bX2 (s)               R1 \ R2
Metatìpish sto qrìno           x(t t0 )                     e st0 X (s)                      R
  Metatìpish sth                es0 t x(t)                  X (s s0 )                    R + <e[s0 ℄
 migadik suqnìthta

                             x(at); a > 0                        1 s                        R
Klimˆkwsh sto qrìno
                                                                 aX a                        a
 kai sth suqnìthta

  Parag¸gish sth               ( t)nx(t)                      dn
                                                              dsn X    (s)                   R
     suqnìthta

                                    x(t)                    R1
                                                                  X ( ) d                  R
 Olokl rwsh sth
                                     t                       s
    suqnìthta

                                   dn x(t)                       sn X (s)                    R
   ML    parag¸gou                  dtn
                             Rt                                  1 X (s)
 ML oloklhr¸mato                  1 x( ) d                    s                            R
   H idiìthta th             y(t)=x1 (t)?x2 (t)           Y (s)=X1 (s)X2 (s)             R1 \ R2
      sunèlixh

  Periodikˆ s mata             x(t)=x(t+T )
                                                                 R
                                                  X (s)= 1 e1 sT 0T x(t)e st dt          <e[s℄ > 0

epipèdou-s pou an koun sthn eujea            <e[s℄ = . Prˆgmati,
                                                  Z   1
                                   X (s)      =           x(t)e     st dt,
                                                  Z
                                                      1
                                                      1
                            X ( + j!)        =           x(t)e (+j!)t dt
                                                  Z
                                                      1
                                                      1
                                              =           x (t)e     j!t dt                      (6.2.1)
                                                      1
àtsi, an qrhsimopoi soume ton tÔpo antistrof                     tou MF, parnoume

                           = F 1 [X ( + j!)℄ = 21
                                                             Z    1
              x(t)e   t                                              X ( + j!)ej!t d!           (6.2.2)
                                                                  1
  pollaplasiˆzonta kai ta dÔo mèlh me et èqoume

                            x(t) =
                                    1 Z 1
                                                    (+j!)t d!
                                   2 1 X ( + j!)e                                               (6.2.3)
Enìthta 6.1           Antstrofo   Metasqhmatismì   Laplace                                         213




          PINAKAS 6.8        Metasqhmatismo Laplace merik¸n basik¸n shmˆtwn
                      S ma             Metasqhmatismì           Laplace    Perioq    sÔgklish

     1                Æ(t)                             1                         Gia kˆje   s
     2                u(t)                            1=s                        <e[s℄ > 0
     3                u( t)                           1=s                        <e[s℄ < 0
                   e at u(t)                            1                      <e[s℄ > <e[a℄
     4                                                s+a
                   e at u( t)                           1                      <e[s℄ < <e[a℄
     5                                                 s+a
                  tm e at u(t)                          1                      <e[s℄ > <e[a℄
     6            m!                                (s+a)m+1
                  tm e at u( t)                         1                      <e[s℄ < <e[a℄
     7            m!                                (s+a)m+1
     8        Æ(t T ); T  0                          e sT                       Gia kˆje   s
     9          [ os(!0t)℄u(t)                         s
                                                    s2 +!02                      <e[s℄ > 0
    10           [sin(!0t)℄u(t)                       !0
                                                    s2 +!02                      <e[s℄ > 0
    11        [e at os(!0t)℄u(t)                     s+a                       <e[s℄ > <e[a℄
                                                  (s+a)2 +!02
    11        [e at sin(!0t)℄u(t)                     !0
                                                  (s+a)2 +!02                  <e[s℄ > <e[a℄
                un (t) = d dtÆn(t)
                           n
    13                                                sn                         Gia kˆje   s

                                      +
me allag metablht apì  j! se s odhgoÔmaste sthn exswsh antistrof                                  tou
                  =
ML (enai ds jd! afoÔ h  enai stajerˆ)
                                                  Z +j 1
                                   x(t) =
                                             1              X (s)est ds
                                            2j      j1
                                                                                                 (6.2.4)


To olokl rwma èqei thn ènnoia ìti h olokl rwsh ekteletai pˆnw sthn eujea                      <e[s℄ =
, h opoa prèpei na perièqetai sto pedo sÔgklish tou X s .              ()
6.2.1    Upologismì        tou Antstrofou MetasqhmatismoÔ                Laplace
O apeujea upologismì tou antstrofou ML mèsw th eplush tou oloklhr¸ma-
to th (6.2.4) apaite efarmog teqnik¸n olokl rwsh migadik¸n sunart sewn. H
mèjodo aut mpore na apodeiqje epponh diadikasa kai gia to lìgo autì sun jw
akoloujoÔntai èmmesoi trìpoi upologismoÔ tou antstrofou ML.
                                            ()
   An h morf th sunˆrthsh X s enai apl kai mpore eÔkola na ekfraste w
ˆjroisma epimèrou stoiqeiwd¸n ìrwn, tìte me th qr sh twn gnwst¸n ML (Pnaka
214                                                  METASQHMATISMOS              LAPLACE                  Kefˆlaio 6




6.2) kai twn idiot twn tou ML mporoÔme apeujea na upologsoume ton L 1 X s                                [ ( )℄ =
 ()
x t . äpw èqoume parathr sei kai sta antstoiqa paradegmata, sta perissìtera
probl mata pou antimetwpzoume sth jewra twn susthmˆtwn, o ML èqei th morf
rht sunˆrthsh . Sti peript¸sei autè o ML mpore na ekfraste w ˆjroisma
apl¸n klasmˆtwn, gia kajèna apì ta opoa upologzoume ton antstrofo ML, me th
bo jeia tou Pnaka 6.2. Sto Parˆrthma B perigrˆfontai oi trìpoi anˆlush rht¸n
sunart sewn se aplˆ klˆsmata. Sta paradegmata pou akoloujoÔn efarmìzoume th
mèjodo aut .

Parˆdeigma 6.2.1 (Oi      rze   tou paronomast      enai aplè           kai pragmatikè   )
      Na upologiste o antstrofo          ML th     sunˆrthsh             X (s), ìpou

                                  X (s) = 2
                                            3s + 7 ;                       <e[s℄ > 1
                                         s + 4s + 3
                                                               me PS                                          (6.2.5)




      LÔsh      Oi rze    tou paronomast         enai   1   = 1 kai 2 = 3.                 H   X (s)   mpore na
      ekfraste w    ˆjroisma apl¸n klasmˆtwn



                                   X (s) = 2
                                             3s + 7            = sC+1 1 + sC+2 3
                                          s + 4s + 3
                                                                                                              (6.2.6)


      kai upologzoume ti        stajerè   C1 kai C2 w         ex     :



                                 C1 = (s + 1)X (s)js= 1 =
                                                          3s + 7      =2
                                                           s + 3 s= 1
      kai

                                 C2 = (s + 3)X (s)js= 3 =
                                                          3s + 7      =1
                                                           s + 1 s= 3
      €ra

                                            X (s) =
                                                       2 + 1
                                                      s+1 s+3
                                                                                                              (6.2.7)


      O   L 1 [X (s)℄ enai so     me to ˆjroisma twn antstrofwn                ML     twn apl¸n klasmˆtwn
      oi opooi brskontai eÔkola me th bo jeia tou zeÔgou                      (4) tou Pnaka 6.2. Telikˆ o
      zhtoÔmeno    antstrofo       ML   enai

                                                            
                                           x(t) = 2e t + e 3t u(t)                                            (6.2.8)




Parˆdeigma 6.2.2 (Ìparxh         pollapl    pragmatik          rza       ston paronomast      )
      Na upologiste o antstrofo          ML th     sunˆrthsh             X (s), ìpou
                                             s2     3s + 1
                                 X (s) =
                                           (s     1)2(s 2) ; me PS <e[s℄ > 2                                  (6.2.9)
Enìthta 6.1     Antstrofo    Metasqhmatismì        Laplace                                                 215




      LÔsh    O paronomast        èqei ma dipl      pragmatik      rza thn         1   = 1 kai ma apl   thn
      2 = 2. H X (s) mpore na ekfraste w          ˆjroisma apl¸n klasmˆtwn


                                             C11
                                  X (s) =        + C12
                                            s 1 (s 1)2
                                                                    + sC212                             (6.2.10)



      kai upologzoume ti    stajerè   C11 , C12 kai C21
                                                                   d s2 3s + 1
                                                                              
              C11 =
                         1      d 
                                    (s      1)2 X (s)         =                     =2
                       (2 1)!   ds                       s=1       ds   s 2      s=1

                                                              s2
      kai

                         C12 = (s      1)2X (s) s=1 =       3s + 1 = 1
                                                          s 2 s=1
                                                      2
                         C21 = (s      2)X (s)js=2 = s (s 3s1)+2 1 = 1
                                                                  s=2
      €ra

                                  X (s) =
                                                2 + 1                       1
                                            s    1 (s 1)2              s        2                       (6.2.11)


      Me th bo jeia twn zeug¸n     ML (4) kai       (6) tou Pnaka 6.2, o           L 1 [X (s)℄ prokÔptei
                                                                  
                                     x(t) = tet + 2et e2t u(t)                                          (6.2.12)




Parˆdeigma 6.2.3 (Ìparxh     migadik¸n riz¸n ston paronomast            )
      Na upologiste o antstrofo      ML th        sunˆrthsh      X (s), ìpou
                                       s+2
                             X (s) = 2          ;                   <e[s℄ > 2
                                    s + 4s + 13
                                                           me PS                                        (6.2.13)




      LÔsh    Oi rze tou paronomast        enai   1 =      2+3j kai 2 = 2 3j . H X (s) mpore
      na ekfraste w    ˆjroisma apl¸n klasmˆtwn

                                                 C1
                                  X (s) =
                                             s + 2 3j
                                                              + s + C2 2+ 3j                            (6.2.14)



      Upologzoume ti   stajerè    C1 kai C2
                                                                s+2                                1
                  C1 = (s + 2       3j )X (s)js=      2+3j = s + 2 + 3j         =
                                                                        s= 2+3j                    2

                                                           = s +s 2+ 2 3j                        = 12
      kai

                  C2 = (s + 2 + 3j )X (s)js= 2 3j
                                                                                    s=    2 3j
216                                             METASQHMATISMOS         LAPLACE               Kefˆlaio 6




      €ra

                                X (s) =
                                          1 1 +1 1
                                          2 s + 2 + 3j 2 s + 2 3j                               (6.2.15)


      O antstrofo     ML lìgw th     (4) tou Pnaka 6.2 enai


                              x(t)    =   1 he (2+3j)t + e (2 3j)t i u(t)
                                          2
                                      =   1 e 2t e 3jt + e3jt  u(t)
                                          2
                                      =   e 2t os(3t)u(t)                                       (6.2.16)


      Sthn perptwsh pou èqoume migadikè        rze , mporoÔme na akolouj soume ènan enal-
      laktikì trìpo, o opoo baszetai sta zeÔgh     ML (9), (10), (11) kai (12) tou Pnaka 6.2.
      H   X (s) grˆfetai
                                          s+2
                                X (s) = 2
                                       s + 4s + 13
                                                       = (s +s2)+22+ 32                         (6.2.17)


      Me th bo jeia tou zeÔgou       ML (11) sto Pnaka 6.2 parathroÔme             ìti


                                x(t) = L 1 [X (s)℄ = e 2t    os(3t)u(t)                         (6.2.18)


      Sto Sq ma 6.7 fanontai oi suzuge     migadiko pìloi, oi opooi brskontai sto arnhtikì
      hmieppedo, to mhdenikì kai h perioq      sÔgklish    tou   X (s),   h opoa perièqei to fan-
      tastikì ˆxona. ParathroÔme ìti to s ma       x(t)   enai aitiatì afoÔ to pedo sÔgklish
      enai to dexiì hmieppedo kai enai èna fjnon sunhmitonoeidè        s ma.



                  ℑm                               x(t) = e-2t cos(3t)u(t)
                       3j                              1
                                                                             e-2t

                -2               ℜe                   0                                   t
                                                                              -2t
                                                                             e
                       -3j
                                                     -1
                       (á)                                        (â)

Sq ma 6.7    (a) H perioq    sÔgklish , oi pìloi kai to mhdenikì tou       ML    (b) tou s mato    x(t)
sto Parˆdeigma 6.2.3.




6.3   O MONOPLEUROS METASQHMATISMOS                                     LAPLACE

Sthn Parˆgrafo 6.1 orsame ton ML. Sthn parˆgrafo aut ja orsoume to Monì-
                                                                 ()
pleuro Metasqhmatismì Laplace (MML) tou s mato x t . Ja estiˆsoume sta basikˆ
shmea tou MML kai kurw se autˆ pou ton diaforopoioÔn apì to ML.
Enìthta 6.2            O monìpleuro      Metasqhmatismì         Laplace                                                 217



    H diaforˆ metaxÔ twn dÔo metasqhmatism¸n entopzetai sta ìria olokl rwsh
tou orismoÔ. An to kˆtw ìrio sto olokl rwma sth sqèsh (6.1.3) enai to mhdèn, tìte
orzetai o monìpleuro metasqhmatismì Laplace
                                                                       Z    1
                                L [x(t)℄ = X (s) = X +(s)                      x(t)e    st dt                       (6.3.1)
                                                                        0
To sÔnolo twn migadik¸n arijm¸n s                  = +
                                       j! pˆnw sto opoo upˆrqei kai orzetai h
X( )
   s , ìpou dhlad to antstoiqo olokl rwma orismoÔ sugklnei, onomˆzetai perioq
sÔgklish (PS) th     s.     X( )
    Profan¸ , an dÔo s mata enai diaforetikˆ gia t < kai sa gia t   , tìte èqoun   0                   0
ton dio MML kai diaforetikì ML. Gia aitiatˆ s mata, x t     gia t < , o ML kai o     ( )=0                  0
MML sumpptoun. Me ˆlla lìgia o monìpleuro metasqhmatismì Laplace tou s ma-
       ()
to x t tautzetai me ton amfplero metasqhmatismì Laplace tou s mato x t u t .                                       () ()
                            () ()
Efìson to s ma x t u t enai aitiatì s ma, h perioq sÔgklish tou monìpleurou
metasqhmatismoÔ Laplace enai pˆnta to mègisto dexiì hmieppedo pou den perièqei
pìlou tou sust mato . H diaforˆ metaxÔ twn dÔo orism¸n enai ousiastik , kai
ìpw ja doÔme, parèqei sto MML th dunatìthta eplush diaforik¸n exis¸sewn, oi
opoe èqoun mh mhdenikè arqikè sunj ke . ätan to s ma perièqei sunart sei Æ t ,                                         ()
o orismì tou orou sto mhdèn apaite prosoq , diìti to apotèlesma ja exartˆtai
eˆn proseggzoume to mhdèn apì aristerˆ      apì dexiˆ. Sthn perptws ma jew-
roÔme to ìrio apì aristerˆ t             ( !0 )
                                       kai epomènw h sunˆrthsh Æ t emperièqetai                         ()
                                                                        ()
sto olokl rwma. Eˆn den upˆrqoun sunart sei Æ t , to parapˆnw sqìlio enai ˆneu
shmasa .
    O monìpleurou metasqhmatismì Laplace èqei parìmoie idiìthte me to metasqh-
matismì Laplace ti opoe parajètoume ston Pnaka 6.3. Ma diaforˆ upˆrqei sthn
idiìthta parag¸gish sto qrìno.

(1) Parag¸gish sto pedo tou qrìnou

    An x t  ( ) L! X ( )
                    s me PS R kai h sunˆrthsh (s ma) x t enai paragwgsimh gia         ()
t0  , tìte o metasqhmatismì Laplace th parag¸gou th enai
                                dx(t) L
                                 dt
                                      ! sX (s) x(0                  ) me thn dia PS R
Apìdeixh
    O monìpleuro metasqhmatismì Laplace th parag¸gou enai
                           
                    dx(t)                1 dx(t)
                                     Z
            L        dt
                                 =            dt
                                                   e    st dt
                                      0                     Z   1
                                 =   [x(t)e   st   ℄1+
                                                   0                sx(t)e      st dt
                                                            0                            Z       1
                                 = tlim
                                    !1
                                        [x(t)e ℄ tlim
                                                   !0
                                                     [x(t)e ℄ + s
                                                       st                       st                   x(t)e   st dt
                                                                                             0
218                                                           METASQHMATISMOS   LAPLACE          Kefˆlaio 6




ìpou qrhsimopoi jhke h mèjodo olokl rwsh katˆ parˆgonte . Dedomènou ìti h
x(t) enai ekjetiktˆxh ja upˆrqei M > kai t0 gia ta opoa      0
                               = jx(t)j e t < Meat e t = Me( a)t
                           x(t)e     st

gia kˆje t 
           R1t0 . àtsi, limt!1 [x(t)e st ℄ = 0 ìtan <e[s℄ > a. Epsh , enai limt!0 [x(t)e st ℄ =
x(0 ) kai 0 x(t)e st dt = X (s). Epomènw , èqoume
                          dx(t) L
                                 ! sX (s) x(0 ); <e[s℄ > a
                                    dt
ParathroÔme ìti, epeid to kˆtw ìrio tou oloklhr¸mato orismoÔ tou monìpleurou
metasqhmatismoÔ Laplace enai to mhdèn, sto monìpleuro metasqhmatismì Laplace th
                      ()
parag¸gou tou x t upˆrqei h arqik sunj kh x        .                (0 )
   O monìpleuro metasqhmatismì Laplace th parag¸gou tˆxh n enai

      dn x(t) L n                                              dx(t)                    n 1
       dtn
              ! s X (s) sn 1x(0                      )    sn 2
                                                                dt t=0
                                                                                    d dtnx(1t)
                                                                                                  t=0

Ma deÔterh diaforˆ upˆrqei sthn idiìthta th olokl rwsh sto qrìno.

(2) Olokl rwsh sto pedo tou qrìnou

      An   x(t) L! X (s) me PS R, tìte

            y(t) =
                     Z t
                               x( ) d L!
                                                   1 X (s) + 1 Z 0 x( ) d = X (s) + y(0 )
                       1                           s         s      1           s       s
Apìdeixh

    ParathroÔme ìti dt
                               dy(t)     = ()            ()
                            x t . H y t enai paragwgsimh, an h x t enai suneq .        ()
Epsh enai ekjetik    tˆxh . Qrhsimopoi¸nta thn idiìthta th parag¸gish sto
pedo tou qrìnou èqoume
                                          
                                   dy(t)
                           L        dt
                                               = L[x(t)℄ ) sY (s)       y(0   ) = X (s)
Epomènw , èqoume

                                                Y (s) = X s(s) + y(0s )
ParathroÔme ìti sto monìpleuro metasqhmatismì Laplace tou oloklhr¸mato tou
 ()
x t upˆrqei h arqik sunj kh y    .               (0 )
Tèlo , o monìpleuro metasqhmatismì Laplace parèqei th dunatìthta na prosdio-
risje h arqik tim x + kai to   (0 )              lim          ()
                                  t!1 x t me to je¸rhma th arqik kai telik
tim kai ìqi mèsw tou idou tou s mato x t .                    ()
Enìthta 6.3         Efarmogè    twn Metasqhmatism¸n   Laplace                          219



(3) Je¸rhma arqik             tim
                         ()
  àstw to s ma x t , to opoo den perièqei kroustikè sunart sei sto               t = 0, me
MML     X( )                              <[℄
      s kai perioq sÔgklish e s > 0 . Tìte isqÔei
                               x(0+ ) = slim
                                         !1 sX (s) (Arqik       tim )

ìpou x + enai h tim tou s mato
        (0 )                                x(t) ìtan h metablht t plhsiˆzei to mhdèn apì
jetikè timè .

(4) Je¸rhma telik            tim
                        ()
    àstw to s ma x t , me MML           X( )                            <[℄
                                s kai perioq sÔgklish e s > 0 . An h s s             X( )
enai analutik sunˆrthsh sto fantastikì ˆxona kai sto dexiì migadikì hmieppedo,
tìte isqÔei
                           xt  lim ( ) = slim
                               t!1
                                              X( )
                                     s s (Telik tim )
                                           !0
    To je¸rhma th telik tim qrhsimopoietai sth melèth grammik¸n susthmˆtwn
gia ton prosdiorismì twn tim¸n isorropa kai th mìnimh katˆstash tou .
    Oi idiìthte autè apoteloÔn th dÔnamh tou monìpleurou metasqhmatismoÔ Laplace
giat èqoume th dunatìthta na epilÔoume grammikè diaforikè exis¸sei me stajeroÔ
suntelestè kai na analÔoume GQA sust mata ta opoa den brskontai se hrema.

6.4     EFARMOGES TWN METASQHMATISMWN                               LAPLACE

Sthn enìthta aut ja anaptÔxoume ti efarmogè twn metasqhmatism¸n Laplace. Ei-
dikìtera ja axiopoi soume th dunatìthta pou parèqei o MML gia thn eplush di-
aforik¸n exis¸sewn oi opoe èqoun mh mhdenikè arqikè sunj ke kai ja thn efar-
mìsoume sth melèth GQA susthmˆtwn. Telei¸nonta , ja exetˆsoume th sqèsh pou
upˆrqei metaxÔ th jèsh twn pìlwn th sunˆrthsh metaforˆ sto migadikì eppedo
me ti idiìthte th aitiìthta kai th eustˆjeia enì GQA sust mato .


6.4.1   Eplush grammik             diaforik    exswsh     me th bo jeia   MML
Lìgw th idiìthta tou MML pou anafèretai sthn parˆgwgo kai to olokl rwma
mia sunˆrthsh , èqoume th dunatìthta na epilÔoume grammikè diaforikè exis¸sei
me stajeroÔ suntelestè . H genik morf mia grammik diaforik exswsh me
stajeroÔ suntelestè enai

                dn x(t)         dn 1 x(t)
          an
                 dtn
                        + a n 1
                                 dtn 1
                                          + :::   + a1 dxdt(t) + a0 x(t) = g(t)     (6.4.1)

me arqikè sunj ke

                                    dx(t)                dn 1 x(t)
              x(t)jt=0 = b0 ; ;             = b1 ; ::: ;           =b
                                                          dtn 1 t=0 n 1
                                                                                    (6.4.2)
                                     dt t=0
220                                               METASQHMATISMOS    LAPLACE             Kefˆlaio 6




          PINAKAS 6.9     Oi idiìthte tou Monìpleurou MetasqhmatismoÔ Laplace
                 Idiìthta                     S ma                  Monìpleuro         ML
                                              x(t)                         X (s)
                                              x1 (t)                       X1(s)
                                              x2 (t)                       X2(s)
                Grammikìthta            ax1 (t) + bx2 (t)            aX1 (s) + bX2 (s)
      Metatìpish sth suqnìthta              es0 t x(t)                 X (s s0)
                                        x(at); a > 0                      1 s
          Klimˆkwsh sto qrìno                                             aX a
                  Sunèlixh
    x1 (t) = x2 (t) = 0 gia t < 0        x1 (t) ? x2 (t)               X1(s)  X2 (s)
                                             dt x(t)                  sX (s) x(0 )
         Parag¸gish sto qrìno?               d

    Parag¸gish sth suqnìthta                   tx(t)                      ds X (s)
                                                                          d
                                         Rt                            X (s) + y(0 )
         Olokl rwsh sto qrìno?                1 x( ) d                    s      s
                Arqik   tim                            x(0+ ) = lims!1 sX (s)
                Telik   tim                          limt!1 x(t) = lims!0 sX (s)
?  ätan oi arqikè sunj ke enai mhdèn, oi idiìthte th parag¸gish kai ti olo-
kl rwsh tou MML enai oi die me ti antstoiqe tou ML.



Ta b mata pou akoloujoÔme gia thn eplush th enai:

    1.   Parnoume to MML kai sta dÔo mèlh th exswsh . Lìgw th grammikìthta ,
         o MML tou aristeroÔ mèrou isoÔtai me to ˆjroisma twn MML twn epimèrou
         ìrwn.

    2.   LÔnoume thn exswsh pou prokÔptei w pro ton MML                    X (s) th   sunˆrthsh
           ()
         xt.
    3.   Brskoume ton    L 1 [X (s)℄, dhlad     th lÔsh    x(t).
      Efarmìzoume ta parapˆnw sto parˆdeigma pou akolouje.

Parˆdeigma 6.4.1

         Na epiluje h diaforik   exswsh


                                  dx(t)
                                                     Z t

                                   dt
                                        + 3 x(t) + 2      x( ) d = u(t)                   (6.4.3)
                                                        1
Enìthta 6.3          Efarmogè   twn Metasqhmatism¸n           Laplace                                        221



        me arqikè    sunj ke    x(0)    = 2 kai R 01 x() d = 0.
        LÔsh       Efarmìzonta     MML          kai sta dÔo mèrh th             (6.4.3) kai qrhsimopoi¸nta    ti
        idiìthte    pou anafèrontai sthn parˆgwgo, to olokl rwma mia                       sunˆrthsh   kai ti
        arqikè     sunj ke   èqoume


                                                 2   ( s) 2 0            1
                                                            Z
                         sX (s) x(0 ) + 3X (s) +
                                                   X     +s   x( ) d =
                                                    s                    s        1

                                       sX (s)       2 + 3X (s) + 2Xs(s) = 1s

                               X (s) = s2 2+s 3+s 1+ 2 = s +1 1 + s +3 2
        kai telikˆ

                                                                                      (6.4.4)


        Efìson x(t) = 0, gia t < 0, oi X (s) kai X (s) tautzontai. €ra, o antstrofo MML
        th X (s) dnei th lÔsh th diaforik       exswsh pou enai

                                                                  
                              x(t) = L 1 [X (s)℄ = e t + 3e 2t u(t)                   (6.4.5)



6.4.2    H qr sh tou metasqhmatismoÔ                  Laplace     sthn anˆlush GQA susthmˆtwn

Sthn parˆgrafo aut ja estiˆsoume se efarmogè tou ML sth melèth GQA susth-
mˆtwn basismènoi sth gn¸sh twn antstoiqwn shmˆtwn eisìdou kai exìdou. Sto Ke-
                                        ()
fˆlaio 2, edame ìti h èxodo y t enì GQA sust mato sundèetai me thn esodì tou
 ()
x t me to olokl rwma th sunèlixh
                                 Z     1                                Z   1
        y(t) = x(t) ? h(t) =               h( )x(t  ) d        =             h(t  )x( ) d        (6.4.6)
                                       1                                    1
Lìgw th idiìthta th sunèlixh tou ML èqoume

                     Y (s) = H (s)  X (s) me PS toulˆqiston thn RH \ RX                               (6.4.7)

         ()
ìpou H s enai h sunˆrthsh metaforˆ tou sust mato (Enìthta 2.5).
                                ()
   ParathroÔme ìti h H s dnetai w phlko twn ML th exìdou tou sust mato
pro ton ML th eisìdou tou sust mato , dhlad H s           Y s =X s .        ( )= ( ) ( )
   Sto Kefˆlaio 2, epsh , èqoume dei ìti an ekmetalleujoÔme ti fusikè sqèsei pou
upˆrqoun metaxÔ twn stoiqewn enì sust mato GQA, katal goume se mia grammik
diaforik exswsh me stajeroÔ suntelestè , h opoa èqei th genik morf

                                  N
                                  X             dk y(t)       M
                                                              X   dk x(t)
                                           ak
                                                 dtk
                                                          =       bk
                                                                   dtk
                                                                                                       (6.4.8)
                                  k=0                         k=0
222                                                     METASQHMATISMOS       LAPLACE            Kefˆlaio 6




ìpou ak ; k   =012
               ; ; ; :::; N kai bk ; k                  =012
                                        ; ; ; :::; M pragmatikè stajerè , oi
opoe perigrˆfoun to sÔsthma. Efarmìzonta to ML kai sta dÔo mèlh th (6.4.8),
katal goume sth sqèsh
                                                             PM
                                                Y (s)                   k
                                    H (s) =
                                                X (s)
                                                         = PNk=0 bk sk                              (6.4.9)
                                                                k=0 ak s
Apì thn (6.4.9) upologzoume th sunˆrthsh metaforˆ tou sust mato me th bo jeia
twn suntelest¸n ak ; k       =0 1 2
                           ; ; ; :::; N kai bk ; k ; ; ; :::; M .   =0 1 2
    Parat rhsh: Tìso h (6.4.7) ìso kai h (6.4.9), propojètoun ìti gnwrzoume ti
emplekìmene sunart sei gia t >                  1
                                      , me ˆlla lìgia gia mhdenikè arqikè sunj ke .
Eˆn oi emplekìmene sunart sei enai aitiatè kai oi arqikè sunj ke enai mhdèn,
ja ftˆsoume sti (6.4.7) kai (6.4.9) kai me ton MML, pou se aut n thn perptwsh
tautzetai me ton ML. Dhlad , h sunˆrthsh metaforˆ H s èqei nìhma mìno kˆtw   ()
apì mhdenikè arqikè sunj ke .
                                                    ()
    Tonzetai ìti, epeid h sunˆrthsh H s qarakthrzei to sÔsthma, ja prèpei loipìn
na mhn exartˆtai apì ti arqikè sunj ke sti opoe brsketai to sÔsthma.
Parˆdeigma 6.4.2
      Na upologiste h sunˆrthsh metaforˆ kai h kroustik                    apìkrish tou kukl¸mato tou
      Sq mato     6.8.


