CRYPTSETUP(8) | Maintenance Commands | CRYPTSETUP(8) |
cryptsetup - manage plain dm-crypt and LUKS encrypted volumes
cryptsetup <options> <action> <action args>
cryptsetup is used to conveniently setup dm-crypt managed device-mapper mappings. These include plain dm-crypt volumes and LUKS volumes. The difference is that LUKS uses a metadata header and can hence offer more features than plain dm-crypt. On the other hand, the header is visible and vulnerable to damage.
In addition, cryptsetup provides limited support for the use of loop-AES volumes and for TrueCrypt compatible volumes.
Unless you understand the cryptographic background well, use LUKS. With plain dm-crypt there are a number of possible user errors that massively decrease security. While LUKS cannot fix them all, it can lessen the impact for many of them.
A lot of good information on the risks of using encrypted storage, on handling problems and on security aspects can be found in the Cryptsetup FAQ. Read it. Nonetheless, some risks deserve to be mentioned here.
Backup: Storage media die. Encryption has no influence on that. Backup is mandatory for encrypted data as well, if the data has any worth. See the Cryptsetup FAQ for advice on how to do a backup of an encrypted volume.
Character encoding: If you enter a passphrase with special symbols, the passphrase can change depending on character encoding. Keyboard settings can also change, which can make blind input hard or impossible. For example, switching from some ASCII 8-bit variant to UTF-8 can lead to a different binary encoding and hence different passphrase seen by cryptsetup, even if what you see on the terminal is exactly the same. It is therefore highly recommended to select passphrase characters only from 7-bit ASCII, as the encoding for 7-bit ASCII stays the same for all ASCII variants and UTF-8.
LUKS header: If the header of a LUKS volume gets damaged, all data is permanently lost unless you have a header-backup. If a key-slot is damaged, it can only be restored from a header-backup or if another active key-slot with known passphrase is undamaged. Damaging the LUKS header is something people manage to do with surprising frequency. This risk is the result of a trade-off between security and safety, as LUKS is designed for fast and secure wiping by just overwriting header and key-slot area.
Previously used partitions: If a partition was previously used, it is a very good idea to wipe filesystem signatures, data, etc. before creating a LUKS or plain dm-crypt container on it. For a quick removal of filesystem signatures, use "wipefs". Take care though that this may not remove everything. In particular, MD RAID signatures at the end of a device may survive. It also does not remove data. For a full wipe, overwrite the whole partition before container creation. If you do not know how to do that, the cryptsetup FAQ describes several options.
The following are valid actions for all supported device types.
open <device> <name> --type <device_type>
Device type can be plain, luks (default), luks1, luks2, loopaes or tcrypt.
For backward compatibility there are open command aliases:
create (argument-order <name> <device>):
open --type plain
plainOpen: open --type plain
luksOpen: open --type luks
loopaesOpen: open --type loopaes
tcryptOpen: open --type tcrypt
<options> are type specific and are described below for individual device types. For create, the order of the <name> and <device> options is inverted for historical reasons, all other aliases use the standard <device> <name> order.
close <name>
For backward compatibility there are close command aliases: remove, plainClose, luksClose, loopaesClose, tcryptClose (all behaves exactly the same, device type is determined automatically from active device).
<options> can be [--deferred]
status <name>
resize <name>
If --size (in 512-bytes sectors) is not specified, the size is computed from the underlying device. For LUKS it is the size of the underlying device without the area reserved for LUKS header (see data payload offset in luksDump command). For plain crypt device, the whole device size is used.
Note that this does not change the raw device geometry, it just changes how many sectors of the raw device are represented in the mapped device.
If cryptsetup detected volume key for active device loaded in kernel keyring service, resize action would first try to retrieve the key using a token and only if it failed it'd ask for a passphrase to unlock a keyslot (LUKS) or to derive a volume key again (plain mode). The kernel keyring is used by default for LUKS2 devices.
With LUKS2 device additional <options> can be [--token-id, --token-only, --key-slot, --key-file, --keyfile-size, --keyfile-offset, --timeout, --disable-locks, --disable-keyring].
refresh <name>
Updates parameters of active device <name> without need to deactivate the device (and umount filesystem). Currently it supports parameters refresh on following devices: LUKS1, LUKS2 (including authenticated encryption), plain crypt and loopaes.
Mandatory parametrs are identical to those of an open action for respective device type.
You may change following parameters on all devices --perf-same_cpu_crypt, --perf-submit_from_crypt_cpus and --allow-discards.
Refreshing device without any optional parameter will refresh the device with default setting (respective to device type).