                              L
                         Ä
                             i(t)
       õin(t)=V                        R        õR(t)
                                                                Sq ma 6.8      To kÔklwma tou

                                                                Paradegmato       6.4.2.


      LÔsh      Efarmìzoume to deÔtero kanìna               Kirchhoff sto   kÔklwma kai parnoume

                                               di(t)
                                           L
                                                dt
                                                     + Ri(t) = in(t)                              (6.4.10)


      kai epeid   R = iR; ddtR    = R dtdi èqoume
                                      dR (t) R
                                           dt
                                                + R(t) = R in (t)
                                                        L           L
                                                                                                   (6.4.11)


      àtsi, efarmìzonta      metasqhmatismì         Laplace kai sta     dÔo mèlh th     (6.4.11) parnoume

                                                R        R
                                       sVR (s) + VR (s) = Vin (s)
                                                L        L
      apì thn opoa prosdiorzetai h sunˆrthsh metaforˆ                    tou kukl¸mato

                                                               R=L
                                                 H (s) =
                                                             s + R=L
                                                                                                   (6.4.12)
Enìthta 6.3      Efarmogè      twn Metasqhmatism¸n   Laplace                                 223



      To sÔsthma èqei èna pìlo sto shmeo       R=L, me apotèlesma to PS enai <e[s℄ > R=L,
      afoÔ to sÔsthma w        fusikì sÔsthma prèpei na enai aitiatì. H kroustik        apìkrish
      tou sust mato    enai
                                                        R
                                    h(t) = L 1 [H (s)℄ = e         (t)
                                                               Rt
                                                               L u                        (6.4.13)
                                                        L
An den èqoume arqikè sunj ke , tìte h èxodo sust mato prosdiorzetai me th bo -
jeia tou jewr mato th sunèlixh sto qrìno gnwrzonta th sunˆrthsh metaforˆ
tou sust mato kai to ML tou s mato eisìdou.
Parˆdeigma 6.4.3
      Dnetai to kÔklwma tou Sq mato 6.8. An to kÔklwma arqikˆ hreme kai sthn esodì tou,
      katˆ th qronik   stigm     t0 = 0, efarmìsoume phg stajer tˆsh V , na prosdioriste
      h tˆsh sta ˆkra th       antstash , R (t), se sunˆrthsh me to qrìno.
      LÔsh     Epeid   h esodo    enai phg   stajer     tˆsh , h opoa efarmìzetai th qronik
      stigm   t0 = 0, èqoume
                                                      V
                         in (t) = V u(t) L! Vin (s) = ; <e[s℄ > 0                (6.4.14)
                                                      s
      To sÔsthma brsketai se hrema kai o ML th exìdou VR (s) upologzetai me th bo jeia
      tou jewr mato    th   sunèlixh    pou dnei



                   VR (s) = H (s)Vin (s)= s[sV+(R=L )
                                                 (R=L)℄
                                                                
                                             R C1          C2
                                        = V L s + s + (R=L)
                                                             
                                               1        1
                                        = V s s + (R=L) ; <e[s℄ > 0 (6.4.15)
      ìpou h VR (s) èqei analuje se aplˆ klˆsmata kai oi stajerè C1 = L=R kai C2 =
        L=R èqoun prokÔyei me to gnwstì trìpo. H èxodo R (t) upologzetai me ton an-
      tstrofo ML th VR (s), dhlad

                                                                             
                        R (t) = V u(t) V e            (t) = V 1                  u(t)
                                                    Rt                   Rt
                                                    L u              e   L                (6.4.16)




An èqoume arqikè sunj ke , tìte sth diaforik exswsh (6.4.8), lìgw twn idiot twn
th parag¸gish sto qrìno kai th olokl rwsh sto qrìno pou èqei o monìpleuro
metasqhmatismì Laplace, sumperilambˆnoume ti arqikè sunj ke kai sthn Y s                   ( )=
  () ()
H s X s emfanzetai kai èna epiplèon ìro o opoo proèrqetai apì ti arqikè
sunj ke .
224                                                        METASQHMATISMOS            LAPLACE              Kefˆlaio 6




Parˆdeigma 6.4.4
      Dnetai to kÔklwma tou Sq mato               6.8. An h tˆsh sta ˆkra th            antstash       arqikˆ enai
      R (0   ) kai katˆ th qronik        stigm      t0 = 0, efarmìsoume phg stajer tˆsh V , na
      prosdioriste h tˆsh sta ˆkra th              antstash , R (t), se sunˆrthsh me to qrìno.

      LÔsh     Epeid       to sÔsthma èqei arqikè sunj ke , efarmìzonta to monìpleuro metasqh-
      matismì   Laplace     kai sta dÔo mèlh th           diaforik        exswsh     (6.4.11), pou qarakthrzei
      to kÔklwma, enswmat¸noume ti                arqikè      sunj ke     kai èqoume


               sVR (s) R (0        ) + RL VR(s) =                 R
                                                                     V (s)
                                                                   L in
                                         
                                      R                            R
                                 s+           VR (s) =               V (s) + R (0 )
                                      L                            L in
                                              VR (s) =               R=L
                                                                           Vin (s) +
                                                                                        1 R(0              )(6.4.17)
                                                                   s + R=L           s + R=L
      Epeid    to s ma eisìdou enai aitiatì, o               MML tou     enai so    me to   ML
                                                                    V
                                      in (t) = V u(t) L! Vin (s) =                                          (6.4.18)
                                                                    s
      èqoume


                            VR (s) = s +R=L   V
                                                + 1  (0 )
                                          R=L s s + R=L R
                                                  
                            VR (s) = V 1s s + 1R=L + R (0 ) s + 1R=L                                        (6.4.19)



      Sugkrnonta         thn (6.4.15) me thn (6.4.19) parathroÔme ìti o                VR (s) perièqei ènan epi-
      plèon ìro o opoo exartˆtai apì thn arqik                     sunj kh sthn opoa brsketai to sÔsthma.
      H èxodo    R (t) upologzetai me ton antstrofo ML th                    VR (s), dhlad       ,
                                                            
                               R (t) = V      1                   u(t) + R (0 )e        (t)
                                                          Rt                           Rt
                                                    e     L                            L u                   (6.4.20)



Parˆdeigma 6.4.5
      Dnetai to kÔklwma tou Sq mato 6.8. Na breje o metasqhmatismì                            Laplace th    exìdou
      ìtan to s ma eisìdou enai       x(t) = te2t u(t).            Dnetai ìti h stajerˆ qrìnou tou kukl¸-
      mato    enai      = L=R = 0; 2se      kai to sÔsthma brsketai se hrema.

      LÔsh      Me th bo jeia twn (6.4.12) kai (6.1.23) brskontai oi                          ML   th   kroustik
      apìkrish    tou sust mato       kai tou s mato               eisìdou   x(t)

                                       H (s) =
                                                          5    ;        <e[s℄ > 5
                                                     s+5
                                                                   me


      kai

                                       X (s) =
                                                       1
                                                     (s 2)2 ; me <e[s℄ > 2
Enìthta 6.3          Efarmogè   twn Metasqhmatism¸n         Laplace                                      225



        ìpou qrhsimopoi jhke ìti h stajerˆ qrìnou tou sust mato                   enai   0; 2se . Me th bo   -
        jeia tou jewr mato      th    sunèlixh       brsketai o   ML th     exìdou tou sust mato


                                     Y (s) =
                                                         5
                                               (s      2)2(s + 5) ; me <e[s℄ > 2                     (6.4.21)


        ParathroÔme ìti to s ma eisìdou den enai apolÔtw                     oloklhr¸simo, epomènw      den
        upˆrqei o   MF   tou kai w    ek toÔtou den enai dunat            h qr sh twn mejìdwn pou qrhsi-
        mopoioÔn metasqhmatismoÔ          Fourier gia th      lÔsh tou probl mato .

Parˆdeigma 6.4.6
        Na prosdiorisje h arqik       kai h telik      tim     tou s mato   x(t) tou opoou o monìpleuro
        metasqhmatismì      Laplace enai

                                                    X (s) = s7(ss++102)
        LÔsh       Efarmìzonta   to je¸rhma th           arqik     tim     brskoume ìti


                                          x(0+ )       = slim  7s + 10
                                                          !1 s s(s + 2)
                                                       = slim 7s + 10
                                                          !1 (s + 2)
                                                       = 7                                           (6.4.22)

        Efarmìzonta      to je¸rhma th      telik       tim      brskoume ìti


                                           x(1)        = slim s
                                                                7s + 10
                                                           !0 s(s + 2)
                                                       = slim 7s + 10
                                                           !0 (s + 2)
                                                       = 5                                           (6.4.23)

        Shmei¸netai ìti h arqik        kai h telik        tim     mpore na breje afoÔ prosdiorisje h
        analutik     morf   tou s mato         kai sth sunèqeia prosdiorisje h arqik           kai h telik
        tim                                          X (s) enai o MML tou s mato x(t) =
              tou s mato . Prˆgmati, parathroÔme ìti o
        5u(t) + 2e 2tu(t) apì thn opoa epalujeÔoume ìti x(0+ ) = 7 kai x(1) = 5.

6.4.3    Parathr sei        gia thn perioq            sÔgklish       tou metasqhmatismoÔ         Laplace
äpw gnwrzoume, o ML enai sunˆrthsh th migadik metablht s. Upenjumzoume
                                     ()
ìti oi rze tou arijmht N s sthn (6.1.16) onomˆzontai mhdenikˆ th H s . Pro-                      ()
                                     ()
fan¸ sta shmea autˆ h H s mhdenzetai. Epsh , oi rze tou paronomast D s ,                             ()
              ()
ìpou h H s den orzetai, onomˆzontai pìloi th H s .                   ()
Gia na enai èna sÔsthma aitiatì prèpei h perioq sÔgklish na enai to dexiì h-
mieppedo tou migadikoÔ epipèdou me sÔnoro th gramm pou enai kˆjeth ston prag-
matikì ˆxona sth jèsh           < [ ℄j
                           e ak max , ìpou ak me k                    =1 2
                                                    ; ; ::: enai oi pìloi th H s                        ()
226                                       METASQHMATISMOS    LAPLACE        Kefˆlaio 6




kai max sumbolzei ton pìlo me to mègisto pragmatikì mèro (blèpe Parˆdeigma
6.1.3). Me ˆlla lìgia, to pedo sÔgklish enì aitiatoÔ sust mato enai to mègisto
dunatì dexiì hmieppedo, to opoo den perièqei pìlou th H s . ()
                                        ()
     An o bajmì tou poluwnÔmou tou N s enai megalÔtero    so apì to bajmì tou
                ()
poluwnÔmou D s , tìte, prin analÔsoume se aplˆ klˆsmata, prèpei na ektelèsoume
                () ()                                  ()
th diaresh N s =D s . Sthn perptwsh aut h H s perilambˆnei ìrou th morf
            0
 sk ; k > . A jewr soume t¸ra èna sÔsthma sth sunˆrthsh metaforˆ , H s , tou()
                                                                        ()
opoou upˆrqei o ìro s. Tìte, an h esodo tou sust mato enai h u t , h opoa
                1
èqei ML so me =s, h èxodo tou sust mato ja enai h y t    L 1 s =s
                                                            ( )=    [ (1 )℄ = ( )
                                                                           Æt.
ParathroÔme ìti, h èxodo tou sust mato den enai fragmènh, se antjesh me thn
esodì tou h opoa enai fragmènh. Me bˆsh ta parapˆnw katal goume se èna pr¸to
sumpèrasma:

“ìtan o bajmì tou poluwnÔmou tou N    (s) enai megalÔtero   apì to bajmì tou poluwnÔ-
       ()
mou D s to sÔsthma den enai FEFE       eustajè   ”.

    Sth sunèqeia ja doÔme ìti pèra apì th sqèsh twn bajm¸n twn poluwnÔmwn N s     ()
       ()                          ()
kai D s , h jèsh twn pìlwn th H s kajorzei thn eustˆjeia tou sust mato . Sto
Parˆdeigma 2.4.1 èqoume dei ìti gia na enai èna sÔsthma FEFE eustajè prèpei h
kroustik apìkris tou na enai apìluta oloklhr¸simh. Sthn perptwsh ìmw aut
                                                                     ()
upˆrqei o MF th , dhlad h apìkrish suqnìthta tou sust mato H ! . Gnwrzoume,
epsh , ìti gia na upˆrqei o MF prèpei to pedo sÔgklish tou ML na perièqei to
fantastikì ˆxona. àtsi:

“gia na enai to sÔsthma FEFE eustajè , prèpei o fantastikì ˆxona na perièqetai
sto pedo sÔgklish tou ML”.

   Sunduˆzonta t¸ra ta parapˆnw katal goume ìti gia na enai èna sÔsthma tautì-
qrona aitiatì kai FEFE eustajè prèpei

  1.   h perioq sÔgklish na enai to dexiì hmieppedo tou migadikoÔ epipèdou me
       sÔnoro th gramm pou enai kˆjeth ston pragmatikì ˆxona sth jèsh     < [ ℄j
                                                                        e ak max
       kai
  2.   o fantastikì ˆxona na perièqetai sto pedo sÔgklish tou ML.

                                             ()
   Genikìtera, h jèsh twn pìlwn tou ML X s enì s mato sto migadikì eppedo-         s
prosdiorzei th sumperiforˆ tou s mato . Eidikìtera, isqÔoun ta ex

  1.                                         <[℄ 0
       Aplo pìloi sto arnhtikì hmieppedo ( e s < kai m s   = [ ℄=0 ) tou epipèdou-s
       antistoiqoÔn se s mata ta opoa sto pedo tou qrìnou enai pollaplasiasmèna
       me e jajt pou fjnei ekjetikˆ pro to mhdèn, kaj¸ t    !1 . Se antjesh, aplo
Enìthta 6.3         Efarmogè    twn Metasqhmatism¸n     Laplace                                  227



        pìloi sto dexiì hmieppedo tou      s antistoiqoÔn se s         mata pollaplasiasmèna me
        ejajt , pou auxˆnetai ekjetikˆ pro           to ˆpeiro kaj¸     t ! 1.
   2.   Aplo pìloi sto fantastikì ˆxona antistoiqoÔn se s mata twn opown to plˆto
        paramènei stajerì me to qrìno, en¸ pollaplo pìloi sto fantastikì ˆxona
        antistoiqoÔn se s mata pollaplasiasmèna me tn .
   3.   Migadiko suzuge pìloi antistoiqoÔn se s mata pou ufstantai talˆntwsh,
         toi perièqoun hmitonikoÔ ìrou (Parˆdeigma 6.2.3). An to pragmatikì mèro
        twn suzug¸n pìlwn enai mhdèn, tìte èqoume amewte talant¸sei , en¸ an to
        pragmatikì mèro enai mh mhdenikì, èqoume talant¸sei ekjetikˆ aÔxouse , an
        oi suzuge pìloi brskontai sto jetikì hmieppedo, ekjetikˆ fjnouse , an oi
        suzuge pìloi brskontai sto arnhtikì hmieppedo.

Parìmoia isqÔoun kai gia thn kroustik apìkrish enì sust mato anˆloga me th
                              ()
jèsh twn pìlwn th H s sto migadikì eppedo. Sto Sq ma 6.9 paristˆnontai oi
idiìthte enì aitiatoÔ sust mato kai h sumperiforˆ th kroustik    apìkrous
tou, ìpw aut prosdiorzetai apì th jèsh twn pìlwn tou sto migadikì eppedo.

                                                jù




                                                                                    ó



                               ÅõóôáèÝò                       ÁóôáèÝò

Sq ma 6.9       Oi idiìthte   enì   sust mato    kai h sumperiforˆ th        kroustik   tou apìkrish

anˆloga me th jèsh twn pìlwn th         sunˆrthsh       metaforˆ     tou sto migadikì eppedo.


Parˆdeigma 6.4.7
        Na deiqje ìti to kÔklwma tou Sq mato           6.8 enai eustajè   sÔsthma.

        LÔsh     H sunˆrthsh metaforˆ tou sust mato               èqei èna pìlo sth jèsh   (R=L) < 0,
        dhlad    sto arnhtikì hmieppedo.       Epeid     to sÔsthma w      pragmatikì sÔsthma enai
        aitiatì, to pedo sÔgklish     prèpei na enai     <e[s℄ >     R.
                                                                       L    ParathroÔme ìti sto pedo
        sÔgklish    perièqetai o fantastikì ˆxona , me apotèlesma to sÔsthma na enai eusta-
        jè .
228                                                    METASQHMATISMOS            LAPLACE             Kefˆlaio 6




Parˆdeigma 6.4.8
      àna GQA sÔsthma èqei sunˆrthsh metaforˆ

                                                            s+1
                                           H (s) =
                                                        (s + 2)(s          1)                              (6.4.24)



      Na upologiste h kroustik          apìkrish tou sust mato .

      LÔsh       H    H (s) analÔetai se aplˆ klˆsmata th             morf



                                          H (s) =
                                                       1 1 +2 1
                                                       3s+2 3s 1                                           (6.4.25)


      Gia to GQA sÔsthma tou paradegmato               den prosdiorzetai h perioq             sÔgklish

      th    sunˆrthsh       metaforˆ .   Oi pijanè          perioqè    sÔgklish       enai oi trei , oi opoe
      eikonzontai sto Sq ma 6.10. An to sÔsthma enai aitiatì, h perioq                         sÔgklish     enai
      <e[s℄ > 1 (Sq       ma 6.10a) kai h kroustik          apìkrish tou sust mato            enai

                                                        
                                                1 2  2
                                         h(t) = e + e u(t)
                                                   t   t
                                                3    3                                                     (6.4.26)



      Sto Sq ma 6.11a fanetai h kroustik              apìkrish tou sust mato                ìtan h perioq    sug-
      klish     enai    <e[s℄ > 1. Sthn perptwsh aut           to sÔsthma enai aitiatì afoÔ to pedo
      sÔgklish        enai to mègisto dexiì hmieppedo to opoo den perièqei pìlou . To sÔsthma
      den enai ìmw eustajè , afoÔ den perièqetai sto pedo sÔgklish o fantastikì ˆxona .
      To ìti to sÔsthma den enai eustajè           fanetai kai apì to ìti           h(t) ! 1 ìtan t ! 1.
      An to sÔsthma enai eustajè , h perioq                sÔgklish        enai h    2 < <e[s℄ < 1 (Sq ma
      6.10b) kai h kroustik         apìkrish tou sust mato            enai


                                              1
                                        h(t) = e 2t u(t)
                                                                   2 etu( t)
                                               3                   3                                       (6.4.27)




            ℑm                                  ℑm                                       ℑm



           -2        1         ℜe              -2            1        ℜe                -2       1    ℜe


                (á)                                    ( â)                             (ã)

Sq ma 6.10      Oi pijanè     perioqè   sÔgklish       th     sunˆrthsh         metaforˆ     gia to sÔsthma tou

Paradegmato     6.4.8 (a) aitiatì (b) eustajè         kai (g) mh aitiatì mh eustajè            sÔsthma.
Enìthta 6.3              Efarmogè     twn Metasqhmatism¸n             Laplace                                             229



              h(t)                                      h(t)                                        h(t)
                                                             1
                                                             3
                                                                                                                  t
                                                                                                           -1
                 1                                           0                    t
                     0                   t
                                                                  2
                           (á)                                    3     (â)                        (ã)


Sq ma 6.11       Oi pijanè          kroustikè    apokrsei            gia to sÔsthma tou Paradegmato                 6.4.8 (a)

aitiatì, (b) eustajè        kai (g) mh aitiatì mh eustajè                  sÔsthma.


      Sto Sq ma 6.11b fanetai h kroustik                        apìkrish tou sust mato                  ìtan h perioq    sug-
      klish      enai      2 < <e[s℄ < 1. Parathreste ìti to sÔsthma t¸ra enai eustajè , den
      enai ìmw          aitiatì.

      Tèlo , an h perioq              sÔgklish      tou sust mato               enai    <e[s℄ < 2 (Sq          ma 6.10g), to
      sÔsthma den enai oÔte aitiatì, oÔte eustajè kai h kroustik                                apìkrish tou sust mato

                                                         
                                                                 1e            2 et u( t)
      enai

                                             h(t) =                   2t
                                                                 3             3                                      (6.4.28)


      Sto Sq ma 6.11g fanetai h kroustik                        apìkrish tou sust mato                  ìtan h perioq    sug-
      klish      enai    <e[s℄ < 2.
Parˆdeigma 6.4.9
      Dnetai to grammikì qronikˆ anallowto sÔsthma tou opoou h sqèsh s mato eisìdou
      exìdou perigrˆfetai apì th diaforik                        exswsh

                                      d                d2       d
                                         y(t) + 3y(t) = 2 x(t) + x(t)                           2x(t)                 (6.4.29)
                                      dt               dt       dt
      Na breje h sunˆrthsh metaforˆ                     tou antistrìfou sust mato . Gia to sÔsthma autì
      upˆrqei antstrofo sÔsthma to opoo na enai eustajè                                kai aitiatì;

      LÔsh           Lambˆnonta        metasqhmatismì            Laplace sta          mèlh th    (6.4.29) èqoume

                                             Y (s)(s + 3) = X (s)(s2 + s                   2)
      apì thn opoa brsketai h sunˆrthsh metaforˆ                              tou sust mato

                                                             Y (s)        2
                                                H (s) =
                                                             X (s)
                                                                       = s s++s 3 2                                   (6.4.30)


      H sunˆrthsh metaforˆ               tou antstrofou sust mato                      enai


                                              H         (s) =              1
                                                                       H (s)
                                                  ant




                                                                          s+3
                                                                 =     s +s 2
                                                                        2
                                                                           s+3
                                                                 =     (s 1)(s + 2)                                   (6.4.31)
230                                             METASQHMATISMOS       LAPLACE          Kefˆlaio 6




       To antstrofo sÔsthma èqei dÔo pìlou       sto shmea     s = 1 kai s =   2. Oi dÔo pìloi
       brskontai ekatèrwjen tou fantastikoÔ ˆxona, epomènw          den enai dunatìn to mègisto
       dexiì hmieppedo pou den perièqei pìlou    (aitiatì sÔsthma) na perièqei to fantastikì
       ˆxona (eustajè sÔsthma). €ra, gia to sÔsthma (6.4.30) den upˆrqei antstrofo sÔsth-
       ma to opoo na enai sugqrìnw     aitiatì kai eustajè .

      SÔnoyh Kefalaou
    Sto kefˆlaio autì orsame to metasqhmatismì Laplace kai to monìpleuro metasqh-
matismì Laplace, parousiˆsthkan oi idiìthtè tou kai upologsame tou ML orismèn-
wn basik¸n shmˆtwn, ta opoa sunantˆme sth melèth grammik¸n susthmˆtwn. Sth
sunèqeia prosdiorsame ton antstrofo ML. Edame ìti, an h morf tou ML enai
apl , tìte mporoÔme na upologsoume ton antstrofo ML me th bo jeia tou Pna-
ka 6.2. An o ML den èqei apl morf allˆ enai rht sunˆrthsh, tìte analÔoume th
sunˆrthsh se aplˆ klˆsmata kai me th bo jeia twn idiot twn tou ML kai tou Pnaka
6.2 upologzoume eÔkola to s ma qwr na katafÔgoume sthn exswsh antistrof .
    Epsh , sto kefˆlaio autì anaptÔxame diˆfore efarmogè tou ML. Eidikìtera
exetˆsame th dunatìthta pou èqei o MML na epilÔei grammikè diaforikè exis¸-
sei me stajeroÔ suntelestè , oi opoe den èqoun mhdenikè arqikè sunj ke . H
dunatìthta aut ofeletai sti idiìthte tou MML pou anafèrontai sthn parˆgwgo
kai to olokl rwma mia sunˆrthsh . Sth sunèqeia parousiˆsthkan oi efarmogè twn
metasqhmatism¸n Laplace se ìti aforˆ th melèth GQA susthmˆtwn. Prosdiorsame
th sunˆrthsh metaforˆ sust mato apì th diaforik exswsh pou sundèei thn èxodo
kai thn esodo tou sust mato , upojètonta ìti oi arqikè sunj ke enai mhdenikè .
Epsh , me th bo jeia th diaforik exswsh , prosdiorsame to MML th exìdou
sust mato , to opoo mpore na mh brsketai se katˆstash hrema , kai antistrè-
fonta to MML prosdiorsame thn èxodo tou sust mato . Tèlo , parousiˆsthkan ta
sumperˆsmata pou exˆgoume apì thn perioq sÔgklish kai th jèsh twn pìlwn th
sunˆrthsh metaforˆ tou sust mato sto migadikì eppedo autˆ aforoÔn sthn eu-
stˆjeia kai sthn aitiìthta tou sust mato kaj¸ kai sth sumperiforˆ th kroustik
apìkris tou.


PROBLHMATA
 6.1   Na upologiste to aitiatì s ma pou èqei metasqhmatismì Laplace
        a) X (s) = s23+4 s+7
                           s+3    X (s) = s23s2s5 3
                                 b)

        g) X (s) = s2 +4
                      s                       s+2
                               d) X (s) = s2 +4 s+13
        e) X (s) = 2ss3 +4
                       2 +12                 2 +5s+15
                           s   st) X (s) = s3 +3s2
                                           s
 6.2   Na upologiste    h sunèlixh twn shmˆtwn x1 (t)       = u(t)      u(t     1) kai x2 (t) =
       u(t) u(t      2) me th bo      jeia th idiìthta th sunèlixh tou metasqhmatismoÔ
       Laplace.
Enìthta 6.4             Probl mata                                                                           231



 6.3   Na brejoÔn ta aitiatˆ s mata twn opown oi metasqhmatismo Laplace enai

                   X1 (s) = 2
                                     1                      X2 (s) =
                                                                               s+1
                           s + 3s + 2                                  (s + 3)(s2 + 4s + 5)
                                                     kai                                                 (6.4.32)


 6.4   Gia to kÔklwma RLC pou perigrˆfetai sto Sq ma 6.12.
         1.    Na prosdioriste h grammik diaforik exswsh h opoa sundèei thn esodo
                                             ()
               tou kukl¸mato in t kai thn èxodì tou o t .                     ()
         2.    Na prosdioriste h sunˆrthsh metaforˆ tou sust mato . Enai to sÔsth-
               ma eustajè ;
         3.    An h esodo tou kukl¸mato enai in t        e 3t u      ()=              (t) me th bo jeia tou
               metasqhmatismoÔ Laplase, na upologsete thn èxodo                          0 (t) gia t > 0, ìtan
               oi arqikè sunj ke enai           kai
                                                      do (t)
                                                           (0 ) = 1                       = 2.
                                                       o                        dt   t=0
                              R=3Ù
               A                         B
                       i(t)

              õin(t)            C=0,5F       õï(t)
                              L=1H
              Ä                          Ã                 Sq ma 6.12       To kÔklwma tou Probl mato        6.4.


 6.5   H sunˆrthsh metaforˆ , enì GQA aitiatoÔ sust mato , enai

                                               s+1
                                    H (s) = 2
                                             s + 2s + 2
                                                                                                         (6.4.33)

       Na upologiste h apìkrish y (t) tou sust mato ìtan to s                            ma eisìdou x   (t) dne-
       tai apì thn
                                             x(t) = e jtj ;          1<t<1                               (6.4.34)

       Na prosdiorsete to pedo sÔgklish kˆje forˆ pou parousiˆzetai metasqhma-
       tismì Laplace.
 6.6   H apìkrish enì grammikoÔ qronikˆ anallowtou sust mato sto s ma

                                                           x(t) = u(t)
       enai to s ma
                                              y(t) = (1 e        t     te   t   )u(t)
       Me th bo jeia tou metasqhmatismoÔ Laplace na breje h esodo tou sust mato
       ìtan to s ma exìdou enai

                                             y1 (t) = (2       3e t + e 3t )u(t)
232                                                        METASQHMATISMOS     LAPLACE         Kefˆlaio 6




 6.7   Sthn esodo enì GQA sust mato me kroustik apìkrish

                                                       h(t) = e 2t u(t)
       Efarmìzetai to s ma
                                                       x(t) = e 3t u(t)
       Na breje to s ma exìdou                   y(t), tou sust   mato
         1.   ìtan to sÔsthma arqikˆ hreme kai
         2.   ìtan   y(0         ) = 1.
 6.8   Dnetai to eustajè grammikˆ anallowto sÔsthma me sunˆrthsh metaforˆ

                                                      H (s) =
                                                                   2
                                                              2 s
         1.   Na breje h kroustik                 apìkrish h(t), tou sust     mato .
         2.   Me th bo jeia tou metasqhmatismoÔ Laplace na breje h èxodì tou ìtan
              to s ma eisìdou enai
                                                         x(t) = 2e 2t u(t)
 6.9   Dnetai to RC se seirˆ kÔklwma tou Sq mato 6.13. Na upologistoÔn
         1.   h sunˆrthsh metaforˆ            H (s) tou kukl¸mato ,
         2.   h kroustik           apìkrish h(t) tou kukl¸mato kai
         3.   h suqnìthta - 3 dB.

                            -6
                 C=10 F
                         6
        õin(t)       R=10 Ù               õï(t)
                     i(t)
                                                         Sq ma 6.13    To kÔklwma tou Probl mato    6.9.




      Bibliografa

6.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
6.2     A. Mˆrgarh , “S mata kai Sust mata SuneqoÔ kai DiakritoÔ Qrìnou ”, Ekdì-
 sei    Tziìla 2012.

6.3     S. Haykin, B. Veen, “Signal and Systems”, John                    & Wiley Sons, Inc. 2003
6.4    A. V. Oppenheim, R. S. Willsky, I. T. Young, “Signal and Systems”, Prentice -
 Hall Inc., N. Y., 1983.
                                                              ÊÅÖÁËÁÉÏ       7
                                  ÌÅÔÁÓ×ÇÌÁÔÉÓÌÏÓ Z




   O metasqhmatismì z enai o antstoiqo Laplace gia s mata diakritoÔ qrìnou kai
apotele genkeush tou metasqhmatismoÔ Fourier diakritoÔ qrìnou.
    Skopì tou Kefalaou enai na orsei ton amfpleuro metasqhmatismì z, aplˆ
metasqhmatismì z (Mz) kai to monìpleuro metasqhmatismì z (MMz), na perigrˆyei
ti basikè tou idiìthte kai na upologsei tou antstoiqou metasqhmatismoÔ stoi-
qeiwd¸n shmˆtwn pou antimetwpzoume sth melèth grammik¸n susthmˆtwn diakritoÔ
qrìnou. Epsh , sto Kefˆlaio autì ja parousiaste h dunatìthta pou èqei o monì-
pleuro metasqhmatismì z na epilÔei exis¸sei diafor¸n, oi opoe èqoun mh mh-
denikè arqikè sunj ke kai sth sunèqeia ja ekmetalleutoÔme th dunatìthta aut
gia th melèth GQA susthmˆtwn. Tèlo , skopì tou Kefalaou enai na anadexei th
sqèsh pou upˆrqei metaxÔ th aitiìthta , th eustˆjeia enì GQA sust mato , th
perioq   sÔgklish th sunˆrthsh metaforˆ tou kai th jèsh twn pìlwn aut
sto migadikì eppedo.


   Eisagwg

    H esodo kai h èxodo enì GQA sust mato diakritoÔ qrìnou sundèontai me ma
exswsh diafor¸n me stajeroÔ suntelestè . àtsi gia na prosdiorsoume thn èxodo
enì sust mato an gnwrzoume thn esodì tou ja prèpei na epilÔoume thn antstoiqh
exswsh diafor¸n. Sto Kefˆlaio 2 parathr same ìti mporoÔme na upologsoume thn
èxodo enì sust mato an gnwrzoume thn esodì tou, me th bo jeia tou ajrosmato
th sunèlixh . Sto Kefˆlaio 5 orsame to MF diakritoÔ qrìnou, o opoo parèqei th
dunatìthta metˆbash apì to pedo tou qrìnou sto pedo th suqnìthta . H idiìthta
th sunèlixh tou MF metatrèpei to ˆjroisma th sunèlixh se èna aplì ginìmeno
twn antistoqwn metasqhmatism¸n, me thn bo jeia tou opoou upologzetai o MF th
exìdou kai sth sunèqeia me antstrofo MF prosdiorzetai h èxodo tou sust mato
sto pedo tou qrìnou. O MF loipìn, èdwse ma eÔkolh lÔsh sto prìblhma eÔresh
th exìdou enì sust mato , an gnwrzoume thn esodì tou kai thn kroustik tou
apìkrish. Dustuq¸ , ìmw , upˆrqoun pollˆ s mata diakritoÔ qrìnou, ta opoa suqnˆ
sunantˆme sth prˆxh, gia ta opoa den upˆrqei o MF.
234                                                          Metasqhmatismì    z     Kefˆlaio 7




    Sto Kefˆlaio autì ja perigrˆyoume ton Metasqhmatismì z, o opoo metatrèpei
èna s ma diakritoÔ qrìnou se ma analutik sunˆrthsh migadik metablht . äpw
ja doÔme, se pollˆ apì ta s mata diakritoÔ qrìnou me praktik spoudaiìthta, gia
ta opoa den upˆrqei o MF diakritoÔ qrìnou, upˆrqei o Mz kai ètsi dieurÔnetai to
sÔnolo twn shmˆtwn diakritoÔ qrìnou gia ta opoa mpore na epiteuqje metˆbash
apì to pedo tou qrìnou sto pedo th suqnìthta .
    Sto Kefˆlaio 5, me th bo jeia tou MF upologsame thn èxodo enì GQA sust ma-
to diakritoÔ qrìnou to opoo brsketai arqikˆ se katˆstash hrema . Sto Kefˆlaio
autì ja doÔme ìti an to sÔsthma de brsketai se katˆstash hrema , o monìpleuro
metasqhmatismì z ma epitrèpei na sumperilˆboume ti arqikè sunj ke sth exswsh
diafor¸n kai na prosdiorsoume thn èxodo tou sust mato .
    Tèlo , sto Kefˆlaio autì ja doÔme ìti h qr sh tou migadikoÔ pedou kai h jèsh
twn pìlwn se autì ma epitrèpei na exˆgoume basikè idiìthte twn susthmˆtwn di-
akritoÔ qrìnou, ìpw h aitiìthta kai h eustˆjeia. Gia ìlou tou parapˆnw lìgou ,
o metasqhmatismì z apotele èna akìma basikì majhmatikì ergaleo gia th melèth
GQA susthmˆtwn diakritoÔ qrìnou.


7.1    ORISMOI


Sthn Enìthta 2.5.2 èqoume dei ìti an h esodo enì grammikoÔ qronikˆ anallowtou
                                                                          ()
sust mato diakritoÔ qrìnou, pou èqei kroustik apìkrish h n , enai z n tìte to
s ma exìdou enai
                                 ( )= ( )
                                 y n H z zn                              (7.1.1)
ìpou
                                        1
                                        X
                             H (z ) =            h(n)z       n                          (7.1.2)
                                        n=   1
enai o metasqhmatismì z th kroustik      apìkrish                h(n)   kai enai h sunˆrthsh
metaforˆ tou sust mato .
    O metasqhmatismì z antistoiqe sthn akolouja x              (n) th sunˆrthsh
                                        1
                                        X
                             X (z )             x(n)z       n                          (7.1.3)
                                        n=   1
H   X (z ) enai migadik
                     sunˆrthsh th migadik metablht z                     =
                                                          rej kai onomˆzetai
amfpleuro metasqhmatismì z tou x n()  aplˆ metasqhmatismì z . O monìpleuro
metasqhmatismì z orzetai apì th sqèsh

                                        1
                                        X
                              X (z)          x(n)z      n                              (7.1.4)
                                        n=0
Enìthta 7.1       Orismo                                                                                    235



H perioq tim¸n tou z , gia ti opoe o metasqhmatismì z èqei peperasmènh tim
kaletai perioq sÔgklish (PS) (region of convergence ROC). Gia eukola o metasqh-
                      ()
matismì z tou x n merikè forè sumbolzetai w Z x n kai h sqèsh metaxÔ tou [ ( )℄
 ()
x n kai tou metasqhmatismoÔ tou upodeiknÔetai w

                                            x(n)        ! X (z)
                                                        Z
                                                                                                       (7.1.5)

Parathr sei
                                                                                                             
   1.   An o Mz upˆrqei kai gia timè me r
        P1
                                           , dhlad , z       =1
                                                          ej , tìte X ej           =                           =
                  ()
          n= 1 x n e
                     j n pou enai o MF diakritoÔ qrìnou th akolouja x                                      (n),
        dhlad ,
                                            X (z )jz=ej           = F [x(n)℄                           (7.1.6)

        Sto eppedo-s o metasqhmatismì Laplace metatrèpetai se metasqhmatismì Fouri-
                                                      =
        er sto fantastikì ˆxona (dhlad , s j! ). Sto migadikì eppedo-z o metasqh-
        matismì z metatrèpetai se metasqhmatismì Fourier an to mètro th posìthta
        metasqhmatismoÔ z enai monˆda z            ( =              )
                                               ej , dhlad , an brsketai sto mona-
        diao kÔklo tou migadikoÔ epipèdou-z Sq ma 7.1. Me ˆlla lìgia o monadiao
        kÔklo tou migadikoÔ epipèdou-z èqei ton dio rìlo me to fantastikì ˆxona sto
        eppedo-s tou metasqhmatismoÔ Laplace.
        Metˆ thn parat rhsh aut enai skìpimo na kˆnoume ma apl allag tou sum-
        bolismoÔ tou metasqhmatismoÔ Fourier diakritoÔ qrìnou thn opoa sunantˆme
        pollè forè sta enqeirdia

                           X (z )jz=ej   = F [x(n)℄ = X (ej ) ant tou X ( )                           (7.1.7)


        ℑm z
Ìïíáäéáßïò
 êýêëïò
                      z=e jÙ
                  Ù
              0       1    ℜe z             Sq ma 7.1                                     z
                                                                    To migadikì eppedo- . O metasqhma-

                                            tismì       z   metatrèpetai se metasqhmatismì         Fourier   gia

                                            ti   timè       tou   z pou brskontai sto monadiao kÔklo.
   2.   O Mz sqetzetai me to DTFT kai sthn perptwsh ìpou h metablht                                 r   6= 1.
        Prˆgmati

                                         1 
                                         X
                       X (rej     )=             x(n)r        n e j n    = F x(n)  r       n       (7.1.8)
                                       n=   1
236                                                                          Metasqhmatismì   z          Kefˆlaio 7




                                  (      )
        ParathroÔme ìti X rej enai o metasqhmatismì Fourier th akolouja x n                                   ()
        pollaplasiasmènh me thn pragmatik ekjetik akolouja r n . Epomènw gia
        na sugklnei o metasqhmatismì z prèpei o metasqhmatismì Fourier diakritoÔ
                                         ( )
        qrìnou th akolouja x n r n na sugklnei, dhlad , h akolouja x n z n                             ()
        na enai arijm simh katˆ apìluth tim
                                          1
                                          X                             1
                                                                        X
                           jX (z)j =               x(n)z        n               jx(n)jr n < 1             (7.1.9)
                                         n=    1                        n=   1
        H parousa tou ìrou r n parèqei th dunatìthta sÔgklish tou ajrosmato
        kai katˆ sunèpeia thn Ôparxh tou metasqhmatismoÔ z akìmh kai an den upˆrqei
                            ()
        o DTFT th x n . O DTFT th x n                      ()=               ()
                                                  an u n den upˆrqei ìtan a > ,                          jj      1
                             ()
        dedomènou ìti x n enai ma ekjetik aÔxousa akolouja ìpw fanetai sto
        Sq ma 7.2a. An epilege r > a tìte h akolouja r n ìpw fanetai sto Sq ma
                                                                ()
        7.2b elatt¸netai taqÔtera apì ìti h x n auxˆnetai. àtsi h akolouja x n r n                        ()
        ìpw fanetai sto Sq ma 7.2g enai arijm simh katˆ apìluth tim kai upˆrqei
        o metasqhmatismì z.


             n
      x(n)= á u(n), á>1                            r -n                                 x(n) r-n
                                                                r >á
          1                                                                                   1


      -4 -2 0 2 4 6 8 10      n               -4 -2 0 2 4 6 8 10             n         -4 -2 0 2 4 6 8 10       n
               (á)                                        (â)                                      (ã)

Sq ma 7.2     (a) H akolouja      x(n) = an u(n) gia th opoa den upˆrqei o DTFT (b) o parˆgonta
                       kai (g) h akolouja x(n)r
exasjènish     r   n                               n h opoa enai arijm simh katˆ apìluth tim .


7.1.1    Metasqhmatismì               z stoiqeiwd¸n         akolouji¸n

Sthn parˆgrafo aut             ja upologsoume to Mz orismènwn basik¸n akolouji¸n.
Parˆdeigma 7.1.1 (S        ma peperasmènh       èktash      )
        Na upologiste o metasqhmatismì            z tou orjog¸niou parajÔrou diˆrkeia N + 1
                                                     
                                             x(n) = 10;; 0alli¸
                                                             nN                        (7.1.10)



        LÔsh       O metasqhmatismì     z enai
                                       X1              XN            XN
                             X (z ) =        x(n)z n =     1z n = z N zn
                                      n= 1             n=0           n=0
Enìthta 7.1               Orismo                                                                                          237



         kai me th bo jeia tou tÔpou me ton opoo upologzoume to ˆjroisma twn ìrwn gewmetrik
         seirˆ      èqoume
                                                 (
                                                      z Nz z 1 1        = zzNN(+1z 1)1 ;
                                                             N +1
                                  X (z ) =                                                 z 6= 1; z 6= 0
                                                      N + 1;                               z=1
                                                                                                                       (7.1.11)



         H perioq      sÔgklish            kalÔptei ìlo to migadikì eppedo ektì                  apì to mhdèn.


Parˆdeigma 7.1.2 (To             ekjetikì aitiatì s ma)

         Na upologiste o metasqhmatismì                      z gia to s        ma

                                                              x(n) = an u(n)                                           (7.1.12)


         LÔsh        O metasqhmatismì                 z enai
                                                          X1             X1
                                             X (z ) =        an u(n)z n = (az 1)n
                                                         n=1             n=0
         Gia na sugklnei o X (z ) prèpei to ˆjroisma
                                                P1 twn aperwn      ìrwn th gewmetrik   seirˆ ,
         me lìgo     az 1,                        n=0
                                 na sugklnei, dhlad ,j az  1 j n < 1. àtsi h perioq sÔgklish
         enai h perioq tim¸n tou z gia thn opoa jaz
                                                         1j < 1 jz j > jaj, opìte
                            X1                  1 = z ; ìtan jzj > jaj
                    X (z ) = (az 1 )n =
                            n=0              1 az 1 z a                                (7.1.13)



         O metasqhmatismì z orzetai sto exwterikì kÔklou aktna Rx = jaj blèpe Sq ma 7.3.




                                                                                           ℑm z
                                                                                Ìïíáäéáßïò
                    x(n)                                                         êýêëïò


                                                                                                      Rx
               -4    -2      0        2     4     6     8     n                                 0           a       ℜe z

                           (á)
                                                                                                (â)

Sq ma 7.3           (a) To s ma           x(n)    = anu(n) ìtan a enai pragmatikì                  arijmì      <   1 kai (b) h
perioq    sÔgklish , o pìlo                kai to mhdenikì tou metasqhmatismoÔ                  z sto Parˆdeigma 7.1.2.
         Gia   a    = 1 tìte to s            ma   x(n)      enai h akolouja monadiaou b mato , h opoa èqei
         metasqhmatismì           z
                                          u(n) Z! U (z ) =
                                                                        1       = z z 1 me jzj > 1
                                                                    1     z 1
                                                                                                                       (7.1.14)
238                                                                             Metasqhmatismì           z            Kefˆlaio 7




       dhlad , me perioq   sÔgklish           to exwterikì tou monadiaou kÔklou.

Parathr sei

  1.                                                          ()
       O metasqhmatismì z th akolouja x n sugklnei gia kˆje peperasmènh tim
       tou a, en¸ o metasqhmatismì Fourier tou x n sugklnei an a < .   ()                              jj 1
  2.      jj 1
       An a > h perioq sÔgklish den perièqei to monadiao kÔklo kai gia ti timè
       autè den upˆrqei o metasqhmatismì Fourier th akolouja an u n .                                           ()
  3.   O metasqhmatismì z èqei klasmatik morf , dhlad , èqei mhdenikˆ kai pìlou .
       Sto Parˆdeigma 7.1.2 o metasqhmatismì z èqei èna mhdenikì “ ” gia z    kai                            Æ         =0
                  
       èna pìlo “ ” gia z         =
                            a (blèpe Sq ma 7.2).

Parˆdeigma 7.1.3
       Na upologiste o metasqhmatismì               z gia to s        ma


                                                 x(n) = nan 1 u(n)                                                      (7.1.15)


                                                       P1
       LÔsh    Paragwgzonta           thn exswsh        n=0 a
                                                                   nz n          = zza w          pro    a èqoume
                                      1
                                      X                            z
                                            nan 1 z n =                              jz j > jaj
                                      n=1                     (z       a)2
                                                                                me



       Apì thn parapˆnw exswsh prokÔptei

                                                                                 z
                        x(n) = nan 1 u(n) Z! X (z ) =                                            jz j > jaj
                                                                            (z        a)2
                                                                                            me                          (7.1.16)



       Nèa parag¸gish w       pro      a dnei
                           1
                           X                                                z
                                  n(n         1)an   2z   n   = 2 (z                        jz j > jaj
                                                                                a)3
                                                                                      me
                           n=2
       gia apì thn opoa èqoume


                        n(n       1) an 2u(n) Z! X (z) =                          z
               x(n) =                                                                            jz j > jaj
                              2                          (z                           a)3
                                                                                            me                          (7.1.17)



       An epanalˆboume thn parag¸gish ja odhghjoÔme se antstoiqa apotelèsmata.

Parˆdeigma 7.1.4
       Na upologiste o metasqhmatismì               z tou monadiaou degmato                    .

       LÔsh    O metasqhmatismì         z tou monadiaou degmato x(n) = Æ(n) enai
                                              X1
                                  Z [Æ(n)℄ =       Æ(n)z n = 1; me z 6= 0                                               (7.1.18)
                                             n= 1
Enìthta 7.1         Orismo                                                                                     239



      kai tou olisjhmènou katˆ            kb   mata monadiaou degmato              Æ(n k), enai
                                                               
                                          Z [Æ(n k)℄ =              0;   k<0
                                                                    z k; k  0                               (7.1.19)



      H perioq      sÔgklish     kalÔptei ìlo to migadikì eppedo ektì                    apì thn arq ,

Parˆdeigma 7.1.5
      Na upologiste o metasqhmatismì                 z tou s      mato

                                                    n                   n
                                          x(n) =
                                                 1            u(n) +
                                                                          1        u(n)
                                                 2                        3                                  (7.1.20)




      LÔsh       O metasqhmatismì           z enai
                                                 1  1 n
                                                 X               1        1
                                                                          X
                                                                                n
                                 X (z )    =              +     z    n                    z n
                                             n=0          2  n=0 3
                                                 1
                                           = 1 1z 1 + 1 1z 11
                                                 2          3
                                                     2 5z 1
                                           = 1 1 z 16 1 1 z 1
                                                   2        3
                                                                   
                                                         z 2z 56
      Telikˆ

                                             X (z ) =                
                                                       z 12 z 13
                                                                                                             (7.1.21)


      Gia na èqoume sÔgklish tou            X (z ) prèpei jz j > 1=2 kai jz j > 1=3.             Epomènw      prèpei
      jz j > 1=2.    MporoÔme na odhghjoÔme sta dia apotelèsmata an basistoÔme sta dÔo
      prohgoÔmena paradegmata kai qrhsimopoi soume thn idiìthta th                             grammikìthta     tou
      metasqhmatismoÔ         z thn opoa ja doÔme sth sunèqeia.
Parˆdeigma 7.1.6 (Austhrˆ         mh aitiatì ekjetikì s ma)



                                               x(n) = anu( n                  1)                             (7.1.22)


      LÔsh       O metasqhmatismì           z enai
                     1
                     X                                        X1                    1
                                                                                    X                  1
                                                                                                       X
      X (z ) =                an u( n     1)z n =                   an z n =              a nzn = 1        (a 1z)n
                    n=    1                               n=    1                   n=1                n=0
      an   ja 1 z j < 1   isodÔnama        jz j < jaj to ˆjroisma sugklnei kai èqoume
                                                      1       1 a z 1 z   1
                               X (z ) = 1                 1z = 1 a 1z = z a
                                               1      a
                                                                                                             (7.1.23)


      me perioq     sÔgklish      to eswterikì kÔklou aktna              Rx = jaj Sq        ma 7.4.
240                                                                         Metasqhmatismì         z        Kefˆlaio 7




                                                                                ℑm z
                         x(n)                                         Ìïíáäéáßïò
                                                                       êýêëïò

             -8     -6 -4 -2                                                                  Rx
                                    0    2        4    n
                                                                                        0              a ℜe z


                             (á)                                                        (â)

Sq ma 7.4         (a) To s ma   x(n)    =     an u( n            1) ìtan a pragmatì         arijmì     >   1 kai (b) h
perioq     sÔgklish , o pìlo       kai to mhdenikì tou metasqhmatismoÔ                  z sto Parˆdeigma 7.1.6.

ParathroÔme ìti o metasqhmatismì z tou austhrˆ mh aitiatoÔ s mato x n                                          ()=
       (
  an u n          1)
               èqei thn dia algebrik parˆstash me to ekjetikì aitiatì s ma x n                                ( )=
 n    ()
a u n , allˆ ˆllh perioq sÔgklish . Autì shmanei ìti h perioq sÔgklish , ìpw
kai sto metasqhmatismì Laplace, apotele anapìspasto tm ma tou metasqhmatismoÔ
z kai prèpei pˆntote na kajorzetai. An ma doje mìno o metasqhmatismì z qwr
thn antstoiqh perioq sÔgklis tou ja upˆrqei abebaiìthta ston prosdiorismì th
akolouja pou od ghse s' autìn, afoÔ ja upˆrqoun perissìtere apì ma apant sei .

Parˆdeigma 7.1.7
         Na upologiste o metasqhmatismì               z tou s       mato

                                    x(n) = ajnj ;            1 < n < 1 kai jaj < 1                            (7.1.24)


         LÔsh      To s ma   x(n) grˆfetai
                                        x(n) = an u(n) + a n u( n                  1)
         Apì to Parˆdeigma 7.1.2 èqoume


                                   an u(n) Z!
                                                            1        = z z a me jzj > jaj
                                                       1     az 1
         en¸ apì to Parˆdeigma 7.1.6 èqoume


                          a n u( n          1) Z! 1              1       = 1 azaz me jzj < ja1j
                                                                a 1z 1
         Epeid    jaj < 1, enai kai jaj < jaj 1 . àtsi o metasqhmatismì z tou x(n) enai
                                   X (z ) =
                                                  z
                                                       + az
                                                             ; me jaj < jz j <
                                                                                1
                                                      a 1 az                   jaj                            (7.1.25)
                                              z
         Sto Sq ma 7.6 fanontai h perioq                  sÔgklish , to mhdenikì kai oi pìloi tou            Mz   th
         akolouja     x(n) = ajnj .
Enìthta 7.1         Orismo                                                                                241



                                                                              ℑm z
                          x(n)

                                                                                          1
                                                                                    R     R
                                                                                          a
                                                                                                  a ℜe z
                                                                                                  1
                                                                                    0
              -8 -6 -4 -2        0      2     4    6        8       n

                                 (á)                                                (â)

Sq ma 7.5       (a) H akolouja        x(n)   = ajnj ìtan a pragmatì          arijmì < 1 kai (b) h perioq

sÔgklish , oi pìloi kai to mhdenikì tou metasqhmatismoÔ                   z sto Parˆdeigma 7.1.7.