LUKS2 only:
--integrity-no-journal parameter affects only LUKS2 devices with underlying dm-integrity device.
Adding option --persistent stores any combination of device parameters above in LUKS2 metadata (only after successful refresh operation).
--disable-keyring parameter refreshes a device with volume key passed in dm-crypt driver.
Plain dm-crypt encrypts the device sector-by-sector with a single, non-salted hash of the passphrase. No checks are performed, no metadata is used. There is no formatting operation. When the raw device is mapped (opened), the usual device operations can be used on the mapped device, including filesystem creation. Mapped devices usually reside in /dev/mapper/<name>.
The following are valid plain device type actions:
open --type plain <device> <name>
create <name> <device> (OBSOLETE syntax)
<options> can be [--hash, --cipher, --verify-passphrase, --sector-size, --key-file, --keyfile-offset, --key-size, --offset, --skip, --size, --readonly, --shared, --allow-discards, --refresh]
Example: 'cryptsetup open --type plain /dev/sda10 e1' maps the raw encrypted device /dev/sda10 to the mapped (decrypted) device /dev/mapper/e1, which can then be mounted, fsck-ed or have a filesystem created on it.
LUKS, the Linux Unified Key Setup, is a standard for disk encryption. It adds a standardized header at the start of the device, a key-slot area directly behind the header and the bulk data area behind that. The whole set is called a 'LUKS container'. The device that a LUKS container resides on is called a 'LUKS device'. For most purposes, both terms can be used interchangeably. But note that when the LUKS header is at a nonzero offset in a device, then the device is not a LUKS device anymore, but has a LUKS container stored in it at an offset.
LUKS can manage multiple passphrases that can be individually revoked or changed and that can be securely scrubbed from persistent media due to the use of anti-forensic stripes. Passphrases are protected against brute-force and dictionary attacks by PBKDF2, which implements hash iteration and salting in one function.
LUKS2 is a new version of header format that allows additional extensions like different PBKDF algorithm or authenticated encryption. You can format device with LUKS2 header if you specify --type luks2 in luksFormat command. For activation, the format is already recognized automatically.
Each passphrase, also called a key in this document, is associated with one of 8 key-slots. Key operations that do not specify a slot affect the first slot that matches the supplied passphrase or the first empty slot if a new passphrase is added.
The <device> parameter can also be specified by a LUKS UUID in the format UUID=<uuid>. Translation to real device name uses symlinks in /dev/disk/by-uuid directory.
To specify a detached header, the --header parameter can be used in all LUKS commands and always takes precedence over the positional <device> parameter.
The following are valid LUKS actions:
luksFormat <device> [<key file>]
You can only call luksFormat on a LUKS device that is not mapped.
To use LUKS2, specify --type luks2.
<options> can be [--hash, --cipher, --verify-passphrase, --key-size, --key-slot, --key-file (takes precedence over optional second argument), --keyfile-offset, --keyfile-size, --use-random | --use-urandom, --uuid, --master-key-file, --iter-time, --header, --pbkdf-force-iterations, --force-password, --disable-locks].
For LUKS2, additional <options> can be [--integrity, --integrity-no-wipe, --sector-size, --label, --subsystem, --pbkdf, --pbkdf-memory, --pbkdf-parallel, --disable-locks, --disable-keyring, --luks2-metadata-size, --luks2-keyslots-size, --keyslot-cipher, --keyslot-key-size].
WARNING: Doing a luksFormat on an existing LUKS container will make all data the old container permanently irretrievable unless you have a header backup.
open --type luks <device> <name>
luksOpen <device> <name> (old syntax)
First, the passphrase is searched in LUKS tokens. If it's not found in any token and also the passphrase is not supplied via --key-file, the command prompts for it interactively.
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --readonly, --test-passphrase, --allow-discards, --header, --key-slot, --master-key-file, --token-id, --token-only, --disable-keyring, --disable-locks, --type, --refresh].
luksSuspend <name>
After this operation you have to use luksResume to reinstate the encryption key and unblock the device or close to remove the mapped device.
WARNING: never suspend the device on which the cryptsetup binary resides.
<options> can be [--header, --disable-locks].
luksResume <name>
<options> can be [--key-file, --keyfile-size, --header, --disable-keyring, --disable-locks, --type]
luksAddKey <device> [<key file with new key>]
NOTE: with --unbound option the action creates new unbound LUKS2 keyslot. The keyslot cannot be used for device activation. If you don't pass new key via --master-key-file option, new random key is generated. Existing passphrase for any active keyslot is not required.