Parˆdeigma 7.1.8
        Na upologiste o metasqhmatismì                z tou s     mato

                                              x(n) = an ;          1<n<1                              (7.1.26)

        LÔsh      To s ma     x(n) grˆfetai
                                            x(n) = an u(n) + an u( n           1)
        Apì to Parˆdeigma 7.1.2 èqoume


                                  an u(n) Z!
                                                            1      = z z a me jzj > jaj
                                                    1       az 1
        en¸ apì to Parˆdeigma 7.1.6 èqoume


                           an u( n 1) Z! 1 1az 1 = z z a me jzj < jaj
        ParathroÔme ìti en¸ oi metasqhmatismo z th a u(n) kai th a u( n        1) upˆrqoun,
                                                       n               n
        epeid prèpei tautìqrona na isqÔei jz j > a kai jz j < a, to ekjetikì s ma x(n) = a
                                                                                           n
        den èqei amfpleuro metasqhmatismì             z.

7.1.2    Idiìthte    th   perioq            sÔgklish -Ôparxh metasqhmatismoÔ                  z
Apì ta prohgoÔmena paradegmata parathr same ìti o metasqhmatismì z den pros-
diorzei monos manta thn akolouja (s ma) ektì an èqei orisje h perioq sÔgklish .
Epsh parathr same ìti h morf th perioq         sÔgklish tou metasqhmatismoÔ z
exartˆtai apì ta qarakthristikˆ th akolouja . Sthn enìthta aut ja broÔme to
trìpo me to opoo sundèetai h perioq sÔgklish me ta qarakthristikˆ th akolou-
        ()
ja x n . Ja parousiˆsoume ti idiìthte qrhsimopoi¸nta diaisjhtikˆ epiqeir ma-
ta parˆ austhrè majhmatikè apodexei . Gnwrzonta ti idiìthte enai efiktì o
242                                                                 Metasqhmatismì    z          Kefˆlaio 7




prosdiorismì th perioq sÔgklish apì to metasqhmatismì z,                             X (z ),   kai èqonta
periorismènh gn¸sh twn qarakthristik¸n th akolouja x n .                     ()
    Ma pr¸th idiìthta enai ìti h perioq sÔgklish tou metasqhmatismoÔ z, pou
enai rht sunˆrthsh th metablht z , den perièqei pìlou .

      äpw parathr same sthn prohgoÔmenh enìthta gia na upˆrqei o metasqhmatismì
z tou s mato        ()
              x n prèpei
                                1
                                X                           1
                                                            X
                    jX (z)j =            x(n)z    n                jx(n)jr n < 1                 (7.1.27)
                                n=   1                     n=   1
h posìthta r enai to mètro tou migadikoÔ arijmoÔ z                     = 
                                                      r ej kai oi timè th prag-
matik metablht r pou ikanopoioÔn thn parapˆnw anisìthta orzoun th perioq
sÔgklish tou metasqhmatismoÔ. Enai fanerì ìti h sÔgklish exartˆtai mìno apì
to mètro r   =jjz kai ìqi apì to , to opoo shmanei ìti h perioq sÔgklish ja
kajorzetai apì omìkentrou kÔklou me kèntro thn arq twn axìnwn tou migadikoÔ
epipèdou-z.
    Gia ma peperasmènou m kou akolouja, dhlad , x n                   ( )=0
                                                           an n < N1 kai n > N2
h opoa enai fragmènh, dhlad , upˆrqei jetikì arijmì M gia ton opoo x n    M                 j ( )j 
o metasqhmatismì z enai
                                                 N2
                                                 X
                                     X (z ) =             x(n)z     n                             (7.1.28)
                                                 n=N1
Enai fanerì ìti h sunˆrthsh aut sugklnei gia kˆje tim tou z , dhlad ,
h perioq sÔgklish mia peperasmènou m kou kai fragmènh akolouja enai ìlo
to migadikì eppedo-z me dÔo pijanè exairèsei
  1.             0
        an N1 < tìte oi timè tou          z   me ˆpeiro mètro apokleontai apì thn perioq
        sÔgklish .
  2.             0
        an N1 < kai      N2 >   0 tìte h arq          twn axìnwn apokleetai apì thn perioq
        sÔgklish .

   Sth sunèqeia ja exetˆsoume th genik perptwsh katˆ thn opoa h akolouj-
      ()
a x n den enai periorismènh diˆrkeia kai enai fragmènh. H akolouja aut
onomˆzetai amfpleurh akolouja. Sthn perptwsh aut diaqwrzoume to ˆjroisma
P1
           j ( )j
  n= 1 x n r <
                n        1
                       se dÔo tm mata. Sto pr¸to tm ma I r ta ìria tou ajros- ()
mato enai     1
               kai       1
                                                 X1
                                 I (r) =                  jx(n)jr       n
                                              n=      1
Enìthta 7.1           Orismo                                                                             243



Sto deÔtero tm ma         I+ (r) ta ìria tou ajrosmato             enai     0 kai 1
                                                      1
                                                      X
                                         I+ (r) =           jx(n)jr     n
                                                      n=0
dhlad ,
                                X1                      1
                                                        X
               jX (z)j              jx(n)j r n +             jx(n)j r n = I (r) + I+(r)
                            n=   1                      n=0
                      j ( )j
Gia na enai to X z fragmèno prèpei kai ta dÔo epimèrou ajrosmata na enai
peperasmèna.
    A upojèsoume ìti mporoÔme na frˆxoume th x n brskonta ti elˆqiste  j ( )j
jetikè stajerè M , M# , r kai r# tètoie ¸ste

                                      jx(n)j  M (r )n; n < 0;                                        (7.1.29)

kai
                                      jx(n)j  M#(r# )n; n  0                                        (7.1.30)
                     ()
H akolouja x n h opoa ikanopoie ta frˆgmata den auxˆnetai taqÔtera apì thn
               ( )                                                  ( )
akolouja r# n gia ti jetikè timè tou n kai th r n gia ti arnhtikè timè th n.
Shmei¸netai ìti an kai upˆrqoun akolouje oi opoe den ikanopoioÔn ta parapˆnw
                                       2
frˆgmata, gia parˆdeigma h akolouja n , oi akolouje autè den emfanzontai se
fusikè efarmogè kai ètsi den ma dhmiourgoÔn probl mata.
   An to frˆgma pou prosdiorzetai apì thn (7.1.29) ikanopoietai, tìte

                                 X1                                         X1
                     I (r ) =            jx(n)j r   n              M                (r )n r   n
                                n=   1                                      n=   1
                                                                           r1 
                                                                            X
                                                                                        m
                                                            m= n
                                                             =      M
                                                                          r
                                                                                                      (7.1.31)
                                                                      m=1
Gia na upˆrqei to ˆjroisma twn aperwn ìrwn th gewmetrik        proìdou prèpei
                                                                          o
          =    r na enai mikrìtero th monˆda . Epomènw to ˆrjoisma P1 r m
lìgo           r                                                       1 r
upˆrqei gia ti timè tou z oi opoe ikanopoioÔn thn                      jzj = r < r         . An to frˆgma pou
prosdiorzetai apì thn (7.1.30) ikanopoietai, tìte
                                     1
                                     X                                  1
                                                                        X
                          I+ (r) =         jx(n)j r     n     M#            (r# )nr    n
                                     n=0                                n=0
                                                                        1  r m
                                                                        X
                                                             =     M#        #
                                                                                 r
                                                                                                      (7.1.32)
                                                                        n=0
244                                                             Metasqhmatismì     z        Kefˆlaio 7



              P            
              1 r# m upˆrqei gia ti timè tou z oi opoe ikanopoioÔn thn z
To ˆrjoisma   0 r                                                                               j j=
r > r# .
   ParathroÔme ìti to pr¸to ˆjroisma upˆrqei gia ti timè to z gia ti opoe z <                  jj
                                                               jj
r en¸ to deÔtero gia ti timè to z gia ti opoe z > r# . Sth perptwsh aut h
perioq sÔgklish enai h tom twn dÔo parapˆnw perioq¸n tou epipèdou-z .

    H perioq sÔgklish mia amfpleurh akolouja apoteletai apì ti timè tou
                                                        jj
migadikoÔ epipèdou z gia ti opoe isqÔei r# < z < r , dhlad , h perioq sÔgklish
èqei morf daktulou.

    Parˆdeigma amfpleurh akolouja enai h akolouja x n                ( )=
                                                             ajnj sto Parˆdeigma
7.1.7.
    An r# r tìte oi dÔo perioqè sÔgklish den allhloepikalÔptontai kai h perioq
                    ()
sÔgklish tou X z enai to kenì sÔnolo (blèpe Parˆdeigma 7.1.8).

    Sth sunèqeia ja exetˆsoume th perptwsh katˆ thn opoa h akolouja x n ,                     ()
ikanopoie th sunj kh x n      ()=0
                                 gia n < N1 . H akolouja aut onomˆzetai dex-
iìpleurh akolouja. Sthn perptwsh aut èqoume

                       1
                       X                  1
                                          X                              1  r n
                                                                         X
        jX (z)j           jx(n)jr  n            M# r#n r n   = M#           #
                                                                              r
                                                                                             (7.1.33)
                    n=N1                 n=N1                         n=N1

ìpou upojèsame ìti to frˆgma pou prosdiorzetai apì thn (7.1.30) ikanopoietai. Gia
na upˆrqei to ˆjroisma twn aperwn ìrwn th gewmetrik proìdou prèpei o lìgo
  =                                                                 ()
 rr# na enai mikrìtero th monˆda . Epomènw o X z upˆrqei gia ti timè tou z
oi opoe ikanopoioÔn thn z     j j=
                              r > r# .
    H perioq sÔgklish mia dexiìpleurh akolouja apoteletai apì ti timè tou
                                                         jj
migadikoÔ epipèdou z gia ti opoe isqÔei r# < z , dhlad , h perioq sÔgklish mia
dexiìpleurh akolouja tou Mz ektenetai èxw apì kÔklo aktna r# sto eppedo-z .
Dedomènou ìti h perioq sÔgklish den perièqei pìlou r# enai h mikrìterh aktna
kÔklou ston opoo perièqontai ìloi oi pìloi tou X z .          ()
    H akolouja x n    ( ) = anu(n) thn opoa melet       same sto Parˆdeigma 7.1.2 enai ma
dexiìpleurh akolouja.
    Sth sunèqeia ja exetˆsoume th perptwsh katˆ thn opoa h akolouja                          x(n),
ikanopoie th sunj kh x n      ( )=0
                                 gia n > N2 . H akolouja aut onomˆzetai                        aris-
terìpleurh akolouja. Sthn perptwsh aut èqoume


                  N2
                  X                      N2
                                         X                               1 
                                                                         X         r
                                                                                       n
      jX (z)j             jx(n)jr 
                                 n                M   rn r n   =M                 r
                                                                                             (7.1.34)
                  n=   1                 n=   1                       n= N2
Enìthta 7.2           Idiìthte   tou MetasqhmatismoÔ   z                                      245



apì thn opoa parathroÔme ìti o X            (z) upˆrqei gia ti    timè tou z oi opoe ikanopoioÔn
thn z j j=
         r<r .
   H perioq sÔgklish mia aristerìpleurh akolouja apoteletai apì ti timè
                                                              jj
tou migadikoÔ epipèdou-z gia ti opoe isqÔei z < r , dhlad , h perioq sÔgk-
lish mia aristerìpleurh akolouja tou Mz enai to eswterikì kÔklou aktna
r sto eppedo-z . Dedomènou ìti h perioq sÔgklish den perièqei pìlou , r enai h
megalÔterh aktna kÔklou ston opoo den perièqontai oi pìloi tou X z .             ()
    Parˆdeigma aristerìpleurh akolouja                    enai h akolouja x(n) = an u(
                                                                             n                  1)
sto Parˆdeigma 7.1.6.
    Anˆloga me to edo tou s mato katal xame se trei diaforetikoÔ tÔpou peri-
oq¸n sÔgklish . Shmei¸netai ìti isqÔei kai to antstrofo, dhlad , an h perioq sÔg-
                                           jj
klish enai to exwterikì kÔklou z > R to s ma enai aitiatì, an enai to eswterikì
kÔklou z < R enai mh aitiatì kai an èqei morf daktulou R+ < z < R to s ma
         jj                                                                     jj
enai ma amfpleurh akolouja.


7.2     IDIOTHTES TOU METASQHMATISMOU                                  Z

Sthn parˆgrafo aut ja parousiastoÔn basikè idiìthte tou metasqhmatismoÔ z.
Oi idiìthte autè ja ma bohj soun ston upologismì tou metasqhmatismoÔ z mia
dedomènh akolouja qwr kat' anˆgkh na prosdiorzetai to sqetikì ˆjroisma.

(1) Grammikìthta

   An x1      (n) Z! X1 (z) me perioq      sÔgklish P1 kai x2 n        ( ) Z! X2(z) me perioq
sÔgklish       P2   tìte gia opoiesd pote stajerè a kai b isqÔei

                      a  x1 (n) + b  x2 (n) Z! a  X1 (z ) + b  X2 (z )           (7.2.1)

H perioq      sÔgklish tou Z [a  x1 (n) + b  x2 (n)℄ enai toulˆqiston h P1 \ P2 . H lèxh
“toulˆqiston” qrhsimopoi jhke gia thn perptwsh katˆ thn opoa o grammikì sundu-
asmì enai tètoio ¸ste kˆpoia mhdenikˆ na exoudeter¸noun orismènou pìlou . Se
mia tètoia perptwsh h perioq sÔgklish enai megalÔterh apì thn tom twn dÔo
epimèrou perioq¸n sÔgklish .
    H apìdeixh th grammikìthta apotele ˆmeso epakìloujo th grammikìthta tou
ajrosmato ston orismì tou metasqhmatismoÔ z.

(2) Idiìthta th        qronik        olsjhsh
              x(n) me amfpleuro metasqhmatismì z X (z ) kai perioq sÔgklish
      àstw s ma
P = fz 2 C : R+ < jz j < R g, tìte gia kˆje akèraio n0 , jetikì arnhtikì, isqÔei
                  x(n + n0 ) Z! z n0 X (z ); R+ < jz j < R                 (7.2.2)
246                                                                  Metasqhmatismì     z         Kefˆlaio 7




Apìdeixh

      H apìdeixh aporrèei ˆmesa apì tou orismoÔ . Prˆgmati, èqoume

                                                        1
                                                        X
                        Z [x(n + n0 )℄         =                   x(n + n0 )z    n
                                                       n= 1
                                                        1
                                                        X
                                          i=n+n0
                                               =                  x(i)z i+n0
                                                       i=     1
                                                              1
                                                              X
                                               =       z n0           x(i)z   i
                                                            i= 1
                                               =       z n0 X (z )

Gia   n0 =     1 èqoume Z [x(n 1)℄ = z 1  X (z).
   To sÔsthma diakritoÔ qrìnou tou Sq mato 7.6 to opoo prokale kajustèrhsh
enì degmato sumbolzetai me z 1 . Genikˆ èna sÔsthma diakritoÔ qrìnou to opoo
prokale kajustèrhsh katˆ m degmata sumbolzetai me z m .


                                                        Sq ma 7.6         Sqhmatik     perigraf    sust -
        x(n)             z -1       x(n-1)
                                                        mato       kajustèrhsh        enì   degmato .




(3) Idiìthta th       sunèlixh     sunèlixh sto pedo tou qrìnou

   An x1      (n) ! X1 (z) me perioq
                  Z
                                           sÔgklish           P1   kai   x2 (n)   ! X2(z) me perioq
                                                                                  Z
sÔgklish      P2 tìte

                      x(n) = x1 (n) ? x2 (n)       ! X (z) = X1 (z)  X2 (z)
                                                   Z
                                                                                                     (7.2.3)


H perioq sÔgklish tou X1 z        ( ) ( )
                                  X2 z enai toulˆqiston h P1 P2 . Se merikè           \
peript¸sei mpore to ginìmeno na upˆrqei kai se megalÔterh perioq , gia tou diou
lìgou ìpw kai sth grammikìthta.
Apìdeixh

      Epeid
                                          1
                                          X
                                 x(n) =            x1 (k)x2 (n k)
                                          k=   1
Enìthta 7.2           Idiìthte       tou MetasqhmatismoÔ       z                                                               247



èqoume

                 1                                         1        "   1                                 #
                 X                                         X            X
      X (z ) =            x(n)z          n      =                              x1 (k)x2 (n k) z                    n
                 n=   1                                   n= 1 k= 1
                                                           1      " 1                                              #
                                                           X        X
                                                =                   x1 (k)                x2 (n k)z            n
                                                          k=   1               n=       1
                                                           1                        "    1                                 #
                                                           X                             X
                                                =                   x1 (k)z     k                x2 (n k)z (n k)
                                                          k= 1                          n=1
                                                                                    "                                  #
                                                           1
                                                           X                             1
                                                                                         X
                                              m=n k                                                            m)
                                                =                   x1 (k)z     k                    x2 (m)z
                                                          k=   1                        m=       1
                                                =         X1 (z )  X2 (z )                                                (7.2.4)


 (4) Idiìthta th          diamìrfwsh                     olsjhsh            suqnìthta -klimˆkwsh                      sto pedo


tou   z
   àstw s ma x n      ( ) Z! ( )
                       X z me perioq sÔgklish P      z                                  = f 2 C : R+ < jzj < R g,
kai migadikì arijmì . Tìte o metasqhmatismì z tou s mato                                       y(n) = n x(n) enai
                                                      
           y(n) = n x(n)                 ! Y (z ) = X z
                                         Z
                                                                        me   j jR+ < jzj < j jR                            (7.2.5)


Apìdeixh


                                 1
                                 X                                  1
                                                                    X
                 Y (z ) =                    y(n)z   n    =                   nx   (n)z      n
                             n=          1                         n= 1
                                                                    1
                                                                    X               z  n                z 
                                                          =                  x(n)                    =X
                                                                   n=   1


(5) Idiìthta th        parag¸gish               sto pedo tou           z
    àstw s ma x       (n) ! X (z) me perioq
                                 Z
                                                                   sÔgklish        P    = fz 2 C : R+ < jzj < R g,
tìte

                      nx(n)          Z
                                      ! z dXdz(z) me thn dia perioq                         sÔgklish                      (7.2.6)
248                                                                   Metasqhmatismì   z        Kefˆlaio 7




Apìdeixh


                                               1
                                               X
                               X (z )     =             x(n)z     n
                                               n=   1
                            dX (z )                 1
                                                    X
                                          =              nx(n)z (n+1)
                             dz                   n=    1
                                                        X1
                                          =       z 1           nx(n)z      n
                                                      n= 1
                                          =         1
                                                  z Z [nx(n)℄

(6) Idiìthta th     suzuga    (Suzug         akolouja)

      àstw migadikì s ma    x(n) me metasqhmatismì z X (z ) me perioq                      sÔgklish   P   =
fz 2 C : R+ < jzj < R       g, tìte
                           x? (n)  ! X ? (z? ); R+ < jzj < R
                                          Z

                        <e [x(n)℄ Z! 21 [X (z) + X ? (z? )℄                                       (7.2.7)

                       =m [x(n)℄          ! 21j [X (z) X ? (z? )℄
                                          Z


Apìdeixh

      An   y(n) = x? (n) èqoume
                                              1
                                              X
                          Y (z )      =             x? (n)z   n
                                          n=   1
                                              1
                                              X
                         Y ? (z )=                  x(n)(z ? )  = X (z ? )
                                                                  n
                                          n= 1
                          Y (z ) =        Z [x? (n)℄ = X ? (z ? )                                 (7.2.8)

(7) Katoptrismì        sto qrìno


    àstw s ma x     (n) Z! X (z) me perioq           sÔgklish     = fz 2 C : R+ < jzj < R g,
                                                                      P
tìte

                       x( n)      Z
                                    ! X (z 1 );               1 < jzj < 1
                                                                                R+
                                                    me PS                              (7.2.9)
                                                              R
Enìthta 7.2        Idiìthte   tou MetasqhmatismoÔ    z                                       249



Apìdeixh

                                                         1
                                                         X
                              Z [x( n)℄       =                x( n)z   n
                                                      n=   1
                                                         1
                                                         X
                                            k= n                        
                                              =                x(k) z 1      k
                                                      k=   1
                                              =       X (z 1 )                           (7.2.10)

(8) Susqètish


    An jewr soume dÔo s mata w dianÔsmata, èna arijmì pou metrˆei thn o-
moiìthtˆ tou enai to eswterikì tou ginìmeno. Autì gnetai mègisto gia dianÔsmata
(s mata) pou sumpptoun, en¸ mhdenzetai gia dianÔsmata pou enai kˆjeta.
    Wstìso, se ìti aforˆ sta s mata, pollè forè autˆ enai apl¸ metatopismè-
na to èna se sqèsh me to ˆllo qwr na enai ousiastikˆ diaforetikˆ. àtsi èna
mìno arijmì (eswterikì ginìmeno) den enai arketì gia na antimetwpsei ìle ti
pijanè sqetikè metatopsei metaxÔ twn shmˆtwn. Qreiˆzetai loipìn na oriste èna
nèo s ma (sunˆrthsh) tou opoou h anexˆrthth metablht ja ekfrˆzei thn metatìpish
metaxÔ twn dÔo shmˆtwn. Orzetai loipìn h sunˆrthsh - akolouja susqètish   etero-
susqètish twn s matwn diakritoÔ qrìnou - akolouji¸n x n kai y n w       ()       ()
                                           1
                                           X
        rxy (l) = x(n) ? y( n) =                   x(n)y? (n l);        1<l<1            (7.2.11)
                                       n=     1
Thn anexˆrthth metablht        l ja onomˆzoume kajustèrhsh (lag).
   An x    (n) !  Z
                      X (z ) me perioq sÔgklish P1 kai y(n) Z! Y (z )                 me perioq
sÔgklish      P2 , tìte o metasqhmatismì           z th susqètish twn dÔo shmˆtwn enai

                                    rxy (l)    Z
                                                  ! X (z)  Y (z 1 )                     (7.2.12)

Apìdeixh
    H apìdeixh th idiìthta gnetai an qrhsimopoihjoÔn oi idiìthte sunèlixh kai
                                                           [ ( )℄
tou katoptrismoÔ. H perioq sÔgklish tou Z rxy l enai toulˆqiston h P1 P2 .              \
   H susqètish exartˆtai apì thn enèrgeia twn dÔo shmˆtwn. O suntelest                 susqètish
   ()
xy l dÔo shmˆtwn diakritoÔ qrìnou orzetai w

                               %xy (l) =
                                                (l) ;
                                           prExyp              1<l<1                     (7.2.13)
                                              x   E  y
250                                                       Metasqhmatismì    z   Kefˆlaio 7




enai sunˆrthsh th kajustèrhsh twn dÔo akolouji¸n kai enai anexˆrthto apì thn
enèrgeiˆ tou .
    àna ˆllo polÔ qr simo mègejo enai h sunˆrthsh autosusqètish (autocorrelation).
H sunˆrthsh autosusqètish orzetai apì th sqèsh

                                    1
                                    X
       rxx (l) = x(n) ? x( n) =            x(n)x? (n l);          1<l<1          (7.2.14)
                                  n=   1
H akolouja autosusqètish èqei dÔo basikè idiìthte
a) H enèrgeia tou s mato enai sh me th tim th sunˆrthsh autosusqètis                tou
gia l =0. Prˆgmati
                                        1
                                        X
                          rxx (0) =             jx(n)j2 dn = Ex                  (7.2.15)
                                       n=   1
b) O metasqhmatismì Fourier diakritoÔ qrìnou th sunˆrthsh autosusqètish enì
s mato isoÔtai me th fasmatik puknìthta enèrgeia tou s mato . H sunˆrthsh
fasmatik    puknìthta enèrgeia perigrˆfei ton trìpo me to opoo katanèmetai h
enèrgeia tou s mato sto q¸ro suqnot twn. Prˆgmati, lìgw tou jewr mato th
sunèlixh tou metasqhmatismoÔ Fourier èqoume

                  rxx (l) = x(n) ? x? ( n) ) F [rxx (l)℄ = jX (       )j2        (7.2.16)

kai apì to je¸rhma tou Parseval èqoume

                                  1
                                  X                     1 Z jX ( )j2 d
               Ex = rxx(0) =            jx(n)j2 dn =   2 2                     (7.2.17)
                               n=   1
 Pèra apì ta stoiqei¸dh s mata, ta opoa melet jhkan sta paradegmata, upˆrqoun
kai arketˆ ˆlla pou epsh sunant¸ntai sth melèth grammik¸n susthmˆtwn diakritoÔ
qrìnou. Oi metasqhmamo z twn shmˆtwn aut¸n upologzontai me th bo jeia tou oris-
moÔ kai twn idiot twn tou metasqhmatismoÔ z. Ston Pnaka 7.1 upˆrqoun oi idiìthte
tou metasqhmatismoÔ z, en¸ ston Pnaka 7.2 upˆrqoun oi metasqhmatismo z kai oi
antstoiqe perioqè sÔgklish gia ti plèon sunhjismène kai qr sime peript¸sei .


7.3    O MONOPLEUROS METASQHMATISMOS                              Z

Sthn parˆgrafo aut ja estiˆsoume sta basikˆ shmea tou monìpleurou metasqh-
matismoÔ z kai kurw se autˆ pou ton diaforopoioÔn apì to metasqhmatismì z. H
diaforˆ metaxÔ twn dÔo metasqhmatism¸n entopzetai sta ìria tou ajrosmato oris-
            P1
moÔ   X( ) 
       z            ()
              n=0 x n z
                         n
Enìthta 7.3        O Monìpleuro   Metasqhmatismì      z                                              251




                    PINAKAS 7.10      Oi idiìthte tou MetasqhmatismoÔ z
         Idiìthta                 S ma          Metasqhmatismì            z   Perioq     sÔgklish

                                  x(n)                     X (z )             P =fz 2C :R+ <jz j<R g
                                 x1 (n )                  X1 (z )             P1 =fz 2C :R+
                                                                                          1 <jz j<R1 g
                                 x2 (n )                  X2 (z )             P2 =fz 2C :R+
                                                                                          2 <jz j<R2 g
      Grammikìthta           ax1 (n)+bx2 (n)          aX1 (z )+bX2 (z )        Toulˆqiston P1 \P2

    Qronik      olsjhsh        x(n+n0 )                 z n0 X (z )                     P
       Sunèlixh               x1 (n)?x2 (n)            X1 (z )X2 (z )         Toulˆqiston       P1 \P2
  sto pedo tou qrìnou

 Klimˆkwsh sto pedo z
   olsjhsh suqnìthta
                                  n x(n)                    X z()                j jR+<jzj<j jR

      Parag¸gish                  nx(n)                      z dXdn(z)             R+ <jz j<R
       sto pedo z

         Suzuga                  x? (n)                    X ? (z ? )                   P
                              Pn
                               k= 1 x(n)                  1 z 1 X (z )                     P1 \jz j>1
       Ajrosmato                                           1                 Toulˆqiston

   Katoptrismì ston               x( n)                     X (z 1 )                1        1
                                                                                   R <jz j< R+
    ˆxona tou qrìnou



    Profan¸ an dÔo s mata diakritoÔ qrìnou enai diaforetikˆ gia n < kai sa                 0
gia n 0   tìte èqoun ton dio MMz kai diaforetikì Mz. Gia aitiatˆ s mata, x n                   ( )=0
          0
gia n < , o Mz kai o MMz sumpptoun. Me ˆlla lìgia o monìpleuro metasqh-
                              ()
matismì z tou s mato x n tautzetai me ton amfpleuro metasqhmatismì z tou
           ()()                                ()()
s mato x n u n . Efìson to s ma x n u n enai aitiatì s ma, h perioq sÔgk-
lish tou monìpleurou metasqhmatismoÔ z enai pˆnta to exwterikì mèro kÔklou me
th mikrìterh aktna Rx pou perilambˆnei tou pìlou tou s mato .
    Sqedìn ìle oi idiìthte tou metasqhmatismoÔ z isqÔoun kai gia to monìpleuro.
Epeid to kˆtw ìrio tou ajrosmato orismoÔ tou monìpleurou metasqhmatismoÔ z
enai to mhdèn o monìpleuro metasqhmatismì èqei thn idiìthta th dexiˆ kai th
arister olsjhsh oi opoe apoteloÔn th dÔnamh tou monìpleurou metasqhmatismoÔ
z. Oi idiìthte autè kai h idiìthta th sunèlixh parèqei sto monìpleuro metasqh-
matismì z th dunatìthta eplush exis¸sewn diafor¸n, oi opoe èqoun mh mhdenikè
arqikè sunj ke .