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --new-keyfile-offset, --new-keyfile-size, --key-slot, --master-key-file, --iter-time, --force-password, --header, --disable-locks, --unbound, --type, --keyslot-cipher, --keyslot-key-size].
luksRemoveKey <device> [<key file with passphrase to be removed>]
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --header, --disable-locks, --type]
WARNING: If you read the passphrase from stdin (without further argument or with '-' as an argument to --key-file), batch-mode (-q) will be implicitly switched on and no warning will be given when you remove the last remaining passphrase from a LUKS container. Removing the last passphrase makes the LUKS container permanently inaccessible.
luksChangeKey <device> [<new key file>]
If a key-slot is specified (via --key-slot), the passphrase for that key-slot must be given and the new passphrase will overwrite the specified key-slot. If no key-slot is specified and there is still a free key-slot, then the new passphrase will be put into a free key-slot before the key-slot containing the old passphrase is purged. If there is no free key-slot, then the key-slot with the old passphrase is overwritten directly.
WARNING: If a key-slot is overwritten, a media failure during this operation can cause the overwrite to fail after the old passphrase has been wiped and make the LUKS container inaccessible.
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --new-keyfile-offset, --new-keyfile-size, --key-slot, --force-password, --header, --disable-locks, --type, --keyslot-cipher, --keyslot-key-size].
luksConvertKey <device>
If a keyslot is specified (via --key-slot), the passphrase for that keyslot must be given. If no keyslot is specified and there is still a free keyslot, then the new parameters will be put into a free keyslot before the keyslot containing the old parameters is purged. If there is no free keyslot, then the keyslot with the old parameters is overwritten directly.
WARNING: If a keyslot is overwritten, a media failure during this operation can cause the overwrite to fail after the old parameters have been wiped and make the LUKS container inaccessible.
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --key-slot, --header, --disable-locks, --iter-time, --pbkdf, --pbkdf-force-iterations, --pbkdf-memory, --pbkdf-parallel, --keyslot-cipher, --keyslot-key-size].
luksKillSlot <device> <key slot number>
<options> can be [--key-file, --keyfile-offset, --keyfile-size, --header, --disable-locks, --type].
WARNING: If you read the passphrase from stdin (without further argument or with '-' as an argument to --key-file), batch-mode (-q) will be implicitly switched on and no warning will be given when you remove the last remaining passphrase from a LUKS container. Removing the last passphrase makes the LUKS container permanently inaccessible.
NOTE: If there is no passphrase provided (on stdin or through --key-file argument) and batch-mode (-q) is active, the key-slot is removed without any other warning.
erase <device>
luksErase <device>
WARNING: This operation is irreversible.
luksUUID <device>
isLuks <device>
By specifying --type you may query for specific LUKS version.
luksDump <device>
If the --dump-master-key option is used, the LUKS device master key is dumped instead of the keyslot info. Together with --master-key-file option, master key is dumped to a file instead of standard output. Beware that the master key cannot be changed without reencryption and can be used to decrypt the data stored in the LUKS container without a passphrase and even without the LUKS header. This means that if the master key is compromised, the whole device has to be erased to prevent further access. Use this option carefully.
To dump the master key, a passphrase has to be supplied, either interactively or via --key-file.
<options> can be [--dump-master-key, --key-file, --keyfile-offset, --keyfile-size, --header, --disable-locks, --master-key-file, --type].
WARNING: If --dump-master-key is used with --key-file and the argument to --key-file is '-', no validation question will be asked and no warning given.
luksHeaderBackup <device> --header-backup-file <file>
WARNING: This backup file and a passphrase valid at the time of backup allows decryption of the LUKS data area, even if the passphrase was later changed or removed from the LUKS device. Also note that with a header backup you lose the ability to securely wipe the LUKS device by just overwriting the header and key-slots. You either need to securely erase all header backups in addition or overwrite the encrypted data area as well. The second option is less secure, as some sectors can survive, e.g. due to defect management.
luksHeaderRestore <device> --header-backup-file <file>
WARNING: Header and keyslots will be replaced, only the passphrases from the backup will work afterward.
This command requires that the master key size and data offset of the LUKS header already on the device and of the header backup match. Alternatively, if there is no LUKS header on the device, the backup will also be written to it.
token <add|remove|import|export> <device>
For adding new keyring token, option --key-description is mandatory. Also, new token is assigned to key slot specified with --key-slot option or to all active key slots in the case --key-slot option is omitted.
To remove existing token, specify the token ID which should be removed with --token-id option.
WARNING: The action token remove removes any token type, not just keyring type from token slot specified by --token-id option.