(1) Idiìthta th      dexiˆ   olsjhsh      - Kajustèrhsh

    An   x(n)    Z! X (z ) me aktna sÔgklish R tìte
                                               x
                                                    n0
                                                    X
         x(n n0 ) Z! z        n0 X   (z) + z   n0         x( i)z i gia kˆje n0  1                (7.3.1)
                                                    i=1
252                                                                  Metasqhmatismì          z           Kefˆlaio 7




  PINAKAS 7.11     Metasqhmatismo z merik¸n basik¸n shmˆtwn diakritoÔ qrìnou
                  S ma                 Metasqhmatismì                     z       Perioq          sÔgklish

      1           Æ(n)                               1                              Gia kˆje        z 6= 0
                  u(n)                         1    1 = z 1
                                                         z                                 jzj > 1
      2                                    1   z
      3     Æ(n m); m > 0                           z    m                                 jzj 6= 0
                 an u(n)                       1            = zza                         jzj > jaj
      4                                   1    az 1
      5       an 1 u(n 1)                               1                                 jzj > jaj
                                                    z a
      6         nan u(n)                       (1
                                                    az 1
                                                     az 1 )2                              jzj > jaj
               anu (  n 1)                      1           = zza                         jzj < jaj
      7                                   1    az 1
      8         an 1 u( n)                              1                                 jzj < jaj
                                                  z a
      9        nan u( n 1)                        az 1
                                              (1 az 1 )2                                  jzj < jaj
              [ os( 0n)℄u(n)                1 ( os 0 )z 1                                  jzj > 1
      10                                1 (2 os 0 )z 1 +z 2
              [sin( 0n)℄u(n)                  (sin 0 )z 1                                  jzj > 1
      11                                1 (2 os 0 )z 1 +z 2
            [rn os( 0n)℄u(n)               1 (r os 0 )z 1                                  jzj > r
      12                               1 (2r os 0 )z 1 +r2 z 2
            [rn sin( 0 n)℄u(n)               (r sin 0 )z 1                                 jzj > r
      13                               1 (2r os 0 )z 1 +r2 z 2

Apìdeixh
      H apìdeixh aporrèei ˆmesa apì tou orismoÔ . Prˆgmati, èqoume

                     1
                     X                                       1
                                                             X
 Z [x(n n0)℄ =             x(n n0 )z   n n n0 =i
                                               =                     x(i)z       i n0
                     n=0                                    i= n0
                                                                     "                                              #
                                                                         X1                       1
                                                                                                  X
                                               =            z   n0               x(i)z   i   +          x(i)z   i
                                                                         i= n0                    i=0
                                                                                         n0
                                                                                         X
                                               =            z   n0 X     (z) + z   n0            x( i)z i
                                                                                         i=1

ParathroÔme ìti katˆ th dexiˆ olsjhsh nèa degmata eisèrqontai sto diˆsthma
[0 1)
  ;     ja prèpei na lˆboun kai autˆ mèro stou upologismoÔ . Ta nèa degmata
enai ta x ( 1) ( 2)
              ;x          ( )
                      ; : : : ; x n0 .
    Gia n0  =1 èqoumeZ [ ( 1)℄ =
                           xn          z 1 z x X ( ) + ( 1)
                                                  .
Enìthta 7.3         O Monìpleuro    Metasqhmatismì    z                                                            253



(2) Idiìthta th      arister       olsjhsh      - Pro ghsh

    An   x(n)   Z! X (z ) me aktna sÔgklish R tìte
                                              x
                                                    0 1
                                                   nX
                z   n0 Z   [x(n + n0)℄ = X (z)             x(i)z      i gia kˆje     n0  1                   (7.3.2)
                                                     i=0
Apìdeixh
    H apìdeixh aporrèei ˆmesa apì tou orismoÔ . Prˆgmati, èqoume
                       1
                       X                                    1
                                                            X
   Z [x(n + n0)℄ =            x(n + n0 )z   n n+n0 =i
                                                  =                x(i)z i+n0
                       n=0                                 i=n0
                                                                  "                                                #
                                                                      1
                                                                      X                     0 1
                                                                                           nX
                                                  =        z n0             x(i)z    i              x(i)z      i
                                                                      i=0                     i=0
                                                                  "                                     #
                                                                                    0 1
                                                                                   nX
                                                  =        z n0       X (z )              x(i)z     i
                                                                                   i=0
ParathroÔme ìti katˆ thn arister olsjhsh kˆpoia apì ta upˆrqonta degmata
brskontai ektì diast mato    ;      [0 1)
                                    kai sunep¸ prèpei na afairejoÔn apì to suno-
                                                (0) (1)
likì ˆjroisma. Ta degmata autˆ enai ta x ; x ; : : : ; x n0   .              (         1)
    Gia n0     èqoume z 1 x n
              =1                 Z [ ( + 1)℄ = X ( ) (0)
                                           z x .
(3) Je¸rhma th        Arqik       Tim

    An   x(n)   Z! X (z ) me aktna sÔgklish R tìte
                                              x

                                        x(0) = zlim
                                                !1
                                                    X (z)                                                     (7.3.3)

(4) Je¸rhma th         Telik      Tim


    An   x(n) Z! X (z ) me aktna sÔgklish Rx tìte
                                   lim x(n) = zlim
                                  n!1           !1
                                                   (z 1)X (z)                                                 (7.3.4)

    Parat rhsh:   Ta jewr mata th arqik kai telik tim , ìpw kai ta ants-
toiqa jewr mata tou metasqhmatismoÔ Laplace, ma parèqoun th dunatìthta upolo-
                                                           ()
gismoÔ th asumptwtik tim th akolouja x n ìtan enai gnwstì o monìpleuro
metasqhmatismì z kai ètsi apofeÔgetai o upologismì tou x n apì ton        ()
                                                                          z . Ta                            X( )
jewr mata isqÔoun ìtan sth perioq sÔgklish tou    z z             X ( ) ( 1)X ( )
                                                                 z perilambˆne-
tai o monadiao kÔklo ètsi ¸ste to s ma, ìpw ja doÔme, na enai eustajè .
254                                                                              Metasqhmatismì   z           Kefˆlaio 7




Parˆdeigma 7.3.1
      Na upologiste o monìpleuro         kai o amfpleuro                   metasqhmatismì        z   tou s mato


                                                  x(n) = an u(n)                                                   (7.3.5)



      LÔsh      Epeid      x(n) = 0; n < 0, o monìpleuro                    kai o amfpleuro      metasqhmatismì        z

                                                            1
      enai soi

                              X (z ) = X (z ) =
                                                    1       az 1
                                                                      = z z a an jzj > jaj                         (7.3.6)



Parˆdeigma 7.3.2
      Na upologiste o monìpleuro         kai o amfpleuro                   metasqhmatismì        z   tou s mato


                                             y(n) = an+1 u(n + 1)                                                  (7.3.7)



      LÔsh      O monìpleuro       metasqhmatismì               z   enai

                                                        1
                                                        X
                                     Y (z ) =                y(n)z n
                                                    n=0
                                                        1
                                                        X
                                             =               an+1 z n
                                                    n=0
                                                                a
                                             = 1                az 1
                                                                     ;      me   jz j > jaj                        (7.3.8)


      O monìpleuro         metasqhmatismì       z   mpore na upologiste kai w                    ex    .   Gnwrzoume

      x(n) =   an u  (n)    Z! X (z ) = 1=(1            az 1 ) me jz j > jaj.             Me th bo jeia th       idiìthta
      th   arister      olsjhsh    èqoume


                                    z 1 Z [x(n + 1)℄  = X (z) x(0)
                                                      = 1 1az 1 1
                                                              1
                                                      = 1 azaz 1 )
                                             Z [y(n)℄ = 1 aaz 1
      Gia ton amfpleuro metasqhmatismì                 z   gnwrzoume ìti           x(n)     = anu(n) Z! X (z) =
      1=(1     az 1 ) me jz j > jaj. Me th bo       jeia th           idiìthta       th    olsjhsh     èqoume


                                 Z [x(n + 1)℄ = zX (z) = 1 zaz 1 )
                                                    z
                                     Z [y(n)℄ =
                                                1 az 1 ; jzj > jaj                                                 (7.3.9)
Enìthta 7.3         O Monìpleuro        Metasqhmatismì        z                                                 255



(5) O monìpleuro         metasqhmatismì               z periodik¸n shmˆtwn
                                        ()
   àstw to periodikì s ma x n me perodo N , dhlad , x n N        x n . Tìte o       ( + )= ( )
monìpleuro metasqhmatismì z                 X( )              ()
                               z , tou x n upˆrqei kai dnetai apì th sqèsh
                                                      NX1
                           X (z) = 1 1z           N         x(n)z        n me   jzj > 1                   (7.3.10)
                                                      n=0

Apìdeixh


                    1
                    X
       X (z) =            x(n)z     n
                    n=0
                    NX1                     2X
                                             N 1                                (k+1)
                                                                                   X  N 1
              =           x(n)z     n   +          x(n)z      n    + ::: +                  x(n)z   n   + :::
                    n=0                     n=N                                   n=kN
                                                              P(k+1)N          1 x(n)z
H antikatˆstash      l = n kN           sto ˆjroisma               n=kN
                                                                                          n dnei

                        (k+1)
                           X  N 1                         NX1
                                    x(n)z     n       =            x(l + kN )z (l+kn)
                          n=kN                              l=0
                                                                       NX1
                                                      =   z       kN         x(l)z   l
                                                                       l=0

€ra,

                                                                    NX1
                     X (z) = [1 + z               N         2
                                                       + z + : : : ℄ x(n)z
                                                             N                              n
                                                                     n=0
                                                      NX1
                              = 1 1z           N           x(n)z n
                                                       n=0

    Ston Pnaka 7.3 upˆrqoun oi idiìthte tou monìpleurou metasqhmatismoÔ z.

Parˆdeigma 7.3.3
       Na upologiste o monìpleuro            metasqhmatismì            z    tou periodikoÔ orjog¸niou kÔmato
       me perodo   N
                                    
                           x(t) =        1;   kN  n < kN + N1 k = 0; 1; 2; : : :
                                         0;   kN + N1  n < (k + 1)N N1 < N                                (7.3.11)
256                                                                                   Metasqhmatismì      z             Kefˆlaio 7




              PINAKAS 7.12           Oi idiìthte tou monìpleurou metasqhmatismoÔ z
          Idiìthta                    S ma         Metasqhmatismì z     Perioq sÔgklish

                                        x(n)                                  X (z)                      P =fz 2C :R<jz jg
                                        x1 (n)                                X1 (z)                     P1 =fz 2C :R<jz jg
                                        x2 (n)                                X2 (z)                     P2 =fz 2C :R<jz jg
         Grammikìthta              ax1 (n)+bx2 (n)              aX1 (z )+bX2 (z )                              P1 \P2
        Dexiˆ olsjhsh

         Kajustèrhsh
                                  x(n n0 ); n0 1                     [ P 0
                                                           z n0 X (z )+ ni=1  x( i)z i               ℄         R<jz j
                                                                  h            Pn0 1        i
      Arister    olsjhsh         x(n+n0 ); n0 1          z n0    X (z)        i=0 x(i)z
                                                                                          i                    R<jz j
           Pro   ghsh


           Sunèlixh                 x1 (n)?x2 (n)                         X1 (z)X2 (z)                       P1 \P2
      sto pedo tou qrìnou



  Klimˆkwsh sto pedo        z         n x(n)                                 X(z)                            j jR<jzj
      olsjhsh suqnìthta



           Suzuga                     x? (n)                                 X ? (z? )                        R<jz j
                                                                  PN 1
        Periodikì s     ma         x(n+N )=x(n)              1 z N n=0 x(n)z
                                                                      1      n                                 jzj>1
           Je¸rhma                                                x(0) = limz!1 X (z )
         arqik    tim


           Je¸rhma                                   limn!1 x(n) = limz!1(z 1)X (z)
         telik   tim




        LÔsh       O metasqhmatismì             z   dnetai apì thn exswsh


                                                                                    1 1
                                            X (z ) = 1 z                  1        NX
                                                                                               z n
                                                                               N
                                                                                    n=0
                                                          = 1 1z               N
                                                                                   z N1
                                                                                    z 1         1
                                                                                                 1                        (7.3.12)




7.4     O ANTISTROFOS METASQHMATISMOS                                                           Z
Gnwrzoume
                                         X (rej          ) = F x(n)  r                  n                              (7.4.1)

kai an    jzj = r kai brsketai sthn perioq                       sÔgklish èqoume


           x(n)  r      n   =F    1 X (rej                   1
                                                    ) ) x(n) = 2
                                                                  Z
                                                                        X (rej )ej
                                                                              rn                                 nd
                                                                   <2>
Enìthta 7.4           O Antstrofo   Metasqhmatismì     z                                          257



Me eisagwg th          rn sto eswterikì tou oloklhr¸mato                  èqoume

                            x(n) =
                                        1   Z
                                                    X rej
                                                                
                                                                    rej
                                                                          n
                                                                               d
                                       2    <2>
                                                                                                (7.4.2)


Me allag metablht             z = rej       kai epeid       r enai stajer posìthta, prokÔptei ìti
dz   =   jrej     d   =   jz d     d      = (1=j )z         1 dz . To olokl rwma orzetai pˆnw se
              2
diˆsthma  tou . Gia th nèa metablht                  z to diˆsthma autì antistoiqe se kampÔlh
gÔrw apì to kÔklo z       j j=
                      r. àtsi èqoume
                                     x(n) =
                                             1 Z
                                                                     1 dz
                                            2j C X (z)z
                                                         n                                      (7.4.3)

ìpou C enai mia aristerìstrofh kleist kampÔlh olokl rwsh gÔrw apì thn arq
twn axìnwn, h opoa brsketai sto eswterikì th perioq sÔgklish tou metasqhma-
tismoÔ z , h de olokl rwsh gnetai antstrofa apì th forˆ twn deikt¸n tou rologioÔ.


7.4.1    Upologismì        tou antstrofou metasqhmatismou                  z gia rhtè   sunart sei

O apeujea upologismì tou antstrofou metasqhmatismoÔ z mèsw tou oloklhr¸ma-
to th (7.4.3) enai epponh diadikasa kai gi' autì sun jw akoloujoÔntai èmmesoi
trìpoi eÔresh tou antstrofou metasqhmatismoÔ z. An h morf th sunˆrthsh
  ()
X z enai apl kai mpore eÔkola na ekfraste w ˆjroisma epimèrou stoiqeiwd¸n
ìrwn, tìte me th qr sh gnwst¸n metasqhmatism¸n z kai twn idiot twn tou metasqh-
matismoÔ z mporoÔme ap' eujea na upologsoume ton antstrofo metasqhmatismì
                             ()
z. An h sunˆrthsh X z enai rht sunˆrthsh tìte thn anaptÔssoume se aplˆ k-
lˆsmata kai upologzoume ton antstrofo metasqhmatismì z, me th qr sh gnwst¸n
metasqhmatism¸n z se autˆ.


7.4.2    Upologismì        me anˆptuxh se aplˆ klˆsmata

Thn anˆptuxh mia sunˆrthsh se aplˆ klˆsmata thn èqoume diapragmateuje sto
Parˆrthma B. ExeidikeÔonta thn teqnik sthn perptwsh tou metasqhmatismoÔ z,
diakrnoume dÔo peript¸sei

     1. An o bajmì m, tou poluwnÔmou tou arijmht enai mikrìtero tou bajmoÔ
        n, tou poluwnÔmou tou paronomast h rht sunˆrthsh anaptÔssetai se aplˆ
        klˆsmata sÔmfwna me thn exswsh

                        X (z )    = (z C11z1 ) + (z C12z1 )2 +    + (z C1zr1)r
                                    + (z C21z2 ) + (z C31z3 ) +    + (zC(nznr)1r )           (7.4.4)
258                                                                   Metasqhmatismì       z        Kefˆlaio 7




                                         =
      ìpou z1 ; z2 ; : : : ; zl enai oi l                            ()
                                           n r pìloi th X z me pollaplìthte                        r; 1; : : : ; 1
      antstoiqa. Oi suntelestè C1;k prosdiorzontai apì ti sqèsei


             C1k =
                          1         dr   k   (z    z1 )r X (z )
                                                                          ; k = 1; 2; : : : ; r
                     (r       k)!             dz r     k
                                                                  z =z1
                                                                                                        (7.4.5)

      Gia tou aploÔ pìlou oi suntelestè                      Ci1 prosdiorzontai apì ti           sqèsei

                       Ci1 = (z              zi )X (z )jz=zi ; i = 2; 3; : : : ; n r                    (7.4.6)

                                                       ()
      àqonta analÔsei th sunˆrthsh X z se aplˆ klˆsmata, mporoÔme sth sunè-
      qeia sqetikˆ eÔkola na upologsoume ton antstrofo metasqhmatismì z. Prˆg-
      mati upologzoume pr¸ta tou epimèrou metasqhmatismoÔ z twn apl¸n klas-
      mˆtwn kai Ôstera ajrozoume ti prokÔptouse ekfrˆsei .
      Orismèna apì ta pio sunhjismèna zeÔgh metasqhmatism¸n z paratjentai s-
      ton Pnaka 7.2 Ta zeÔgh autˆ ma bohjoÔn ston upologismì tou antistrìfou
      metasqhmatismoÔ z, ekfrˆzonta thn sunˆrthsh X z w grammikì sunduasmì   ()
      aploustèrwn sunart sewn.

  2. An o bajmì m, tou poluwnÔmou tou arijmht enai megalÔtero    so tou ba-
     jmoÔ n, tou poluwnÔmou tou paronomast tìte diairoÔme pr¸ta ta polu¸numa
     kai katal goume se mia èkfrash pou èqei th morf

           X (z ) = Bm n z m        n   + Bm       n   1zm    n   1 + : : : ; +B0 z 0 + X1 (z )         (7.4.7)

                               ()
      ìpou h sunˆrthsh X1 z èqei bajmì arijmht mikrìtero tou bajmoÔ tou parono-
      mast , kai thn opoa anaptÔssoume se aplˆ klˆsmata sÔmfwna me ta prohgoÔ-
      mena.
      àna sunhjismèno tèqnasma gia na apofÔgoume th diaresh poluwnÔmwn, an m                                  =
                                                                     ( )= ( )
      n, enai na qrhsimopoi soume th sunˆrthsh X1 z X z =z auxˆnonta ètsi
      to bajmì tou poluwnÔmou tou paronomast katˆ èna, kai na anaptÔxoume sth
                                                                   ()
      sunèqeia se aplˆ klˆsmata th sunˆrthsh X1 z ìpw fanetai sto Parˆdeigma
      7.4.3.

Parˆdeigma 7.4.1
      Na upologiste to s ma  x(n) to opoo èqei metasqhmatismì z th sunˆrthsh

                          X (z ) =
                                         3 5=6z 1                   1
                                   (1 1=4z 1)(1 1=3z 1) jzj > 3                                          (7.4.8)



      LÔsh   AnalÔoume se aplˆ klˆsmata

                                                    C1         C2
                                    X (z ) =
                                                  1 1=4z 1 + 1 1=3z               1
Enìthta 7.4        O Antstrofo      Metasqhmatismì      z                                              259



      kai upologzoume ti      stajerè       C1 kai C2 .
              C1 = (1      1=4z 1)X (z)jz      1 =4   = 1 kai C2 = (1 1=3z 1)X (z)jz        1 =3   =2
      àtsi o metasqhmatismì          z   apoktˆ th morf


                          X (z ) =
                                        1          2
                                     1 1=4z 1 + 1 1=3z 1 = X1(z) + X2(z)
      Me th bo jeia tou Paradegmato               7.1.2 èqoume

                                    n
                        x1 (n) =
                                    1 u(n) Z! X1(z) =                 1       jzj >
                                                                                       1
                                    4                  1             1=4z  1           4
                                    n
                        x2 (n) = 2
                                     1 u(n) Z! X2(z) =                 2        j zj >
                                                                                        1
                                     3                  1             1=3z  1           3
      Telikˆ


       x(n) =
                 n
                  1      u(n) + 2
                                      n
                                         1   u(n) Z! X (z ) =
                                                                       3 5=6z 1                          1
                  4                      3                        (1 1=4z 1)(1 1=3z           1 jz j > 3

Parˆdeigma 7.4.2
      Na upologiste to s ma       x(n) to opoo èqei metasqhmatismì z th sunˆrthsh

                            X (z ) =
                                            3 5=6z 1             1 < jzj < 1
                                     (1 1=4z )(1 1=3z ) 4
                                                1            1             3                        (7.4.9)




      LÔsh      Apì to prohgoÔmeno parˆdeigma èqoume


                          X (z ) =
                                        1     +    2
                                     1 1=4z 1   1 1=3z 1 = X1(z) + X2(z)
      lìgw th     perioq      sÔgklish       kai me th bo jeia twn Paradeigmˆtwn 7.1.2 kai 7.1.5
      èqoume
                                    n
                        x1 (n) =
                                     1       u(n) Z! X1 (z ) =
                                                                    1           1
                                     4                          1 1=4z 1 jzj > 4
                                n
                 x2 (n) =     2 13 u(          n      1) Z! X2(z) = 1 12=3z 1 jzj < 31
      Telikˆ                                  n              n
                                x(n) =
                                              1       u(n)   2 31 u(    n    1)
                                              4
260                                                                     Metasqhmatismì           z             Kefˆlaio 7




Parˆdeigma 7.4.3
      Na upologiste to s ma           x(n) to opoo èqei metasqhmatismì z th sunˆrthsh
                                                             z
                                               X (z ) = 2
                                                        z +z 2
                                                                                                                 (7.4.10)



      LÔsh        AnalÔoume se aplˆ klˆsmata th sunˆrthsh                X (z )=z , kai èqoume
                                 X (z )
                                  z
                                          = (z + 2)(1 z 1) = 13 z +1 2 + 13 z 1 1
      àtsi prokÔptei

                                             X (z ) =
                                                            1 z 1 z
                                                            3z+2 + 3z 1
      Gia to GQA sÔsthma tou paradegmato                    den prosdiorzetai h perioq              sÔgklish       th
      sunˆrthsh       metaforˆ . Oi pijanè            perioqè     sÔgklish   enai oi trei , oi opoe             eikon-
      zontai sto Sq ma 7.7.


           ℑm z                                   ℑm z                                    ℑm z




      -2         0     1        ℜe z         -2         0     1      ℜe z            -2         0      1         ℜe z



                     ( á)                                    (â)                                     ( ã)

Sq ma 7.7       Oi pijanè   perioqè        sÔgklish      tou metasqhmatismoÔ         z    th   akolouja       x(n) sto
Parˆdeigma 7.4.3.

           1. Sth perioq        fz 2 C : 0 < jz j < 1g upoqrewtikˆ èqoume
                                                                                        
                                 z                                                   z
                     Z 1                  = ( 2) (          n 1) kai Z 1
                                                                                          1 = u(                1)
                                                    nu                                                     n
                                z+2                                              z
                sunep¸ , to s ma enai

                                          1 ( 2)nu( n 1) 1 u( n 1)
                                          x(n) =
                                          3                    3
           2.   Sth perioq fz 2 C : 1 < jz j < 2g upoqrewtikˆ èqoume
                                                                     
                            1    z                                1   z
                         Z
                                z+2
                                      = ( 2) u( n 1) kai Z z 1 = u(n)
                                                n

                sunep¸ , to s ma enai


                                            x(n) =
                                                      1 ( 2)nu(     n   1) + 13 u(n)
                                                      3
Enìthta 7.4           O Antstrofo     Metasqhmatismì        z                                                   261



          3. Sth perioq        fz 2 C : 2 < jz j < 1g upoqrewtikˆ èqoume
                                                                                             
                                            z                                              z
                                Z 1            = ( 2)nu(n) kai Z               1
                                           z+2                                         z       1 = u(n)
               sunep¸ , to s ma enai


                                                 x(n) =
                                                            1 ( 2)nu(n) + 1 u(n)
                                                            3             3
7.4.3    Upologismì         me anˆptuxh se dunamoseirˆ

SÔmfwna me th mejodologa aut anaptÔssoume th sunˆrthsh X z se dunamoseirˆ                          ()
                                             ()
kai sth sunèqeia h akolouja x n upologzetai me antistoqish stou suntelestè
th dunamoseirˆ . H anˆptuxh mia rht sunˆrthsh se dunamoseirˆ epitugqˆnetai
sun jw me suneq diaresh. H mejodo aut den katal gei se ma analutik èkfrash
           ()
gia thn x n . Enai mia arijmhtik mèjodo me thn opoa mporoÔme na upologzoume
                          ()
èna stoiqeo th x n kˆje forˆ.

Parˆdeigma 7.4.4
        Na upologiste h akolouja           x(n) h opoa èqei metasqhmatismì z th sunˆrthsh
                                            X (z ) =
                                                             1    ;      jz j > jaj
                                                        1    az 1
                                                                                                              (7.4.11)



        LÔsh     H èkfrash aut         mpore na anaptuqje se dunamoseirˆ me suneqe                     diairèsei

                           1                          1   az 1
                           1 +az1                     1+az
                                                             1 +a2z 2 + : : :
                             +az1
                           az 1 +a2 z 2
                                  +a22z 22 3 3
                                    a z +a z
                                          +a3z 3
        ParathroÔme ìti to ˆjroisma 1+ az
                                               1 + a2 z 2 + a3z 3 + : : : sugklnei an az 1 < 1,
        dhlad , an jaj < jz j. àtsi èqoume to anˆptugma gia to metasqhmatismì z


                            X (z ) =
                                             1        = 1 + az 1 + a2z 2 + a3z 3 + : : :
                                       1     az 1
                                                                                                              (7.4.12)


        Sugkrnonta       thn parapˆnw èkfrash me thn sqèsh orismoÔ tou metasqhmatismoÔ                          z
                                                            1
                                                            X
                                                 X (z ) =            x(n)  z n
                                                            n=   1
        èqoume

               : : : x(   2) = 0; x( 1) = 0; x(0) = 1; x(1) = a; x(2) = a2; x(3) = a3; : : :
262                                                                  Metasqhmatismì   z   Kefˆlaio 7




      dhlad   x(n) = an u(n) apotèlesma to opoo anamèname lìgw tou Paradegmato 7.1.2.
      An   az 1 > 1, dhlad , an jaj > jz j tìte h anˆptuxh se seirˆ tou metasqhmatismoÔ z
      gnetai me thn parakˆtw diaresh.

                    1                                      az 1 +1
                    1 +a 1z                                a 1z a 2z 2 a 3z 3 : : :
                      +a 1z
                       a 1z +a      2z 2
                            +a      2z2
                             a      2 z 2 +a   3z3
                                          +a   3z3
      Me parìmoio trìpo skèyh          ìpw     kai sthn prohgoÔmenh perptwsh katal goume


      : : : x(   3) = a    3 ; x(
                                2) = a 2; x( 1) = a 1; x(0) = 0; x(1) = 0; x(2) = 0; : : :
      dhlad      x(n) =    anu( n 1) apotèlesma to opoo anamèname lìgw tou Paradegmato
      7.1.6.

Parˆdeigma 7.4.5
      Na upologiste h akolouja       x(n) h opoa èqei metasqhmatismì z th sunˆrthsh
                                                          
                                    X (z ) = log 1 + az 1 ; jz j > jaj                (7.4.13)



      LÔsh       Gnwrzoume

                                1
                                X     ( 1)n+1wn ; jwj < 1; (Anˆptugma se seirˆ Taylor)
                 log(1 + w) =             n
                                n=1
      Me efarmog      th   parapˆnw sqèsh        èqoume

                                                     1
                                                     X     ( 1)n+1anz    n
                                        X (z ) =
                                                     n=1        n
      Sugkrnonta     thn parapˆnw èkfrash me thn sqèsh orismoÔ tou metasqhmatismoÔ               z
      èqoume
                                               
                                      x(n) =         ( 1)n+1 ann ;   n1
                                                     0;              n<0
      Telikˆ prokÔptei

                                         x(n) =
                                                        ( a)n u(n 1)                        (7.4.14)
                                                          n

7.5   EFARMOGES TOU METASQHMATISMOU                                          Z

Sthn enìthta aut ja anaptÔxoume ti efarmogè twn metasqhmatism¸n z. Eidikìtera
ja susthmatikopoi soume th dunatìthta pou parèqei o monìpleuro metasqhmatismì
Enìthta 7.5         Efarmogè   tou MetasqhmatismoÔ      z                                           263



z gia thn eplush exis¸sewn diafor¸n oi opoe èqoun mh mhdenikè arqikè sun-
j ke kai ja efarmìsoume th diadikasa aut sth melèth GQA susthmˆtwn diakritoÔ
qrìnou. Telei¸nonta , ja exetˆsoume th sqèsh pou upˆrqei metaxÔ th jèsh twn
pìlwn th sunˆrthsh metaforˆ sto migadikì eppedo me ti idiìthte th aitiìthta
kai th eustˆjeia enì GQA sust mato diakritoÔ qrìnou.
    Ma apì ti pio shmantikè idiìthte tou metasqhmatismoÔ z enai aut th sunèli-
xh . Sto parˆdeigma pou akolouje prosdiorzetai, qwr na katafÔgoume sto ˆjroi-
sma th sunèlixh , h akolouja exìdou enì GQA sust mato diakritoÔ qrìnou, an h
kroustik apìkrish kai h esodì tou enai akolouje peperasmènh èktash .

Parˆdeigma 7.5.1
        Na prosdioriste h akolouja exìdou enì GQA sust mato diakritoÔ qrìnou, to opoo
        èqei kroustik    apìkrish   h(n) = [ 1; 2;      3℄ ìtan diegeretai apì thn akolouja x(n) =
                                                "
        [ 3; 4; 5; 2℄.
         "
        LÔsh     Oi metasqhmatismo    z   th   kroustik       apìkrish   kai th    eisìdou enai


                    H (z ) = 1 + 2z 1 + 3z 2 kai X (z ) = 3 + 4z 1 + 5z 2 + 2z 3
        H èxodo tou sust mato prosdiorzetai apì to ˆjroisma th      sunèlixh y (n) = h(n) ?
        x(n) kai lìgw th    idiìthta   th   sunèlixh     Y (z ) = H (z )  X (z ), ètsi èqoume
                                                            èqoume


                         Y (z ) = 3 + 10z 1 + 22z 2 + 24z 3 + 19z 4 + 6z 5
        Me antstrofo metasqhmatismì        z   brskoume thn akolouja exìdou.


                                       y(n) = [ 3;      10; 22; 24; 19; 6℄
                                                    "


7.5.1    Sust mata ta opoa qarakthrzontai apì grammikè                           exis¸sei   diafor¸n
         me stajeroÔ      suntelestè

Gia ta sust mata ta opoa qarakthrzontai apì grammikè exis¸sei diafor¸n me
stajeroÔ suntelestè , o metasqhmatismì z apotele isqurì ergaleo gia ton pros-
diorismì th sunˆrthsh metaforˆ sust mato         th apìkrish suqnìthta       th
kroustik apìkrish sust mato .
    Genikˆ, ìpw gnwrzoume, oi prˆxei oi opoe prèpei na gnoun, sto pedo tou
qrìnou, apì èna GQA sÔsthma diakritoÔ qrìnou sta dedomèna eisìdou, ¸ste na
prokÔyei h akolouja exìdou, perigrˆfontai apì mia grammik exswsh diafor¸n
me stajeroÔ suntelestè . Me ˆlla lìgia, gnwrzoume ìti h esodo kai h èxodo enì
GQA sust mato diakritoÔ qrìnou ikanopoioÔn mia grammik exswsh diafor¸n me
264                                                                  Metasqhmatismì   z          Kefˆlaio 7




stajeroÔ suntelestè th morf

                      N
                      X                         M
                                                X
                            ak y(n k) =               bk x(n k) me a0 = 1                          (7.5.1)
                      k=0                       k=0
Efarmìzoume metasqhmatismì z kai sta dÔo mèlh th exswsh . Jewr¸nta ti ar-
qikè sunj ke mhdenikè , lìgw twn idiot twn th grammikìthta kai th qronik
metatìpish pou èqei o metasqhmatismì z, èqoume thn exswsh,

                             N
                             X                         M
                                                       X
                                   ak z   kY   (z) =         bk z k X (z )                         (7.5.2)
                             k=0                       k=0
Gnwrzoume
                                     Y (z ) = H (z )  X (z )                                      (7.5.3)

       ()
ìpou H z enai o metasqhmatismì z th kroustik apìkrish kai enai h sunˆrthsh
metaforˆ tou sust mato . àtsi h sunˆrthsh metaforˆ sust mato to opoo qarak-
thrzetai apì thn exswsh diafor¸n enai
                                                        PM
                                          Y (z )                         k
                              H (z ) =
                                          X (z )
                                                   = PNk=0 bk z          k
                                                                                                   (7.5.4)
                                                          k=0 ak z
ParathroÔme ìti h sunˆrthsh metaforˆ enì GQA sust mato enai rht sunˆrthsh.
H eustˆjeia kai h aitiatìthta tou sust mato ìpw ja doÔme prosdiorzoun thn
akrib perioq sÔgklish .
Parˆdeigma 7.5.2 (SÔsthma    diakritoÔ qrìnou pr¸th           tˆxh   )
      Na upologiste h sunˆrthsh metaforˆ              kai h kroustik        apìkrish tou aitiatoÔ GQA
      sust mato    diakritoÔ qrìnou pr¸th        tˆxh , to opoo ìpw           enai gnwstì perigrˆfetai
      apì thn exswsh diafor¸n


             y(n) ay(n        1) = bx(n);       a kai b jetiko pragmatiko arijmo                 (7.5.5)



      LÔsh      Efarmìzoume metasqhmatismì         z   kai sta dÔo mèlh th       exswsh   kai lìgw twn
      idiot twn th   grammikìthta     kai th     metatìpish        tou metasqhmatismoÔ     z,   èqoume thn
      exswsh


                                    Y (z ) az 1Y (z )          =     bX (z )
                                                   
                                     Y (z ) 1 az 1             =     X (z )
      apì thn opoa brskoume th sunˆrthsh metaforˆ

                                                 Y (z )            b
                                      H (z ) =            =1
                                                 X (z )            az 1
                                                                                                    (7.5.6)
Enìthta 7.5             Efarmogè     tou MetasqhmatismoÔ            z                                                    265



          Upologsame thn algebrik              èkfrash th          H (z ) kai èqoume dÔo pijanè             perioqè   sÔgk-
          lish , h mia enai h       jz j > a kai h ˆllh h jz j < a. Epeid                  to sÔsthma enai aitiatì h
          perioq    sÔgklish       enai jz j > a.

          H kroustik        apìkrish tou sust mato              enai

                                              h(n) = Z 1 [H (z )℄ = b  an u(n)                                        (7.5.7)

          Sto Sq ma 7.8 perigrˆfetai to sÔsthma pr¸th                          tˆxh   diakritoÔ qrìnou ìpw autì èqei
          ulopoihje me th bo jeia mia              monˆda      kajustèrhsh           enì    degmato , enì        ajroistoÔ
          kai dÔo pollaplasiast¸n kai h kroustik                          tou apìkrish, dhlad , h akolouja exìdou
          tou ìtan h esodì        tou enai h kroustik             akolouja.


     x(n)=ä(n)                                                                              y(n)=h(n)
                                   x(n)        b                               y(n)
                                                                        z -1
     -2        0    2   4      n                            a                               -2     0   2     4             n


    Sq ma 7.8           H kroustik         apìkrish tou sust mato               pr¸th     tˆxh     diakritoÔ qrìnou.


Parˆdeigma 7.5.3
          Na upologiste h sunˆrthsh metaforˆ                       kai h kroustik        apìkrish tou aitiatoÔ GQA
          sust mato      diakritoÔ qrìnou, to opoo perigrˆfetai apì thn exswsh diafor¸n

                                          y(n) a1 y(n           1) + a2y(n 2) = x(n)                                   (7.5.8)


          LÔsh      Efarmìzoume metasqhmatismì                  z   kai sta dÔo mèlh th            exswsh    kai lìgw twn
          idiot twn th      grammikìthta           kai th   metatìpish           tou metasqhmatismoÔ          z,   èqoume thn
          exswsh

                                          Y (z ) + a1 z 1 Y (z ) + a2 z 2             =   X (z )
                                                                        
                                           Y (z ) 1 + a1 z 1 + a2 z 2                 =   X (z )
          apì thn opoa brskoume th sunˆrthsh metaforˆ

                                                       Y (z )
                                           H (z ) =        = 1 + a1z 11 + a2z 2
                                                       X (z )
                                                                                                (7.5.9)


          Upologsame thn algebrik                 èkfrash th H (z ). Epeid to sÔsthma enai aitiatì h
          perioq    sÔgklish       enai   jz j > R.
          An   = 1; 2728 kai a2 = 0; 81 to sÔsthma èqei dÔo suzuge pìlou tou 0; 9ej 4 .
               a1
          H sunˆrthsh metaforˆ H (z ) analÔetai se aplˆ klˆsmata w


                   H (z ) =
                                   0; 5(1 j )         +      0; 5(1 + j )
                              1p 0; 6364(1 + j )z   1   1 p0; 6364(1 j )z 1
                          = 22 e j 4 1 0; 91ej 4 z 1 + 22 ej 4 1 0; 9e1 j 4 z 1 (7.5.10)
266                                                                        Metasqhmatismì   z               Kefˆlaio 7




      kai h kroustik              apìkrish tou sust mato        enai
                                           p            p
                        h(n) =
                                 2 e j 
                                       4 0; 9e u(n) + 22 ej 4 0; 9e
                                               j  n
                                                 4                                        j 4 n u   (n)
                               p2            h        i
                             = 2(0; 9)n os (n 1) 4 u(n)                                                       (7.5.11)


      Sto Sq ma 7.9 perigrˆfetai h perioq                   sÔgklish oi suzuge migadiko pìloi tou sust -
      mato          diakritoÔ qrìnou kai h kroustik            tou apìkrish h opoa enai ma fjnousa h-
      mitonoeid          akolouja. To sÔsthma enai eustajè .


       ℑm z
   Ìïíáäéáßïò
    êýêëïò
                                            h(n)
                                 j 4ð
                         0,9 e


                0          1        ℜe z           0                                                                 n
                                 j 4ð
                         0,9 e



Sq ma 7.9           H perioq       sÔgklish , oi suzuge      migadiko pìloi, to mhdenikì me pollaplìthta

2 kai h kroustik         apìkrish tou sust mato             diakritoÔ qrìnou sto Parˆdeigma 7.5.3.


      An a1 = 1; 5556 kai a2 = 1; 21 to sÔsthma èqei dÔo suzuge                         pìlou    tou        1; 1ej 4 .
      H H (z ) analÔetai se aplˆ klˆsmata w


                        H (z )          = 1 0;07778(1
                                                 ; 5(1 j )
                                                       +        +    0; 5(1 + j )
                                                          j )z 1 1 0; 7778(1 j )z 1
                                          p                       p
                                        = 2 e 1 1; 1ej 4 z 1 + 22 ej 4 1 1; 1e1 j 4 z
                                            2  j 
                                                  4
                                                          1
                                                                                                       1       (7.5.12)


      kai h kroustik              apìkrish tou sust mato        enai
                                           p            p
                        h(n) =
                                 2 e j 
                                       4 1; 1e u(n) + 22 ej 4 1; 1e
                                               j  n
                                                 4                                        j 4 n u   (n)
                               p2            h        i
                             = 2(1; 1)n os (n 1) 4 u(n)                                                       (7.5.13)


      Sto Sq ma 7.10 perigrˆfetai h perioq                    sÔgklish     oi suzuge   migadiko pìloi, to mh-
      denikì me pollaplìthta 2 tou sust mato diakritoÔ qrìnou kai h kroustik                                tou apìkr-
      ish h opoa enai ma aÔxousa hmitonoeid                   akolouja. To sÔsthma enai mh eustajè .



Parˆdeigma 7.5.4
      àstw to aitiatì sÔsthma tou opoou h esodo                       kai h èxodo   ikanopoioÔn th grammik
      exswsh diafor¸n

                                            y(n)
                                                       1 y(n 1) = x(n) + 1 x(n 1)
                                                       2                 3                                     (7.5.14)
Enìthta 7.5             Efarmogè              tou MetasqhmatismoÔ     z                                                    267



        ℑm z
    Ìïíáäéáßïò
     êýêëïò
                                     j 4ð
                            1,1 e                         h(n)

                 0      1                  ℜe z       0                                                                     n
                                    j 4ð
                            1,1 e



Sq ma 7.10           H perioq          sÔgklish , oi suzuge          migadiko pìloi kai h kroustik            apìkrish tou

sust mato        diakritoÔ qrìnou sto Parˆdeigma 7.5.3.


      Na upologiste h kroustik                      apìkrish tou sust mato .

      LÔsh            Efarmìzoume metasqhmatismì                  z   kai sta dÔo mèlh th            exswsh    kai lìgw twn
      idiot twn th            grammikìthta            kai th    metatìpish         tou metasqhmatismoÔ          z,   èqoume thn
      exswsh


                                            Y (z )
                                                    1 z 1 Y (z ) =                 1
                                                                           X (z ) + z 1 )
                                                   2                              3
                                            Y (z ) 1
                                                       1 z 1 =                    
                                                                                     1
                                                                           X (z ) 1 + z
                                                                                                   
                                                                                                  1 )
                                                       2                             3
      apì thn opoa brskoume thn sunˆrthsh metaforˆ


                                                                Y (z )                      1
                                                     H (z ) =
                                                                X (z )
                                                                          = 11 + 11==32zz   1                           (7.5.15)


      Upologsame thn algebrik                       èkfrash th        H (z ) kai èqoume dÔo pijanè            perioqè    sÔgk-
      lish , h mia enai h     jz j > 1=2 kai h ˆllh h jz j < 1=2. Epeid                           to sÔsthma enai aitiatì
      h perioq         sÔgklish enai jz j > 1=2.

      Epeid          o bajmì tou poluwnÔmou tou arijmht                        enai so        me to bajmì tou poluwnÔmou
      tou paronomast                       prèpei na gnei diaresh prin thn anˆlush se aplˆ klˆsmata. àtsi
      èqoume

                                                     H (z ) =
                                                                  2+5 1
                                                                  3 3 1 1=2z                1                           (7.5.16)


      H kroustik             apìkrish tou sust mato               enai



                                            h(n) = Z 1 [H (z )℄ =
                                                                          2 Æ(n) + 5  1 n u(n)
                                                                          3        3 2                                  (7.5.17)




Oi idiìthte th dexiˆ kai th arister olsjhsh se sunduasmì me thn idiìthta th
sunèlixh dnoun axa sto monìpleuro metasqhmatismì z, giat ma epitrèpoun na lÔ-
noume diaforikè exis¸sei me arqikè sunj ke , kai na upologzoume thn èxodo GQA
susthmˆtwn, ta opoa den brskontai arqikˆ se hrema, an gnwrzoume thn sunˆrthsh
268                                                                      Metasqhmatismì        z        Kefˆlaio 7




                                     ()
metaforˆ tou sust mato H z kai to metasqhmatismì z tou s mato eisìdou                                      X (z ).
Efarmìzoume ta parapˆnw sto parˆdeigma pou akolouje.

Parˆdeigma 7.5.5
      Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo                            kai h èxodo
      sundèontai apì thn exswsh diafor¸n

                                             y(n)      0; 5y(n 1) = x(n)                                  (7.5.18)

      Na breje h sunˆrthsh metaforˆ                  kai h kroustik     apìkrish tou sust mato .

      LÔsh      Efarmìzoume metasqhmatismì                z   kai sta dÔo mèrh th          exswsh   diafor¸n kai
      èqoume
                                             Y (z )    0; 5z    1Y (z ) = X (z )                          (7.5.19)

      Apì thn opoa brskoume th sunˆrthsh metaforˆ                      tou sust mato


                                                 H (z ) =
                                                                  1
                                                               1 0; 5z   1                                (7.5.20)


      me perioq       sÔgklish    jz j > 0; 5 afoÔ to sÔsthma enai aitiatì. H kroustik                 apìkrish
      tou sust mato        upologzetai me antstrofo metasqhmatismì                   z
                                                  h(n) = (0; 5)nu(n)                                      (7.5.21)


An den èqoume arqikè sunj ke tìte h èxodo tou sust mato prosdiorzetai me th
bo jeia tou jewr mato th sunèlixh gnwrzonta th sunˆrthsh metaforˆ kai to
metasqhmatismì z tou s mato eisìdou.
Parˆdeigma 7.5.6
      Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo                            kai h èxodo
      sundèontai apì thn exswsh diafor¸n

                                             y(n)      0; 5y(n 1) = x(n)                                  (7.5.22)

      Na upologiste h èxodo         tou sust mato             an to s ma eisìdou enai        x(n) = u(n) kai to
      sÔsthma brsketai se hrema.

      LÔsh       Sto prohgoÔmeno parˆdeigma èqei upologiste h sunˆrthsh metaforˆ                              tou
      sut mato        H (z ) = 1 0;15z   1                jz j > 0; 5. O metasqhmatismì z th
                                             me pedo sÔgklish

                      eisìdou enai X (z ) =
                                               1 1 me pedo sÔgklish jz j > 1. O metasqhma-
      akolouja
                                             1 z
      tismì    z th    akolouja    exìdou enai


                                 Y (z ) = H (z )X (z ) =
                                                                   1          1
                                                                1 0; 5z 1  1 z            1              (7.5.23)


      me perioq       sÔgklish thn tom         twn dÔo epimèrou perioq¸n sugklsh , dhlad ,               jz j > 1.
      AnalÔoume ton       Y (z ) se aplˆ klˆsmata kai èqoume
                                         Y (z ) =
                                                          1         2
                                                      1 0; 5z 1 + 1 z              1                      (7.5.24)
Enìthta 7.5         Efarmogè     tou MetasqhmatismoÔ         z                                            269



      kai me antstrofo metasqhmatismì                z   brsketai h akolouja exìdou tou sust mato .


                                           y(n) =         (0; 5)nu(n) + 2u(n)                          (7.5.25)




       y(n)



              0    2    4    6     8      10  12 14          n
                   ìåôáâáôéêÞ                                         Sq ma 7.11   H akolouja exìdou tou
                                            ìüìéìç
                   êáôÜóôáóç              êáôÜóôáóç                   Probl mato   7.5.6.


Sto Sq ma 7.11 fanetai h èxodo tou sust mato . ParathroÔme ìti        n!1 ;
                                                                               n             lim (0 5)
 ()=0
nn         , epomènw h èxodo tou sust mato gia n >>          enai h n     un.     0          ()=2()
H katˆstash aut qarakthrzetai w mìnimh katˆstash (steady-state response). To
diˆsthma tim¸n sto opoo o ìro                 (0 5) ( )
                                  ; n u n den enai perpou so me mhdèn qarak-
thrzetai w metabatik katˆstash (transient response). H metabatik katˆstash ek-
tenetai sto diˆsthma      0 7
                           n   kai h mìnimh katˆstash gia ti timè tou n pou enai
megalÔtere      se apì 8.

   An èqoume arqikè sunj ke tìte sthn exswsh diafor¸n lìgw th idiìthta th
arister olsjhsh tou metasqhmatismoÔ z sumperilambˆnoume ti arqikè sunj ke .

Parˆdeigma 7.5.7
      Dnetai to GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo kai h èxodo sundèontai
      apì thn exswsh diafor¸n


                                               y(n)       0; 5y(n 1) = x(n)                            (7.5.26)


      Na upologiste h èxodo           tou sust mato             an to s ma eisìdou enai   x(n)   = u(n) me
      arqik    sunj kh   y(      1) = 1
      LÔsh        Efarmìzoume monìpleuro metasqhmatismì                  z kai sta dÔo   mèrh th   (7.5.26) kai
      èqoume

                                                                         
                               Y (z ) 0; 5 z 1 Y (z ) + y( 1) = X (z )                                 (7.5.27)

                                     Y (z ) 0; 5z 1Y (z ) 0; 5 = X (z )                                (7.5.28)


      LÔnonta      thn (7.5.27) w pro Y (z ) èqoume


                                 Y (z ) = 1 01; 5z 1 X (z ) + 1 00;; 55z 1
                                        = H (z)X (z) + 1 00;; 55z 1
                                           =      Yo (z ) + Yi (z )                                    (7.5.29)
270                                                                       Metasqhmatismì        z            Kefˆlaio 7




          ìpou


                              Yo (z ) = H (z )X (z )     = 1 01; 5z 1 1 1z 1
                                                         = 1 01; 5z 1 + 1 2z                    1              (7.5.30)



          enai o metasqhmatismì      z   th   exìdou tou sust mato             gia mhdenikè        arqikè   sunj ke .
          O antstrofo      metasqhmatismì       z   dnei


                                           yo (n) =      (0; 5)nu(n) + 2u(n)                                   (7.5.31)


          kai enai gnwst    w   apìkrish mhdenik            katˆstash        (zero stage response)
          kai

                                               Yi (z ) = 0; 5
                                                                     1
                                                                  1 0; 5z      1                               (7.5.32)


          enai o metasqhmatismì      z   th   exìdou tou sust mato                o opoo   proèrqetai apì ti     ar-
          qikè   sunj ke    tou sust mato . H suneisforˆ tou ìrou sthn èxodo tou sust mato
          brsketai me antstrofo metasqhmatismì              z   kai enai


                                               yi (n) = 0; 5(0; 5)nu(n)                                        (7.5.33)


          kai enai gnwst    w   apìkrish mhdenik            eisìdou   (zero input response).
          H èxodo   tou sust mato         ja enai


                    y(n) = yo(n) + yi (n)        = (0; 5)nu(n) + 2u(n) + 0; 5(0; 5)nu(n)
                                                 = [ 0; 5(0; 5)n + 2℄ u(n)                                     (7.5.34)



7.5.2      Melèth GQA sust mato                me th bo jeia metasqhmatismoÔ                        z
. Apì thn (7.5.4) parathroÔme ìti h sunˆrthsh metaforˆ sust mato enai rht
sunˆrthsh. Upenjumzetai ìti oi rze tou arijmht onomˆzontai mhdenikˆ th H z                                       ()
kai oi rze tou paronomast pìloi th H z .                    ()
    Apì thn perioq sÔgklish kai th jèsh twn pìlwn kai twn mhdenik¸n mporoÔme
na exˆgoume sumperˆsmata gia thn eustˆjeia kai thn aitiatìthta tou sust mato ,
prˆgmati

         àna GQA sÔsthma diakritoÔ qrìnou enai aitiatì an h n          gia n < . Sthn( )=0                  0
          perptwsh aut h perioq sÔgklish tou metasqhmatismoÔ z th kroustik
          apìkrish , enai to exwterikì enì kÔklou me aktna R+ sh me to mètro tou
          pìlou pou èqei mègisto mètro. Me ˆlla lìgia gia na enai èna sÔsthma diakritoÔ
          qrìnou aitiatì prèpei h perioq sÔgklish na enai to exwterikì kÔklou me thn
          mikrìterh aktna pou perièqei tou pìlou .
Enìthta 7.5         Efarmogè       tou MetasqhmatismoÔ      z                                            271



       àna GQA sÔsthma diakritoÔ qrìnou enai eustajè an gia fragmènh esodo,
        j ( )j
        x n < M1 , kai h èxodo enai fragmènh. Prˆgmati
                         1
                         X                                      1
                                                                X                       1
                                                                                        X
         jy(n)j =                jh(k)x(n k)j  M1                       jh(k)j < 1 )            jh(k)j < 1
                        k=   1                               k=      1                  k=   1
        ParathroÔme ìti an to sÔsthma enai eustajè h kroustik apìkrish enai
        apolÔtw fragmènh kai ètsi upˆrqei o metasqhmatismì Fourier th . €ra gia na
        enai to sÔsthma eustajè prèpei h perioq sÔgklish tou H z na perièqei to         ()
        monadiao kÔklo, oÔtw ¸ste na sugklnei o metasqhmatismì Fourier tou h n .                      ()
       Gia na enai eustajè kai aitiatì prèpei na isqÔoun kai oi dÔo parapˆnw sun-
        j ke    ìloi oi pìloi prèpei na brskontai sto eswterikì tou monadiaou kÔklou.