Action import can store arbitrary valid token json in LUKS2 header. It may be passed via standard input or via file passed in --json-file option. If you specify --key-slot then successfully imported token is also assigned to the key slot.
Action export writes requested token json to a file passed with --json-file or to standard output.
<options> can be [--header, --token-id, --key-slot, --key-description, --disable-locks, --disable-keyring, --json-file].
convert <device> --type <format>
Conversion (both directions) must be performed on inactive device. There must not be active dm-crypt mapping established for LUKS header requested for conversion.
--type option is mandatory with following accepted values: luks1 or luks2.
WARNING: The convert action can destroy the LUKS header in the case of a crash during conversion or if a media error occurs. Always create a header backup before performing this operation!
<options> can be [--header, --type].
config <device>
The permanent options can be --priority to set priority (normal, prefer, ignore) for keyslot (specified by --key-slot) or --label and --subsystem.
<options> can be [--priority, --label, --subsystem, --key-slot, --header].
cryptsetup supports mapping loop-AES encrypted partition using a compatibility mode.
open --type loopaes <device> <name> --key-file
<keyfile>
loopaesOpen <device> <name> --key-file <keyfile>
(old syntax)
If the key file is encrypted with GnuPG, then you have to use
--key-file=- and decrypt it before use, e.g. like this:
gpg --decrypt <keyfile> | cryptsetup loopaesOpen --key-file=-
<device> <name>
WARNING: The loop-AES extension cannot use the direct
input of key file on real terminal because the keys are separated by
end-of-line and only part of the multi-key file would be read.
If you need it in script, just use the pipe redirection:
echo $keyfile | cryptsetup loopaesOpen --key-file=- <device>
<name>
Use --keyfile-size to specify the proper key length if needed.
Use --offset to specify device offset. Note that the units need to be specified in number of 512 byte sectors.
Use --skip to specify the IV offset. If the original device used an offset and but did not use it in IV sector calculations, you have to explicitly use --skip 0 in addition to the offset parameter.
Use --hash to override the default hash function for passphrase hashing (otherwise it is detected according to key size).
<options> can be [--key-file, --key-size, --offset, --skip, --hash, --readonly, --allow-discards, --refresh].
See also section 7 of the FAQ and http://loop-aes.sourceforge.net for more information regarding loop-AES.
cryptsetup supports mapping of TrueCrypt, tcplay or VeraCrypt (with --veracrypt option) encrypted partition using a native Linux kernel API. Header formatting and TCRYPT header change is not supported, cryptsetup never changes TCRYPT header on-device.
TCRYPT extension requires kernel userspace crypto API to be available (introduced in Linux kernel 2.6.38). If you are configuring kernel yourself, enable "User-space interface for symmetric key cipher algorithms" in "Cryptographic API" section (CRYPTO_USER_API_SKCIPHER .config option).
Because TCRYPT header is encrypted, you have to always provide valid passphrase and keyfiles.
Cryptsetup should recognize all header variants, except legacy cipher chains using LRW encryption mode with 64 bits encryption block (namely Blowfish in LRW mode is not recognized, this is limitation of kernel crypto API).
To recognize a VeraCrypt device use the --veracrypt option. VeraCrypt is just extension of TrueCrypt header with increased iteration count so unlocking can take quite a lot of time (in comparison with TCRYPT device).
To open a VeraCrypt device with a custom Personal Iteration Multiplier (PIM) value, additionally to --veracrypt use either the --veracrypt-pim=<PIM> option to directly specify the PIM on the command- line or use --veracrypt-query-pim to be prompted for the PIM.
The PIM value affects the number of iterations applied during key derivation. Please refer to https://www.veracrypt.fr/en/Personal%20Iterations%20Multiplier%20%28PIM%29.html for more detailed information.
NOTE: Activation with tcryptOpen is supported only for cipher chains using LRW or XTS encryption modes.
The tcryptDump command should work for all recognized TCRYPT devices and doesn't require superuser privilege.
To map system device (device with boot loader where the whole encrypted system resides) use --tcrypt-system option. You can use partition device as the parameter (parameter must be real partition device, not an image in a file), then only this partition is mapped.
If you have the whole TCRYPT device as a file image and you want to map multiple partition encrypted with system encryption, please create loopback mapping with partitions first (losetup -P, see losetup(8) man page for more info), and use loop partition as the device parameter.
If you use the whole base device as a parameter, one device for the whole system encryption is mapped. This mode is available only for backward compatibility with older cryptsetup versions which mapped TCRYPT system encryption using the whole device.
To use hidden header (and map hidden device, if available), use --tcrypt-hidden option.
To explicitly use backup (secondary) header, use --tcrypt-backup option.
NOTE: There is no protection for a hidden volume if the outer volume is mounted. The reason is that if there were any protection, it would require some metadata describing what to protect in the outer volume and the hidden volume would become detectable.
open --type tcrypt <device> <name>
tcryptOpen <device> <name> (old syntax)
<options> can be [--key-file, --tcrypt-hidden, --tcrypt-system, --tcrypt-backup, --readonly, --test-passphrase, --allow-discards, --veracrypt, --veracrypt-pim, --veracrypt-query-pim].
The keyfile parameter allows a combination of file content with the passphrase and can be repeated. Note that using keyfiles is compatible with TCRYPT and is different from LUKS keyfile logic.
WARNING: Option --allow-discards cannot be combined with option --tcrypt-hidden. For normal mapping, it can cause the destruction of hidden volume (hidden volume appears as unused space for outer volume so this space can be discarded).
tcryptDump <device>
If the --dump-master-key option is used, the TCRYPT device master key is dumped instead of TCRYPT header info. Beware that the master key (or concatenated master keys if cipher chain is used) can be used to decrypt the data stored in the TCRYPT container without a passphrase. This means that if the master key is compromised, the whole device has to be erased to prevent further access. Use this option carefully.
<options> can be [--dump-master-key, --key-file, --tcrypt-hidden, --tcrypt-system, --tcrypt-backup].
The keyfile parameter allows a combination of file content with the passphrase and can be repeated.
See also https://en.wikipedia.org/wiki/TrueCrypt for more information regarding TrueCrypt.
Please note that cryptsetup does not use TrueCrypt code, please report all problems related to this compatibility extension to the cryptsetup project.
repair <device>
This command is useful to fix some known benign LUKS metadata header corruptions. Only basic corruptions of unused keyslot are fixable. This command will only change the LUKS header, not any key-slot data. You may enforce LUKS version by adding --type option.
WARNING: Always create a binary backup of the original header before calling this command.
benchmark <options>
To benchmark other ciphers or modes, you need to specify --cipher and --key-size options or --hash for KDF test.
NOTE: This benchmark is using memory only and is only informative. You cannot directly predict real storage encryption speed from it.
For testing block ciphers, this benchmark requires kernel userspace crypto API to be available (introduced in Linux kernel 2.6.38). If you are configuring kernel yourself, enable "User-space interface for symmetric key cipher algorithms" in "Cryptographic API" section (CRYPTO_USER_API_SKCIPHER .config option).
<options> can be [--cipher, --key-size, --hash].
Specifies the hash used in the LUKS key setup scheme and volume key digest for luksFormat. The specified hash is used as hash-parameter for PBKDF2 and for the AF splitter.
The specified hash name is passed to the compiled-in crypto backend. Different backends may support different hashes. For luksFormat, the hash algorithm must provide at least 160 bits of output, which excludes, e.g., MD5. Do not use a non-crypto hash like "crc32" as this breaks security.
Values compatible with old version of cryptsetup are "ripemd160" for open --type plain and "sha1" for luksFormat.
Use cryptsetup --help to show the defaults.
cryptsetup --help shows the compiled-in defaults. The current default in the distributed sources is "aes-cbc-essiv:sha256" for plain dm-crypt and "aes-xts-plain64" for LUKS.
If a hash is part of the cipher specification, then it is used as part of the IV generation. For example, ESSIV needs a hash function, while "plain64" does not and hence none is specified.
For XTS mode you can optionally set a key size of 512 bits with the -s option. Key size for XTS mode is twice that for other modes for the same security level.
XTS mode requires kernel 2.6.24 or later and plain64 requires kernel 2.6.33 or later. More information can be found in the FAQ.
If the name given is "-", then the passphrase will be read from stdin. In this case, reading will not stop at newline characters.
With LUKS, passphrases supplied via --key-file are always the existing passphrases requested by a command, except in the case of luksFormat where --key-file is equivalent to the positional key file argument.
If you want to set a new passphrase via key file, you have to use a positional argument to luksAddKey.
See section NOTES ON PASSPHRASE PROCESSING for more information.
This option is useful to cut trailing newlines, for example. If --keyfile-offset is also given, the size count starts after the offset. Works with all commands that accept key files.
For luksFormat this allows creating a LUKS header with this specific master key. If the master key was taken from an existing LUKS header and all other parameters are the same, then the new header decrypts the data encrypted with the header the master key was taken from.
Action luksDump together with --dump-master-key option: The volume (master) key is stored in a file instead of being printed out to standard output.