                                                      ()
   Genikìtera h jèsh twn pìlwn th H z sto eppedo z prosdiorzei th sumperiforˆ
th kroustik apìkrish tou sust mato .
   AnaptÔssonta th sunˆrthsh metaforˆ se aplˆ klˆsmata kai upojètonta ìti
èqoume aploÔ pìlou 1 ; 2 ; : : : ; ; N èqoume
                                          z                 z                         z
                        H (z ) = C1                + C2 z            + : : : + CN z                  (7.5.35)
                                      z       1                2                     N
Apì thn opoa brskoume thn kroustik apìkrish tou sust mato

            h(n) = Z 1 [H (z )℄ = (C1 n1 + C2 n2 + : : : CN nN ) u(n)                             (7.5.36)

       An èqoume pragmatikì pìlo , tìte h kroustik apìkrish èqei                            ti akìlouje
        idiìthte
  a)      0<1                                              limn!1(n) = 0
 h suneisforˆ tou ìrou sth              h(n) enai ma fjnousa ekjetik akolouja
 b)               =1                          n = 1 gia ìle ti timè tou n
 h suneisforˆ tou ìrou sth              h(n) enai h bhmatik akolouja
  g)       <  1                                      limn!1(n) = 1
 h suneisforˆ tou ìrou sth              h(n) enai ma aÔxousa ekjetik akolouja
 d)        1
          <<            0            limn!1(n) = 0 kai to n enallˆssei prìshmo
 h suneisforˆ tou ìrou sth              h(n) enai ma fjnousa ekjetik akolouja me ìrou
 pou enallˆsoun prìshmo
                                                                
  e)          =    1                                 n    = 1;1;         n = 2k
                                                                           n = 1k + 1
 h suneisforˆ tou ìrou sth                h(n) enai h bhmatik            akolouja me ìrou pou enal-
 lˆssoun prìshmo
 st)     <         1                 limn!1 jn j = 1 kai to n enallˆssei prìshmo
 h suneisforˆ tou ìrou sth              h(n) enai ma aÔxousa ekjetik akolouja me ìrou
 pou enallˆssoun prìshmo
272                                                          Metasqhmatismì   z       Kefˆlaio 7




         An to polu¸numo tou paronomast èqei dÔo migadikè suzuge rze              kai ? h
          kroustik apìkrish tou sust mato enai

                                     h(n) = [C + C ? (? )n ℄ u(n)
          upojètonta   C = jC jej kai  = jjej èqoume
                        h(n) = jC jjjn ej (n+) + jC jjjn e j (n+) u(n)
                               = 2C jjjn os(n + )u(n)
          O ìro   os(n + ) enai fragmèno apì to 1. H sÔgklish  mh th kroustik
                                                                           jj
          apìkrish tou sust mato ja prosdiorzetai apì ton ìro  n . An  < h        jj 1
          kroustik apìkrish apotele fjnousa hmitonoeid seirˆ (blèpe Parˆdeigma
          7.5.3). Sth perptwsh aut to sÔsthma enai eustajè . Antjeta an  > h     jj 1
          kroustik apìkrish apotele aÔxousa hmitonoeid seirˆ kai to sÔsthma enai
          astajè . An j j=1  h kroustik apìkrish tou sust mato enai hminonoeid
          seirˆ me stajerì plˆto .

    Sto Sq ma 7.12 paristˆnetai h sumperiforˆ th kroustik   apìkroush enì
aitiatoÔ sust mato diakritoÔ qrìnou, ìpw aut prosdiorzetai apì th jèsh twn
pìlwn tou sto migadikì eppedo.


                                          ℑm z
                                Ìïíáäéáßïò
                                 êýêëïò




                                                                         ℜe z




Sq ma 7.12      H sumperiforˆ th kroustik     tou apìkrish enì sust mato diakritoÔ qrìnou

anˆloga me th jèsh twn pìlwn th       sunˆrthsh   metaforˆ    tou sto migadikì eppedo   z.

Parˆdeigma 7.5.8
          JewroÔme to sÔsthma diakritoÔ qrìnou, me esodo    x(n) kai èxodo y(n), to opoo peri-
          grˆfetai apì thn exswsh


                             3y(n) 7y(n 1) + 2y(n 2) = 3x(n 2)                            (7.5.37)
Enìthta 7.5         Efarmogè      tou MetasqhmatismoÔ             z                                                        273



        Na upologiste h kroustik        apìkrish tou sust mato gia na enai to sÔsthma a) aitiatì
        kai b) eustajè . Mpore na enai to sÔsthma suqrìnw                                 aitiatì kai eustajè     ;
        LÔsh    Efarmìzonta         metasqhmatismì                z   kai sta dÔo mèlh th          exswsh       èqoume
                                                                                  
                        Z y(n)
                                        7           2
                                        3 y(n 1) + 3 y(n 2) =                               Z [x(n      2)℄
                                       Y (z ) 1
                                                 7z 1 + 2z 2 =                                z 2X (z )
                                                 3       3
        kai h sunˆrthsh metaforˆ             tou sust mato                 enai


                                                 Y (z )                                 2
                                     H (z ) =
                                                 X (z )
                                                                  = 1 7 zz 1 + 2 z 2
                                                                       3       3
                                                                         1
                                                                  = z2 7 z + 2
                                                                         3 3
                                                                  = z 1 1(z 2)
                                                                                   3
        AnaptÔssonta    thn      H (z ) se aplˆ klˆsmata èqoume

                                        H (z )     =          z
                                                                  C1
                                                                      + zC 22
                                                                       1
                                                                       3
                                                   =              3 1 +3 1
                                                                  5 z 13 5 z 2                                          (7.5.38)



        (a) Gia na enai to sÔsthma aitiatì prèpei h perioq                            sÔgklish    na enai     jz j > 2. àtsi h
        kroustik    apìkrish tou aitiatoÔ sust mato                         enai


                                    3  n
                                       1                  1
                             h(n) =
                                    5 3                       u(n           1) + 35 (2)n 1 u(n 1)                       (7.5.39)


        ìpou qrhsimopoi jhke to zeugˆri           Mz      5 tou Pnaka 7.2.

        (b) Gia na enai to sÔsthma eustajè               prèpei h perioq                sÔgklish      na perièqei to mona-
                                             1 < jz j < 2.
        diao kÔklo dhlad         na enai
                                             3                         àtsi h kroustik            apìkrish tou eustajoÔ
        sust mato    enai


                                        3  n
                                           1                  1
                                 h(n) =
                                        5 3                       u(n        1) 35 (2)n 1u( n)                          (7.5.40)


        ìpou qrhsimopoi jhkan ta zeugˆria              Mz         5 kai 8 tou Pnaka 7.2.

Parathr sei
       H parapˆnw exswsh diafor¸n den mpore na perigrˆfei sÔsthma pou na enai
        sugqrìnw eustajè kai aitiatì.
       Gia thn perptwsh aitiatoÔ sust mato   n!1 h n        .         lim              ( )=1
274                                                 Metasqhmatismì   z     Kefˆlaio 7




      SÔnoyh Kefalaou
    Sto Kefˆlaio autì orsame to metasqhmatismì z kai to monìpleuro metasqhma-
tismì z, parousiˆsthkan oi idiìthtè tou kai upologsame tou metasqhmatismoÔ z
orismènwn basik¸n shmˆtwn diakritoÔ qrìnou, ta opoa sunantˆme sth melèth gram-
mik¸n susthmˆtwn. Sth sunèqeia prosdiorsame ton antstrofo metasqhmatismì z.
Edame ìti an h morf tou metasqhmatismoÔ z enai apl , tìte mporoÔme na up-
ologsoume ton antstrofo metasqhmatismì z me th bo jeia tou Pnaka 7.2. An o
metasqhmatismì z den èqei apl morf allˆ enai rht sunˆrthsh, tìte analÔoume
th sunˆrthsh se aplˆ klˆsmata kai me th bo jeia twn idiot twn tou metasqhma-
tismoÔ z kai tou Pinˆka 7.2 upologzoume eÔkola to s ma qwr na katafÔgoume
sthn exswsh antistrof .
    Epsh sto Kefˆlaio autì anaptÔxame ti efarmogè tou metasqhmatismoÔ z.
Eidikìtera exetˆsame th dunatìthta pou èqei o monìpleuro metasqhmatismì z na
epilÔei grammikè exis¸sei diafor¸n me stajeroÔ suntelestè oi opoe den èqoun
mhdenikè arqikè sunj ke . H dunatìthta aut ofeletai sti idiìthte tou monì-
pleurou metasqhmatismoÔ z pou anafèrontai sth dexiˆ kai arister olsjhsh. Sth
sunèqeia parousiˆsthkan oi efarmogè tou metasqhmatismoÔ z se ìti aforˆ th melèth
GQA susthmˆtwn diakritoÔ qrìnou. Prosdiorsame th sunˆrthsh metaforˆ tou
sust mato apì thn exswsh diafor¸n pou sqetzei thn èxodo kai thn esodo tou
sust mato , upojètonta ìti oi arqikè sunj ke enai mhdenikè . Epsh me th bo jeia
th exswsh diafor¸n, prosdiorsame to monìpleuro metasqhmatismì z th exìdou
tou sust mato , to opoo mpore na mh brsketai se katˆstash hrema kai antistrè-
fonta to monìpleuro metasqhmatismì z prosdiorsame thn èxodo tou sust mato .
Tèlo parousiˆsame ta sumperˆsmata pou exˆgoume apì thn perioq sÔgklish kai
th jèsh twn pìlwn th sunˆrthsh metaforˆ tou sust mato sto migadikì eppedo
kai ta opoa aforoÔn sthn eustˆjeia kai thn aitiìthta tou sust mato diakritoÔ
sust mato kaj¸ kai sth sumperiforˆ th kroustik apìkrish tou sust mato .




7.6     PROBLHMATA

 7.1   Dnetai to GQA sÔsthma to opoo qarakthrzetai apì thn exswsh diafor¸n

                                y(n) = x(n) + x(n     2)
                                                                 ()
       Na prosdioriste o sunˆrthsh metaforˆ tou sust mato H z . Me th bo jeia
            ()
       th H z na upologiste h apìkrish suqnìthta tou sust mato H           ( )
                                                                         . Na
                                               j ( )j
       gnoun oi grafikè parastˆsei tou mètrou H      kai th fˆsh        arg ( )
                                                                      H se
       sunˆrthsh me thn .
Enìthta 7.6        Probl mata                                                     275



 7.2   Dnetai to eustajè kai aitiatì sÔsthma, to opoo perigrˆfetai apì thn exswsh
       diafor¸n
                                    y(n) + y(n
                                               1           1) = x(n)
                                               2
         1.   Na upologiste h apìkrish suqnìthta tou sust mato
         2.   Na upologiste h apìkrish tou sust mato an to s ma eisìdou enai

                                      x(n) = Æ(n)
                                                                1 Æ(n 1)
                                                                2
 7.3   Aitiatì sÔsthma diakritoÔ qrìnou èqei sunˆrthsh metaforˆ

                                                         z+1
                                   H (z ) = 2
                                           z            0; 9z + 0; 81
         1.   Na sqediaste to pedo sÔgklish oi pìloi kai ta mhdenikˆ tou sust mato .
         2.   Na upologiste h apìkrish suqnìthta tou sust mato .
         3.   Na prosdioriste h exswsh diafor¸n, me stajeroÔ suntelestè , h opoa
              qarakthrzei to sÔsthma.

 7.4   Dnetai sÔsthma diakritoÔ qrìnou to opoo èqei sunˆrthsh metaforˆ

                                               1      z 2
                                H (z ) =                         jzj > 0; 9
                                           1       0; 81z 2 ;
         1.   Na upologiste h kroustik apìkrish tou sust mato .
         2.   Na prosdioriste h èxodo tou sust mato an h esodì tou enai h sunˆrthsh
              monadiaou b mato .

 7.5   Dnetai GQA sÔsthma to opoo èqei kroustik apìkrish
                                                      n
                                       h(n) =
                                                       1    u(n)
                                                       3
       Na upologiste h èxodo tou sust mato an h esodì tou enai to s ma
                                                      n
                                       x(n) =
                                                       1    u(n)
                                                       2
276                                                             Metasqhmatismì    z       Kefˆlaio 7




 7.6   Na upologiste h aitiat lÔsh th exswsh

                           y(n)
                                     3 y(n 1) + 1 y(n 2) = x(n);           n0
                                     2          2
       ìtan                                           n
                                          x(n) =
                                                      1       u(n)
                                                      4
       an   y(    1) = 4 kai y( 2) = 10
 7.7   àna grammikì qronikˆ anallowto sÔsthma èqei kroustik apìkrish
                                                      n 
                                        h(n) =   2        1      u(n)
                                                          2
            1.   Na breje h èxodo tou sust mato ìtan to s ma eisìdou enai                x(n)   =
                   1 n u n . Oi arqikè sunj ke tou sust mato enai y
                       ()                                                             ( 1) = 4 kai
                   4
                 y( 2) = 10  .
            2.   Poio enai to s ma sthn èxodo tou sust mato sth mìnimh katˆstash;

 7.8   Dnetai èna GQA sÔsthma diakritoÔ qrìnou me kroustik                   apìkrish    h(0)   = 1,
       h(1) = 2  kai h     (2) = 1
            1.   Na upologsete th apìkrish suqnìthta          H(    ) tou sust   mato kai
            2.   na kˆnete th grafik parastˆsh tou mètrou th apìkrish suqnìthta tou
                 sust mato se sunˆrthsh me th suqnìthta.

 7.9   Na breje to s ma diakritoÔ qrìnou, tou opoou o metasqhmatismì z èqei peri-
       oq sÔgklish , tou pìlou kai ta mhdenikˆ pou eikonzontai sto Sq ma 7.13.

                      Im



             1    1        1   1   Re
                  2        2                Sq ma 7.13        Oi pìloi, ta mhdenikˆ kai h perioq

                                            sÔgklish      sto Prìblhma 7.9.



7.10   Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou me sunˆrthsh metaforˆ

                                                    1   kz      1
                                           H (z ) =     4
                                                    1 + 3z
                                                        k       1
Enìthta 7.6        Probl mata                                                         277



         1.   Gia poie timè tou    k to sÔsthma enai eustajè ;
                                                       n
         2.   Gia k= 1 kai s     ma eisìdou x(n) = 32 , poia enai h èxodo      tou sust -
              mato ;

7.11   Gia èna grammikì qronikˆ anallowto sÔsthma dnontai
         1.   An to s ma eisìdou enai to s ma x    (n) = ( 2)n, tìte h èxodo   tou sust -
              mato enai to s ma y n ( )=0 kai
                                                             
         2.   an to s ma eisìdou enai to s ma      x(n) = 12 n u(n) tìte h èxodo tou
              sust mato enai to s ma y n     ()   = Æ(n) + 41 n u(n), ìpou stajerˆ
              posìthta.

         1.   Na breje h stajerˆ .
         2.   Na upologiste h sunˆrthsh metaforˆ tou sust mato , kai
         3.   na prosdioriste h èxodo tou sust mato ìtan h esodì tou enai to s ma
               ( )=1
              xn      .

7.12   Dnetai to aitiatì GQA sÔsthma diakritoÔ qrìnou tou opoou h esodo        x(n) kai
                   ()
       h èxodo y n ikanopoioÔn thn exswsh diafor¸n

                                  k
                            y(n) + y(n
                                     3         1) = x(n) k4 x(n 1)
       To opoo brsketai se hrema.
         1.   Na breje h sunˆrthsh metaforˆ tou sust mato kai na sqediˆsete to
              diˆgramma twn pìlwn kai mhdenik¸n kai na sqediˆsete th perioq sÔg-
              klis th .
         2.   Gia poie timè th paramètrou        k to sÔsthma enai eustajè ;
         3.   Na prosdioriste h èxodo       tou sust mato an k = 1 kai to s    ma eisìdou
              enai                                      n
                                               x(n) =
                                                         2
                                                         3
7.13   àna aitiatì sÔsthma diakritoÔ qrìnou qarakthrzetai apì thn exswsh diafor¸n

                                         1
                                y(n) = y(n       2) + x(n)     x(n   2)
                                         4
       ìpou   x(n) enai to s   ma eisìdou kai   y(n) to s   ma exìdou. Na upologistoÔn
         1.   H sunˆrthsh metaforˆ tou sust mato .
278                                                           Metasqhmatismì   z         Kefˆlaio 7




         2.   Na gnei to diˆgramma twn pìlwn kai mhdenik¸n kai h perioq                sÔgklish
              th sunˆrthsh metaforˆ tou sust mato
         3.   H kroustik apìkrish tou sust mato .
         4.   H èxodo tou sust mato an           x(n)   = u(n) ìpou u(n) enai h monadiaa
              bhmatik akolouja.
       To sÔsthma brsketai se hrema.

7.14   Dnetai sÔsthma diakritoÔ qrìnou to opoo èqei sunˆrthsh metaforˆ

                                             1      z 2
                              H (z ) =                        jzj > 0; 9
                                         1       0; 81z 2 ;
         1.   Na upologiste h kroustik apìkrish tou sust mato .
         2.   Na prosdioriste h èxodo tou sust mato an h esodì tou enai h sunˆrthsh
              monadiaou b mato .

7.15   An x(n) = an na upologistoÔn oi monìpleuroi metasqhmatismo z
         1. X [x(n   2)℄
         2. X [x(n + 2)℄


7.16   Na breje h kroustik apìkrish thlepikoinwniakoÔ kanalioÔ sto opoo parousiˆ-
       zontai dÔo diadìsei , dhlad , perigrˆfetai apì thn exswsh diafor¸n,

                                  y(n) = x(n) + ax(n             1)
       Gia poie timè th paramètrou       a to antstofo sÔsthma enai aitiatì kai eusta-
       jè ;


      Bibliografa


7.1 S. Jeodwrdh , K. Mpermperdh , L. Kofdh , “Eisagwg sth Jewra Shmˆtwn
 kai Susthmˆtwn”, Tupwj tw - Gi¸rgo Dardanì , Aj na 2003.
7.2     N. Kalouptsdh , “S mata Sust mata kai Algìrijmoi”,                Daulo   , Aj na, 1994.
7.3  J. G. Proakis, D. G. Manolakis, “Introduction to Digital Signal Processing”,
 MacMillan Publishing Company, 1994.
7.4   A. V. Oppenheim, R. W. Schafer, “Digital Signal Processing”, Prentice - Hall Inc.,
 N. Y., 1975.
                                                                ÐÁÑÁÑÔÇÌÁ Á

                                    ÌÅÑÉÊÁ ÂÁÓÉÊÁ ÓÔÏÉ×ÅÉÁ ÃÉÁ
                                    ÔÏÕÓ ÌÉÃÁÄÉÊÏÕÓ ÁÑÉÈÌÏÕÓ




    Sto parˆrthma autì anafèrontai oi trìpoi parˆstash enì migadikoÔ arijmoÔ
sto migadikì eppedo kai orzontai merikè basikè ènnoie , ìpw mètro, fˆsh, prag-
matikì mèro , fantastikì mèro migadikoÔ arijmoÔ kai suzug  migadikì arijmì .




A.1   PARASTASH MIGADIKOU ARIJMOU STO MIGADIKO EPIPEDO


Se kartesianè suntetagmène h morf enì migadikoÔ arijmoÔ z dnetai apì thn exsw-
sh
                                    z = x + jy                                 (A.1.1)

ìpou j= p 1 kai x kai y enai pragmatiko arijmo, oi opooi antstoiqa onomˆzontai
pragmatikì mèro kai   fantastikì mèro          , tou migadikoÔ arijmoÔ. Sun jw
                                            tm ma
sumbolzoume x = <e[z ℄ kai y = =m[z ℄. O migadikì arijmì z mpore epsh na
parastaje se polikè suntetagmène apì thn exswsh

                                    z = r  ej                                (A.1.2)

ìpou r >    0enai to mètro tou migadikoÔ arijmoÔ z , to mètro sumbolzetai kai me
jj
 z kai  enai h gwna h fˆsh tou migadikoÔ arijmoÔ z       ( = argz         =\)
                                                                                z.
Sto Sq ma A.1 upˆrqei h parˆstash enì migadikoÔ arijmoÔ sto migadikì eppedo.
H sqèsh metaxÔ twn dÔo aut¸n ekfrˆsewn twn migadik¸n arijm¸n aporrèei apì th
sqèsh tou   Euler
                                ej =   os  + j sin                          (A.1.3)

 apì thn sqedash tou   z sto migadikì eppedo, Sq   ma A.1. ParathroÔme ìti

                           x=r     os  kai y = r  sin                      (A.1.4)
280                           Merikˆ Basikˆ Stoiqea gia tou   MigadikoÔ      ArijmoÔ .           Parˆrthma A




        ℑm z
              y                  Á
                      r
                     è                               Sq ma A.1           Parˆstash enì migadikoÔ arijmoÔ
              0              x         ℜe z          sto migadikì eppedo.



ìpou
                     p
          r    = x2 + y 2                     !                               !
                                       y                                                        
              = sin 1 p                          = os   1 p x                    = tan       1 y    (A.1.5)
                                     x + y2
                                      2                     x2 + y 2                            x
Me th bo jeia th sqèsh tou Euler èqoume

                                                             os  = 12 ej + e j
                                                                                 
                   ej = os  + j  sin 
                                                            sin  = 21j ej e j
                                                                                  
               e    j = os  j  sin                                                               (A.1.6)


A.2     SUZUGHS MIGADIKOS ARIJMOS - IDIOTHTES


An z   = + =  ej enai èna
       x jy r                                 migadikì arijmì tìte o              suzug       migadikì tou   z
pou sumbolzetai w         z ? , dnetai apì th sqèsh
                                        z ? = x jy = r  e          j                               (A.2.1)

Gia dÔo suzuge migadikoÔ arijmoÔ èqoume ti idiìthte

  1. An èna migadikì arijmì enai so me to suzug tou migadikì arijmì, tìte to
     fantastikì tou mèro enai so me mhdèn, dhlad o arijmì enai pragmatikì ,
     prˆgmati
                                     z = z ? ) x + jy = x jy ) y = 0
  2. To tetrˆgwno tou mètrou migadikoÔ arijmoÔ enai so me to ginìmeno tou mi-
     gadikoÔ arijmoÔ ep to suzug tou migadikì arijmì, prˆgmati

                                        z  z ? = r  ej  r  e   j    = r2
  3. To pragmatikì mèro enì migadikoÔ arijmoÔ enai so me to hmiˆjroisma tou
     migadikoÔ arijmoÔ kai tou suzug tou migadikoÔ arijmoÔ, prˆgmati
                                                                                     z + z?
                          z + z ? = x + jy + x jy = 2x kai <e[z ℄ =
                                                                                          2
Enìthta A.2            Suzug      migadikì   arijmì   - Idiìthte                                            281



   4. To fantastikì mèro enì migadikoÔ arijmoÔ enai so me thn hmidiaforˆ tou
      suzugoÔ migadikoÔ arijmoÔ tou apì to migadikì arijmì diairoÔmenh me j , prˆg-
      mati
                                                                                           z      z?
                           z   z ? = x + jy x + jy = 2jy kai =m[z ℄ =
                                                                                                2j
Parˆdeigma A.1
      Na ekfraste o migadikoÔ               arijmì    z = 4+3
                                                           2 j
                                                               j       se polik    morf   kai na parastaje sto
      migadikì eppedo.

      LÔsh        Pollaplasiˆzoume arijmht              kai paronomast            me to suzug   tou paronomast ,
      ètsi èqoume



                  z=
                       4 + 3j = (4 + 3j )(2 + j ) = 8 + 4j + 6j 3 = 5 + 10j = 1 + 2j
                        2 j (2 j )(2 + j )               4+1           5
      Sto Sq ma A.2 blèpoume th parˆstash tou migadikoÔ arijmoÔ sto migadikì eppedo.


     ℑm z
        y=2            Á



                                                      Sq ma A.2            H grafik    parˆstash tou migadikoÔ
              0   x=1                ℜe z             arijmoÔ sto Parˆdeigma A.1.



Parˆdeigma A.2
                                                           p
      Na ekfraste o migadikì            arijmì       z=       3 + j se polik      morf   kai na parastaje sto
      migadikì eppedo.

      LÔsh        Me th bo jeia twn sqèsewn (A.1.5) upologzetai to mètro tou migadikoÔ arijmoÔ

                                                           p
                                                      r=       3+1=2
      kai h fˆsh tou
                                                                   p
                                             tan  = p13 = 33 )  = 6
      ètsi h polik         morf     tou migadikoÔ arijmoÔ enai


                                                         z = 2  ej 6
                                                                       


      Sto Sq ma A.3 upˆrqei h parˆstash tou migadikoÔ arijmoÔ sto migadikì eppedo
282                                  Merikˆ Basikˆ Stoiqea gia tou   MigadikoÔ   ArijmoÔ .          Parˆrthma A




      ℑm z

                                 Á
               r=2
                       è= 6ð
                                                       Sq ma A.3       H grafik     parˆstash tou migadikoÔ
         0                             ℜe z            arijmoÔ sto Parˆdeigma A.2.



A.3    PROBLHMATA


A.1   Na ekfraste kˆje èna apì tou migadikoÔ se kartesian morf kai na paras-
      taje sto migadikì eppedo sto opoo na fanetai to pragmatikì kai to fan-
      tastikì tm ma kˆje arijmoÔ.

               p                                                           6  ej 4 3
                                                                                    
        z1 =    2       ej 4       z2 = 3    ej4   +2    ej5    z3 =
                                                                            1 j          z4 =        2j  ej 94

A.2   Na ekfraste kˆje èna apì tou parakˆtw migadikoÔ arijmoÔ se polik mor-
      f kai na parastajoÔn sto migadikì eppedo ìpou na fanetai to mètro kai h
      fˆsh kˆje arijmoÔ.

                                                             p                p                      p
        z1 =       3       z2 = (1          j )4 z3 =
                                                            
                                                                3 + j3
                                                                         
                                                                              3+j
                                                                                    2
                                                                                              z4 =
                                                                                                      3 +pj
                                                                                                     1+j 3
                                                                           ÐÁÑÁÑÔÇÌÁ B

                                        ÁÍÁÐÔÕÎÇ ÑÇÔÇÓ ÓÕÍÁÑÔÇÓÇÓ
                                                ÓÅ ÁÐËÁ ÊËÁÓÌÁÔÁ



   O basikì skopì tou parart mato enai na parousiˆsei ton trìpo anˆlush
mia rht   sunˆrthsh , dhlad , mia sunˆrthsh h opoa mpore na ekfraste w
lìgo dÔo poluwnÔmwn th metablht , se ˆjroisma apl¸n klasmˆtwn.
                                   ()
   àstw h rht sunˆrthsh f x h opoa èqei th morf


                 f (x) =
                           N (x)
                                   = bamxxn ++ abm
                                          m
                                                       1 xm 1 + : : : + b1 x + b0
                           D(x)         n        n    1 xn 1 + : : : + a1 x + a0
Ja exetˆsoume pr¸ta thn perptwsh sthn opoa o bajmì tou arijmht , m, enai
                                                     (          )
mikrìtero tou bajmoÔ tou paronomast , n m < n kai sth sunèqeia ja exetˆsoume
thn perptwsh pou o bajmì tou arijmht enai megalÔtero  so tou bajmoÔ tou
paronomast .