WARNING: If you create your own master key, you need to make sure to do it right. Otherwise, you can end up with a low-entropy or otherwise partially predictable master key which will compromise security.
For luksAddKey this allows adding a new passphrase without having to know an existing one.
For open this allows one to open the LUKS device without giving a passphrase.
See NOTES ON RANDOM NUMBER GENERATORS for more information. Use cryptsetup --help to show the compiled-in default random number generator.
WARNING: In a low-entropy situation (e.g. in an embedded system), both selections are problematic. Using /dev/urandom can lead to weak keys. Using /dev/random can block a long time, potentially forever, if not enough entropy can be harvested by the kernel.
See /proc/crypto for more information. Note that key-size in /proc/crypto is stated in bytes.
This option can be used for open --type plain or luksFormat. All other LUKS actions will use the key-size specified in the LUKS header. Use cryptsetup --help to show the compiled-in defaults.
For LUKS, the --offset option sets the data offset (payload) of data device and must be be aligned to 4096-byte sectors (must be multiple of 8). This option cannot be combined with --align-payload option.
Hence, if --offset n, and --skip s, sector n (the first sector of the encrypted device) will get a sector number of s for the IV calculation.
For LUKS1, only PBKDF2 is accepted (no need to use this option). The default PBKDF2 for LUKS2 is set during compilation time and is available in cryptsetup --help output.
A PBKDF is used for increasing dictionary and brute-force attack cost for keyslot passwords. The parameters can be time, memory and parallel cost.
For PBKDF2, only time cost (number of iterations) applies. For Argon2i/id, there is also memory cost (memory required during the process of key derivation) and parallel cost (number of threads that run in parallel during the key derivation.
Note that increasing memory cost also increases time, so the final parameter values are measured by a benchmark. The benchmark tries to find iteration time (--iter-time) with required memory cost --pbkdf-memory. If it is not possible, the memory cost is decreased as well. The parallel cost --pbkdf-parallel is constant, is is checked against available CPU cores (if not available, it is decreased) and the maximum parallel cost is 4.
You can see all PBKDF parameters for particular LUKS2 keyslot with luksDump command.
NOTE: If you do not want to use benchmark and want to specify all parameters directly, use --pbkdf-force-iterations with --pbkdf-memory and --pbkdf-parallel. This will override the values without benchmarking. Note it can cause extremely long unlocking time. Use only is specified cases, for example, if you know that the formatted device will be used on some small embedded system. In this case, the LUKS PBKDF2 digest will be set to the minimum iteration count.
If the -y option is not specified, this option also switches off the passphrase verification for luksFormat.
If not specified, cryptsetup tries to use the topology info provided by the kernel for the underlying device to get the optimal alignment. If not available (or the calculated value is a multiple of the default) data is by default aligned to a 1MiB boundary (i.e. 2048 512-byte sectors).
For a detached LUKS header, this option specifies the offset on the data device. See also the --header option.
WARNING: This option is DEPRECATED and has often unexpected impact to the data offset and keyslot area size (for LUKS2) due to the complex rounding. For fixed data device offset use --offset option instead.
The UUID must be provided in the standard UUID format, e.g. 12345678-1234-1234-1234-123456789abc.
WARNING: This command can have a negative security impact because it can make filesystem-level operations visible on the physical device. For example, information leaking filesystem type, used space, etc. may be extractable from the physical device if the discarded blocks can be located later. If in doubt, do not use it.
A kernel version of 3.1 or later is needed. For earlier kernels, this option is ignored.
NOTE: This option is available only for low-level dm-crypt performance tuning, use only if you need a change to default dm-crypt behaviour. Needs kernel 4.0 or later.
NOTE: This option is available only for low-level dm-crypt performance tuning, use only if you need a change to default dm-crypt behaviour. Needs kernel 4.0 or later.
This option is only relevant for LUKS devices and can be used with the luksFormat, open, luksSuspend, luksResume, status and resize commands.
For luksFormat with a file name as the argument to --header, the file will be automatically created if it does not exist. See the cryptsetup FAQ for header size calculation.
For other commands that change the LUKS header (e.g. luksAddKey), specify the device or file with the LUKS header directly as the LUKS device.
If used with luksFormat, the --align-payload option is taken as absolute sector alignment on ciphertext device and can be zero.
WARNING: There is no check whether the ciphertext device specified actually belongs to the header given. In fact, you can specify an arbitrary device as the ciphertext device for open with the --header option. Use with care.
This option applies only to luksFormat, luksAddKey and luksChangeKey and is ignored if cryptsetup is built without password quality checking support.
For more info about password quality check, see the manual page for pwquality.conf(5) and passwdqc.conf(5).
WARNING: Do not use this option unless you run cryptsetup in a restricted environment where locking is impossible to perform (where /run directory cannot be used).
Note that if sector size is higher than underlying device hardware sector and there is not integrity protection that uses data journal, using this option can increase risk on incomplete sector writes during a power fail.
If used together with --integrity option and dm-integrity journal, the atomicity of writes is guaranteed in all cases (but it cost write performance - data has to be written twice).
Increasing sector size from 512 bytes to 4096 bytes can provide better performance on most of the modern storage devices and also with some hw encryption accelerators.
WARNING: This extension is EXPERIMENTAL and requires dm-integrity kernel target (available since kernel version 4.12). For native AEAD modes, also enable "User-space interface for AEAD cipher algorithms" in "Cryptographic API" section (CONFIG_CRYPTO_USER_API_AEAD .config option).
For more info, see AUTHENTICATED DISK ENCRYPTION section.
NOTE: Even some writes to the device can fail if the write is not aligned to page size and page-cache initiates read of a sector with invalid integrity tag.
Creates new LUKS2 unbound keyslot. See luksAddKey action for more details.
Cryptsetup returns 0 on success and a non-zero value on error.
Error codes are: 1 wrong parameters, 2 no permission (bad passphrase), 3 out of memory, 4 wrong device specified, 5 device already exists or device is busy.
Note that no iterated hashing or salting is done in plain mode. If hashing is done, it is a single direct hash. This means that low-entropy passphrases are easy to attack in plain mode.
From a terminal: The passphrase is read until the first newline, i.e. '\n'. The input without the newline character is processed with the default hash or the hash specified with --hash. The hash result will be truncated to the key size of the used cipher, or the size specified with -s.
From stdin: Reading will continue until a newline (or until the maximum input size is reached), with the trailing newline stripped. The maximum input size is defined by the same compiled-in default as for the maximum key file size and can be overwritten using --keyfile-size option.
The data read will be hashed with the default hash or the hash specified with --hash. The hash result will be truncated to the key size of the used cipher, or the size specified with -s.
Note that if --key-file=- is used for reading the key from stdin, trailing newlines are not stripped from the input.
If "plain" is used as argument to --hash, the input data will not be hashed. Instead, it will be zero padded (if shorter than the key size) or truncated (if longer than the key size) and used directly as the binary key. This is useful for directly specifying a binary key. No warning will be given if the amount of data read from stdin is less than the key size.
From a key file: It will be truncated to the key size of the used cipher or the size given by -s and directly used as a binary key.
WARNING: The --hash argument is being ignored. The --hash option is usable only for stdin input in plain mode.
If the key file is shorter than the key, cryptsetup will quit with an error. The maximum input size is defined by the same compiled-in default as for the maximum key file size and can be overwritten using --keyfile-size option.
LUKS uses PBKDF2 to protect against dictionary attacks and to give some protection to low-entropy passphrases (see RFC 2898 and the cryptsetup FAQ).
From a terminal: The passphrase is read until the first newline and then processed by PBKDF2 without the newline character.
From stdin: LUKS will read passphrases from stdin up to the first newline character or the compiled-in maximum key file length. If --keyfile-size is given, it is ignored.
From key file: The complete keyfile is read up to the compiled-in maximum size. Newline characters do not terminate the input. The --keyfile-size option can be used to limit what is read.
Passphrase processing: Whenever a passphrase is added to a LUKS header (luksAddKey, luksFormat), the user may specify how much the time the passphrase processing should consume. The time is used to determine the iteration count for PBKDF2 and higher times will offer better protection for low-entropy passphrases, but open will take longer to complete. For passphrases that have entropy higher than the used key length, higher iteration times will not increase security.
The default setting of one or two seconds is sufficient for most practical cases. The only exception is a low-entropy passphrase used on a device with a slow CPU, as this will result in a low iteration count. On a slow device, it may be advisable to increase the iteration time using the --iter-time option in order to obtain a higher iteration count. This does slow down all later luksOpen operations accordingly.
LUKS checks for a valid passphrase when an encrypted partition is unlocked. The behavior of plain dm-crypt is different. It will always decrypt with the passphrase given. If the given passphrase is wrong, the device mapped by plain dm-crypt will essentially still contain encrypted data and will be unreadable.
The available combinations of ciphers, modes, hashes and key sizes depend on kernel support. See /proc/crypto for a list of available options. You might need to load additional kernel crypto modules in order to get more options.