B.1     O BAJMOS TOU           N (x) EINAI MIKROTEROS TOU BAJMOU TOU
        D(x).
                                                           ()
ätan o bajmì tou polu¸numou tou arijmht N x , enai mikrìtero tou bajmoÔ tou
                                      ()
poluwnÔmou tou paronomast D x , dhlad enai m < n, analÔoume ton paronomas-
t se ginìmeno paragìntwn
                                                n
                                                Y
                                      D(x) =          (x   i )                        (B.1.1)
                                                i=1
ìpou 1 ; 2 ; : : : ; n oi rze tou   D(x).   Anˆloga me th fÔsh twn riz¸n diakrnoume
ti peript¸sei :


B.1.1   Rze    diakekrimène    kai pragmatikè

A jewr soume ìti o bajmì tou paronomast enai 2, opìte h sunˆrthsh f                (x) grˆfe-
tai diadoqikˆ

                 b x + b0                   b1 x + b0
        f (x) = 2 1
               x + a1 x + a0
                                    = (x     1 )(x 2 )
                                                             = x C11 + x C22         (B.1.2)
284                          Anˆptuxh rht   sunˆrthsh    se aplˆ klˆsmata.        Parˆrthma B




To prìblhma enai na upologsoume ti stajerè             C1   kai   C2 .   Kˆnonta apaloif
paronomast¸n èqoume diadoqikˆ:

       b1 x + b0 = C1 (x 2 ) + C2 (x 1 ) = (C1 + C2 )x               (C12 + C21 )
apì thn opoa èqoume to sÔsthma twn dÔo exis¸sewn

                                     C1 + C2    =    b1
                                C1 2 + C2 1   =      b0
H lÔsh tou sust mato dnei ti timè twn stajer¸n           C1 kai C2
                                            b1 1 + b0
                                  C1   =     1 2
                                            b1 2 + b0
                                  C2   =     2 1
                                                                                        (B.1.3)


An kai o trìpo autì isqÔei pˆnta, upˆrqei mia pio eÔkolh mèjodo . An jèloume na
upologsoume th stajerˆ C1 pollaplasiˆzoume thn (B.1.2) me x 1 kai èqoume

                                                         x 1
                          (x     1 )f (x) = C1 + C2
                                                         x 2
                                                                                        (B.1.4)


AfoÔ oi rze 1 kai 2 enai diakritè , o deÔtero ìro tou dexioÔ mèlou th (B.1.4)
enai so me mhdèn gia x = 1 , ètsi èqoume
                                                b  +b
                        C1 = (x 1 )f (x)jx=1 = 1 1 0                                  (B.1.5)
                                                 1 2
ìmoia brskoume kai

                                                b  +b
                        C2 = (x 2 )f (x)jx=2 = 1 2 0                                  (B.1.6)
                                                 2 1
Oi dÔo auto trìpoi genikeÔontai, an o bajmì tou paronomast enai              n, kai èqoume
                                 C1   C2
                      f (x) =       +
                                x 1 x 2
                                                 + : : : + x Cnn                       (B.1.7)


kai oi stajerè upologzontai apì ton tÔpo

                   Ck = (x k )f (x)jx=k ;         k = 1; 2; : : : ; n                 (B.1.8)
Enìthta B.1      O bajmì   tou   N (x)   enai mikrìtero   tou bajmoÔ tou   D(x) .             285



B.1.2   Rze   pollaplè    kai pragmatikè

A upojèsoume ìti o paronomast èqei ma dipl pragmatik rza, thn                      1 ,   kai ma
                                                      ()
apl pragmatik rza, thn 2 , tìte h sunˆrthsh f x grˆfetai:

                                          b x2 + b1 x + b0
                                  f (x) = 2
                                         (x 1)2 (x 2 )                                    (B.1.9)

Sthn perptwsh aut anazhtoÔme èna anˆptugma th morf                          :
                                  C11
                      f (x) =
                                   (x   + C12 + C21
                                    1 ) (x 1 )2 (x 2 )
                                                                             (B.1.10)

Gia na upologsoume tou     suntelestè C11 , C12 kai C21 mporoÔme kai ed¸ na kˆnoume
apaloif paronomast¸n na exis¸soume tou suntelestè twn omobˆjmiwn ìrwn kai
na lÔsoume to sÔsthma. Upˆrqei ìmw kai giaut thn perptwsh èna aploÔstero
trìpo .
    Pollaplasiˆzoume thn (B.1.10) me x 1 2 kai èqoume:
                                                (          )
                                                            C (x 1 )2
                 (x  1 )2 f (x) = C11 (x 1 ) + C12 + 21
                                                              (x 2 )    (B.1.11)

Apì thn (B.1.11) upologzoume thn C12 me th sqèsh:

                                                    b 2 + b  + b
                  C12 = (x 1 )2 f (x) x=1 = 2 1 1 1 0                  (B.1.12)
                                                          1 2
Gia na upologsoume to C11 diaforzoume thn (B.1.11) w pro x kai èqoume:

          d 
              (               
                x 1 )2 f (x) = C11 + C21
                                               2(x 1)(x 2) (x 1 )2
         dx
                                               
                                                            (x 2)2 
                                                                       2
                                 = C11 + C21 2((xx 21)) 2((xx 21))2  (B.1.13)

o teleutao ìro th (B.1.13) enai so me mhdèn gia x = 1 ètsi èqoume:

                                   d
                      C11 =
                                  dx
                                     (x 1 )2 f (x)
                                                      x=1
                                                     2
                              = 2b2 1 + b1 b2(1+ b11)+2 b0        (B.1.14)
                                     1 2                1 2
O suntelest C21 upologzetai apì th gnwst sqèsh:

                               C21 = (x 2 )f (x)jx=2
                                            2
                                    = b2(2+2 b112)+2 b0              (B.1.15)
286                             Anˆptuxh rht   sunˆrthsh   se aplˆ klˆsmata.        Parˆrthma B




Genikˆ, an to polu¸numo tou paronomast èqei th rza 1 me pollaplìthta r kai n                r
aplè rze 2 ; 3 ; : : : ; n r+1 tìte o paronomast analÔetai
                                                  r+1
                                                 nY
                             D(x) = (x 1 )r             (x       i )                  (B.1.16)
                                                   i=2
ètsi sunˆrthsh  f (x) analÔetai se aplˆ klˆsmata w
            C11        C12                C1r        C21               C(n r)1
 f (x) =           +          +    +          +         +    +
         (x 1) (x 1 )     2           (x 1) (x 2 )
                                               r                     (x n r ) (B.1.17)
kai oi suntelestè C1i ; i = 1; 2; : : : ; r upologzontai apì thn:

                      C1i =
                                1 dr i [(x 1)r f (x)℄
                            (r i)! dxr i                     x=i
                                                                               (B.1.18)

oi upìloipe stajerè Cki ; 4 = 2; 3; : : : ; n r upologzontai me thn (B.1.8).

B.1.3    Ìparxh migadik¸n riz¸n

An to polu¸numo      D(x) èqei èna zeÔgo suzug¸n migadik¸n riz¸n             1   =  + j! kai
2 = 1 = 
        ?                                 ()
                j!, tìte h sunˆrthsh f x analÔetai w :
                        C1   C2
             f (x) =       +
                       x 1 x ?1
                                         + (x C3 )r +    + x Cn                    (B.1.19)
                                                   3                     n
äloi oi suntelestè upologzontai apì thn sqèsh:
                        Ck = (x k )f (x)jx=k ; k = 1; 2; : : : ; n                    (B.1.20)
shmei¸netai ìti oi     suntelestè C1 kai C2 enai suzuge migadiko (C2
                                                                      C1? . Se      =     )
perptwsh pou oi rze emfanzontai me kˆpoia pollaplìthta, akoloujetai h pro-
hgoÔmenh mejodologa.


B.2     O BAJMOS TOU            N (x) EINAI MEGALUTEROS H ISOS TOU BA-
        JMOU TOU         D(x)
                                                 ()
An o bajmì tou polu¸numou tou arijmht N x , enai megalÔtero   so tou bajmoÔ
                                         ()
tou polu¸numou tou paronomast D x , dhlad , m                 
                                                   n, kˆnoume th diaresh kai h
              ()
sunˆrthsh f x grˆfetai:
                                     N (x)             g(x)
                             f (x) =       =   ( x) +
                                     D(x)              D(x)
                                                                               (B.2.1)

Epeid o bajmì      tou poluwnÔmou g (x) enai mikrìtero apì to bajmì tou D (x), o ìro
g(x)
D(x) sthn (B.2.1) analÔetai se aplˆ klˆsmata ìpw se kˆpoia apì ti peript¸sei
pou perigrˆyame.
                                                                ÐÁÑÁÑÔÇÌÁ Ã

                                  ×ÑÇÓÉÌÏÉ ÌÁÈÇÌÁÔÉÊÏÉ ÔÕÐÏÉ




    O basikì skopì tou parart mato enai na parousiˆsei qr sime sqèsei apì
ta majhmatikˆ.


G.1     Trigwnometra.


Gia to orjog¸nio trgwno tou sq mato isqÔoun oi sqèsei
                            sin  = yr               (G.1.1)

                             os  = xr               (G.1.2)
                                                                           r
                       tan  = xy = sin
                                                                                     y
                                          
                                       os           (G.1.3)           è
                                                                               x
                          2        2
                       sin  + os  = 1              (G.1.4)     To orjog¸nio trgwno.
                              
                      os   2 =  sin              (G.1.5)
                            
                     sin   2 =  os               (G.1.6)
      Sth sunèqeia parousiˆzontai trigonwmetrikè   tautìthte

                         sin(  ) = sin  os   os  sin                   (G.1.7)

                          os(  ) = os  os   sin  sin                   (G.1.8)


                       2sin  sin  = os(    ) os( + ')                     (G.1.9)

                       2 os  os  = os(     ) + os( + ')               (G.1.10)

                       2sin  os  = sin(    ) + sin( + ')              (G.1.11)


                                os2  = 12 (1 + os 2)                     (G.1.12)
288                                         Qr simoi Majhmatiko TÔpoi.   Parˆrthma G




                              sin2  = 21 (1 os 2)                         (G.1.13)


                          os(2) = os2  sin2 
                                   = 2 os2  1
                                   = 1 2sin2                               (G.1.14)

                         4 os3  = 3 os  + os(3)                          (G.1.15)

                          4sin3  = 3sin  sin(3)                          (G.1.16)

                        a os  b sin  = A os( + )                        (G.1.17)

ìpou                                   p
                                 A = a2 + b2
                                  = tan 1 (b=a)
                                   a = A os 
                                   b = A sin 

G.2     Aìrista oloklhr¸mata.


G.2.1   Rht¸n alebrik¸n sunart sewn
                       Z
                            xn dx =
                                        1 xn+1; n 6= 1
                                      n+1
                                                                              (G.2.1)
                             Z
                                   dx
                                        = 1 ln ja + bxj
                                 a + bx b
                                                                              (G.2.2)

                                                 n+1
                        (a + bx)n dx = (ab+(nbx+)1) ; n > 0
                     Z
                                                                              (G.2.3)
                 Z
                         dx                   1
                     (a + bx) (n 1)b(a + bx)n 1 ; n > 1
                              n  =                                            (G.2.4)
                                                     
                         Z
                                 dx
                                        = 1  tan  1   bx
                             a +b x
                              2     2 2                                       (G.2.5)
                                          ab           a
                                        = 1 ln(a2 + x2)
                            Z
                                  xdx
                                a2 + x2 2
                                                                              (G.2.6)

                              x2 dx
                        Z                           x
                                       =x   a tan 1
                             a2 + x2
                                                                              (G.2.7)
                                                     a
Enìthta G.2    Aìrista oloklhr¸mata                                                                  289



G.2.2   Trigwnometrik¸n sunart sewn


                                        os( x) dx = 1 sin( x)
                                   Z
                                                                                                  (G.2.8)


                                 os( x) dx = 1 [ os( x) + x sin( x)℄
                    Z
                         x                             2                                          (G.2.9)
                     Z
                         x2       os x dx = 2x os x + (x2 2)sin x                                (G.2.10)


                                     sin( x) dx = 1 os( x)
                                  Z
                                                                                                 (G.2.11)
                    Z
                         x sin( x) dx = 2 [sin( x) + x
                                                      1                          os( x)℄         (G.2.12)
                     Z
                         x2 sin x dx = 2x sin x                         (x2 2) os x              (G.2.13)


G.2.3   Ekjetik¸n sunart sewn
                                               Z
                                    eax dx = eax
                                                                   1                             (G.2.14)
                                              a
                                                    
                                                x 1
                            Z
                               xe dx = e
                                 ax        ax
                                                a a2
                                                                                                 (G.2.15)
                Z
                                       eax
                    eax sin( x) dx = 2 2 [a sin( x)                                   os( x)℄
                                     a +
                                                                                                 (G.2.16)
                Z
                                       eax
                    eax os( x) dx = 2 2 [a os( x) +                                   sin( x)℄
                                     a +
                                                                                                 (G.2.17)


G.2.4   Orismèna oloklhr¸mata
                             Z    1
                                           x=22 dx               p
                                       e                   =  2;             >0               (G.2.18)
                             1
                         Z   1                                        p
                                  x2 e         x=22 dx    = 3 2;             >0              (G.2.19)
                          1
                         Z 1                                   p         b2
                                   e   a2 x+ bx dx        =       a
                                                                       e 4a2 ; a > 0             (G.2.20)
                          1
                         Z 1                               Z      1 sin x             
                                   sin (x) dx =                         x
                                                                               dx =
                                                                                      2          (G.2.21)
                             0             Z
                                                              0
                                               1
                                                   sin 2 (x) dx = 2                             (G.2.22)
                                           0
290                                                  Qr simoi Majhmatiko TÔpoi.   Parˆrthma G




G.3   Gewmetrikè   seirè

                                  N
                                  X             N (N + 1)
                                        n=
                                  n=1        2                                         (G.3.1)


                           XN
                                     N (N + 1)(2N + 1)
                               n2 =
                           n=1
                                              6                                        (G.3.2)


                               XN
                                        N 2 (N + 1)2
                                   n3 =
                               n=1
                                              4                                        (G.3.3)

                                            (
                           NX1                  1 xN ; x 6= 1
                                  xn    =        1 x
                                                N;     x=1
                                                                                       (G.3.4)
                         n=0
                        m               (
                        X
                          xn        =
                                            xk xm+1 ;
                                              1 x    x 6= 1
                                            m k + 1; x = 1
                                                                                       (G.3.5)
                        n=k
                              1
                              X                 1
                                    xn =                 ;   jxj < 1
                              n=0
                                            1        x
                                                                                       (G.3.6)

                              1
                              X                 xk
                                    xn =                 ;   jxj < 1
                              n=k
                                            1        x
                                                                                       (G.3.7)

                           1
                           X                     x
                                 nxn =
                           n=k
                                      (1 x)2 ; jxj < 1                                 (G.3.8)


                   XN
                       ej (+n) =
                                   sin[(N + 1)=2℄ ej[+(N=2)℄
                   n=0                 sin(=2)                                        (G.3.9)


                                        x2   x       3             1 xn
                                                                   X
                     ex = 1 + x +
                                         2! 3! +    =
                                           +
                                                                   n=0
                                                                       n!
                                                                                     (G.3.10)
                                                                                                       ÅõñåôÞñéï

€jroisma th        sunèlixh , 51            Grafikì     prosdiorismì      th        Jemeli¸dh          analogik

Ajroist     , 32                                   sunèlixh , 47                         perodo , 11

Aitiatì s   ma, 4                                                                        suqnìthta, 11

Aitiatì sÔsthma, 37                         Decibel, 125                                 kuklik     suqnìthta, 11

Aitiokratikì s      ma, 7                   Deigmatolhya, 2                        Jemeli¸dh          yhfiak        kuklik

Akolouja eterosusqètish , 249                perodo     deigmatolhya , 2                suqnìthta, 14

Akolouja susqètish , 249                   Dexiìpleurh akolouja, 244              Je¸rhma       Parseval, 99
Amfpleurh akolouja, 242                   Dexiìpleurh s      ma, 209              Je¸rhma th          sunèlixh       tou    ML,
Amfpleuro s       ma, 207
                                            Diagrˆmmata      Bode, 125                     211

Amfpleuro       metasqhmatismì
                                            Diakritì Fˆsma, 79, 74                  Je¸rhma th          sunèlixh       tou    MF, 97
                                            Diakritì    metasqhmatismì
     Laplace, 200
Amfpleuro       metasqhmatismì       z,           Fourier, 171                     Idanikì katwperatì fltro, 128
                                            Diamìrfwsh, 95, 135
     234                                                                            Idanikì fltro basik              z¸nh , 128
                                            Diamorfwt        , 61
Anˆklash, 8                                                                         Idiìthte      susthmˆtwn, 37
                                            Diˆstash dianusmatikoÔ q¸rou, 64
Analogoyhfiakì         metatropèa , 33                                              Idiìthte      th    sunèlixh , 45
                                            Diat   rhsh th     suqnìthta , 55, 57
Analutik    sunˆrthsh, 204                                                               antimetajetik        , 45
                                            Diaforik     exswsh
Anˆptugma    Fourier, 69                                                                 epimeristik     , 46
                                              deÔterh     tˆxh , 35
Antistrof     sust    mato , 35                                                          proseteristik        , 46
                                              me stajeroÔ        suntelestè , 34
Antstrofo    diakritì                                                                   tautotik      , 46
                                              pr¸th      tˆxh , 34
     metasqhmatismì          Fourier, 171                                           Idiìthte      tou ML, 209, 217
                                            Diaforist     , 41
Apìkrish isqÔo , 113                                                                Idiìthte      tou MF, 151, 176
                                            Duðsmì , 105
Apìkrish mhdenik         eisìdou, 270                                               Idiìthte      tou Mz, 245, 251
                                            Dunamikì sÔsthma, 39
Apìkrish mhdenik         eisìdou, 270                                               IsqÔ    s   mato , 7

Apìkrish mhdenik         katˆstash ,
                                            Euler sqèsh, 279
     270                                                                            Kajustèrhsh, 249
                                            Esodo    sust    mato , 32
Apìkrish monadiaou degmato , 51                                                   Katˆstash hrema , 37
                                            Ekjetik    seirˆ   Fourier, 69
Apìkrish plˆtou , 55                                                                Kbˆntish, 2
                                            Enèrgeia s    mato , 6
Apìkrish suqnìthta          sust   mato ,                                           Kentrikì      lobì , 115
                                            Energeiakì s      ma, 6
     55, 57
                                            Exswsh anˆlush , 69, ,139, 145
                                                                                    Krit   rio   Nyquist, 168
Apìkrish fˆsh , 55                                                                  Kroustik        akolouja, 26
                                            Exswsh sÔnjesh , 70, 139, 145
Aristerìplerh akolouja, 244                                                        Kroustik        apìkrish sust         mato ,
                                            àxodo     sust   mato , 32
Aristerìpleuro s       ma, 208                                                             44, 51
                                            Eswterikì ginìmeno
Armonikˆ susqetizìmena ekjetikˆ                                                     Kroustik        sunˆrthsh, 19
                                              dianusmˆtwn, 65
     s    mata                                                                      Kuklik       anˆklash akolouja , 173
                                              shmˆtwn, 66
  diakritoÔ qrìnou, 137                                                             Kuklik       olsjhsh akolouja , 174
                                            Eukledio    q¸ro       shmˆtwn, 66
  suneqoÔ     qrìnou, 67, 68                Eustajè     sÔsthma, 40                 Kuklik       sunèlixh akolouji¸n, 175

Armonik     sunist¸sa fˆsmato , 70          Efarmogè     twn MF, 119                Kuklik       suqnìthta, 4

€rtio s   ma, 5                             Efarmogè     twn ML, 219                Kuklik       suqnìthta      -3 dB, 127
                                            Efarmogè     twn Mz, 262                Kwdikopohsh, 3



                                                                                    L2
Perittì s   ma, 5

Bajmwtì     pollaplasiast          , 32     Z¸nh                                         -mètro

                                              apokop      , 128

Grammik     sunèlixh, 51, 177                 dièleush , 128                        Meikt       sÔndesh susthmˆtwn, 35

Grammikì sÔsthma, 37                          metˆbash , 130                        Metabatik          katˆstash, 269

Grammikì fˆsma, 83                                                                  Mèsh tim       s    mato , 70
292                                                                                                                        Euret rio




Mèsh qronik        sunˆrthsh                     deigmatolhya , 164                        analutik         , 204

         autosusqètish , 113                     jemeli¸dh , 3                              autosusqètish , 99, 111, 250

Metasqhmatismì           Fourier, 55, 57,    Perioq      sÔgklish , 200, 251                deigmatolhya , 93

         88, 145, 171                        Perittì s      ma, 5                           klsh , 25

Metasqhmatismì           Laplace, 54, 200,   Pollaplasiast          , 32                    monadiaou b           mato , 18

Metasqhmatismì           z, 57, 234          Pìlo      sunˆrthsh , 204                      pros       mou, 25

Mètro                                        Poluwnumikì ekjetikì s           ma, 205     Sunˆrthsh dèlta             kroustik

    dianÔsmato , 65                          Pragmatikì ekjetikì s         ma, 11                 Dirac, 19
    migadikoÔ arijmoÔ, 279                   Pragmatikì mèro         migadikoÔ              idiìthta olsjhsh , 20

    s   mato , 66                                    arijmoÔ, 279                         Sunˆrthsh metaforˆ            sust     mato ,

Mhdenikì sunˆrthsh , 204                                                                          54, 50, 57

M   ko    dianÔsmato , 65                    Rht     sunˆrthsh, 121, 204                  Sundèsei      susthmˆtwn, 35

Migadikì ekjetikì s            ma                                                           me anatrofodìthsh              me

    diakritoÔ qrìnou, 14                     Seirˆ   Fourier diakritoÔ qrìnou,                         anˆdrash, 35

    suneqoÔ     qrìnou, 10                           139,                                   meikt      , 35

Monadiaa bhmatik          akolouja, 26     Seiriak     sÔndesh susthmˆtwn, 35             parˆllhlh, 35

Monadiao b      ma diakritoÔ qrìnou,        S   ma, 1                                      seiriak         , 35

         26                                      aitiatì, 4                               Sunèlixh, 44, 51

Monadiao degma, 26                             aitiokratikì, 7                          Suneqè       fˆsma, 145

Monadiao       kÔklo , 235                      analogikì, 2                             Suneq        sunist¸sa fˆsmato , 70

Mìnimh katˆstash, 269                            ˆpeirh     diˆrkeia , 5                  Sunj    ke    Dirichlet, 74
Monodiˆstato s          ma, 1                    apl     suqnìthta , 12                   Suntelestè      Fourier, 70, 139
Monìpleuro         Metasqhmatismì                ˆrtio, 5                                 Suntelest

         Laplace, 216                            diakritoÔ qrìnou, 2                        susqètish , 249

Monìpleuro         Metasqhmatismì       z,       didiˆstato, 1                              autosusqètish , 250

         234                                     enèrgeia , 7                             SÔsthma, 32

                                                 ekjetik      tˆxh , 208                    aitiatì, 37

Nomoteleiakì s         ma, 7                     isqÔo , 7                                  aitiokratikì, 32

                                                 monodiˆstato, 1                            analogikì, 32

Olokl     rwma th       sunèlixh , 44            nomoteleiakì, 7                            antistrèyimo, 38

Oloklhrwt        , 61                            periodikì, 3                               grammikì, 37

Orjog¸nia                                        perittì, 5                                 diamìrfwsh , 61

    dianÔsmata, 65                               peperasmènh        diˆrkeia , 5            deÔterh         tˆxh , 35, 122

    s   mata, 66                                 peperasmèno, 5                             diakritoÔ qrìnou, 28

Orjog¸nio sÔnolo shmˆtwn, 137                    poludiˆstato, 1                            diafìrish , 41

Orjog¸nio       palmì , 24                       stoqastikì,7                               eustajè , 40

Orjokanonik         bˆsh shmˆtwn, 66             suneqoÔ      qrìnou, 2                     kajustèrhsh , 32

Orjokanonikì sÔnolo dianusmˆtwn,                 tuqao, 7                                  me mn       mh, 39

         65                                      uyhl¸n suqnot        twn, 72               mèsh       tim     , 38, 45, 62

                                                 fjnwn hmitonoeidè , 13                    ma    eisìdou mia         exìdou, 32

Palmì                                            qamhl¸n suqnot        twn, 72              olokl       rwsh , 61

    orjog¸nio , 24                               yhfiakì, 3                                 pl    rou       anìrjwsh , 60

    trigwnikì ,24                            Shmeo    -3dB, 114                            poll¸n eisìdwn mia            exìdou, 32

Palmokwdik         diamìrfwsh, 3             Shmeo anwmala         sunˆrthsh , 204        poll¸n eisìdwn poll¸n exìdwn,

ParajÔrwsh, 174                              Stajerˆ apìsbesh          sust   mato , 34                32

Parˆllhlh sÔndesh susthmˆtwn,                Stajerˆ elathrou, 34                          pr¸th        tˆxh , 34, 121, 188

         31                                  Stajerˆ sunist¸sa fˆsmato , 70                 stoqastikì, 32

Parembol       , 154                         Perittì s      ma, 5                           suneqoÔ          qrìnou, 32

Peperasmèno s          ma, 5                 Stajerˆ qrìnou, 126                            qronikˆ anallowto, 39

Peribˆllousa, 13                             Stoqastikì s      ma, 7                        qwr       mn    mh, 34

Periodikì s      ma, 3                       Stoqastikì sÔsthma, 32                         ubridikì, 33

Periodik       sunèlixh, 157                 Suzug       migadikì    arijmì , 280         Suqnìthta -3    dB,
Perodo , 3                                  Sunˆrthsh                                    Suqnìthta      Nyquist, 168
Euret rio                                                                                                            293



Suqnìthta apokop      , 128               Fˆsh migadikoÔ arijmoÔ, 279              zwnodiabatì, 130

Suqnìthta deigmatolhya , 164             Fˆsma s    mato , 70                     zwnofraktikì, 130

Sqèsh metaxÔ ML kai MF, 201                 diakritì, 88                           katwperatì, 128

Sqèsh tou Euler, 279                        suneqè , 88, 145                       uyiperatì, 130

                                          Fˆsma suqnot     twn, 104                apìrriyh        suqnìthta , 130
Tˆxh sust   mato , 34
                                          Fasmatikˆ mhdenikˆ, 90
Tautìthta   Parseval, 77                  Fasmatikè     grammè , 70, 139         Qronikˆ anallowto sÔsthma, 39
Tmhmatikˆ omalè      sunart    sei , 74
                                          Fasmatik    puknìthta enèrgeia ,       Qronik
Trigwnikì   palmì , 24
                                               100                                 diastol   , 8
Trigwnometrik      seirˆ   Fourier, 70    Fasmatik    puknìthta isqÔo , 113        sustol    , 9
Tuqao s   ma, 7
                                          Fasmatik    puknìthta plˆtou , 88      Qronik    metatìpish, 9

                                          Fèrousa suqnìthta, 96, 135             Qronik    stajerˆ, 126
Ubridikì sÔsthma, 33
                                          Fjnonta hmitonoeid    s    mata, 13   Q¸ro     shmˆtwn, 66
Ìparxh   MF, 72
                                          FEFE eustajè      sÔsthma, 40

                                          Fltro, 128                            Yhfiakì s    ma, 2
Fainìmeno   Gibbs, 82, 90
                                            bajuperatì, 130                      Yhfiak    kuklik     suqnìthta, 14
Fantastikì mèro      migadikoÔ
                                            basik     z¸nh , 128, 130            Yhfioanalogikì       metatropèa , 33
     arijmoÔ, 279