For the --hash option, if the crypto backend is libgcrypt, then all algorithms supported by the gcrypt library are available. For other crypto backends, some algorithms may be missing.
Mathematics can't be bribed. Make sure you keep your passphrases safe. There are a few nice tricks for constructing a fallback, when suddenly out of the blue, your brain refuses to cooperate. These fallbacks need LUKS, as it's only possible with LUKS to have multiple passphrases. Still, if your attacker model does not prevent it, storing your passphrase in a sealed envelope somewhere may be a good idea as well.
Random Number Generators (RNG) used in cryptsetup are always the kernel RNGs without any modifications or additions to data stream produced.
There are two types of randomness cryptsetup/LUKS needs. One type (which always uses /dev/urandom) is used for salts, the AF splitter and for wiping deleted keyslots.
The second type is used for the volume (master) key. You can switch between using /dev/random and /dev/urandom here, see --use-random and --use-urandom options. Using /dev/random on a system without enough entropy sources can cause luksFormat to block until the requested amount of random data is gathered. In a low-entropy situation (embedded system), this can take a very long time and potentially forever. At the same time, using /dev/urandom in a low-entropy situation will produce low-quality keys. This is a serious problem, but solving it is out of scope for a mere man-page. See urandom(4) for more information.
Since Linux kernel version 4.12 dm-crypt supports authenticated disk encryption.
Normal disk encryption modes are length-preserving (plaintext sector is of the same size as a ciphertext sector) and can provide only confidentiality protection, but not cryptographically sound data integrity protection.
Authenticated modes require additional space per-sector for authentication tag and use Authenticated Encryption with Additional Data (AEAD) algorithms.
If you configure LUKS2 device with data integrity protection, there will be an underlying dm-integrity device, which provides additional per-sector metadata space and also provide data journal protection to ensure atomicity of data and metadata update. Because there must be additional space for metadata and journal, the available space for the device will be smaller than for length-preserving modes.
The dm-crypt device then resides on top of such a dm-integrity device. All activation and deactivation of this device stack is performed by cryptsetup, there is no difference in using luksOpen for integrity protected devices. If you want to format LUKS2 device with data integrity protection, use --integrity option.
Some integrity modes requires two independent keys (key for encryption and for authentication). Both these keys are stored in one LUKS keyslot.
WARNING: All support for authenticated modes is experimental and there are only some modes available for now. Note that there are a very few authenticated encryption algorithms that are suitable for disk encryption.
Cryptsetup is usually used directly on a block device (disk partition or LVM volume). However, if the device argument is a file, cryptsetup tries to allocate a loopback device and map it into this file. This mode requires Linux kernel 2.6.25 or more recent which supports the loop autoclear flag (loop device is cleared on the last close automatically). Of course, you can always map a file to a loop-device manually. See the cryptsetup FAQ for an example.
When device mapping is active, you can see the loop backing file in the status command output. Also see losetup(8).
The LUKS2 on-disk metadata is updated in several steps and to achieve proper atomic update, there is a locking mechanism. For an image in file, code uses flock(2) system call. For a block device, lock is performed over a special file stored in a locking directory (by default /run/lock/cryptsetup). The locking directory should be created with the proper security context by the distribution during the boot-up phase. Only LUKS2 uses locks, other formats do not use this mechanism.
The reload action is no longer supported. Please use dmsetup(8) if you need to directly manipulate with the device mapping table.
The luksDelKey was replaced with luksKillSlot.
Report bugs, including ones in the documentation, on the cryptsetup mailing list at <dm-crypt@saout.de> or in the 'Issues' section on LUKS website. Please attach the output of the failed command with the --debug option added.
cryptsetup originally written by Jana Saout <jana@saout.de>
The LUKS extensions and original man page were written by Clemens Fruhwirth
<clemens@endorphin.org>.
Man page extensions by Milan Broz <gmazyland@gmail.com>.
Man page rewrite and extension by Arno Wagner <arno@wagner.name>.
Copyright © 2004 Jana Saout
Copyright © 2004-2006 Clemens Fruhwirth
Copyright © 2012-2014 Arno Wagner
Copyright © 2009-2019 Red Hat, Inc.
Copyright © 2009-2019 Milan Broz
This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The LUKS website at https://gitlab.com/cryptsetup/cryptsetup/
The cryptsetup FAQ, contained in the distribution package and online at https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions
The cryptsetup mailing list and list archive, see FAQ entry 1.6.
The LUKS on-disk format specification available at https://gitlab.com/cryptsetup/cryptsetup/wikis/Specification
January 2019 | cryptsetup |