RANDOM(4) | Device Drivers Manual | RANDOM(4) |
random
— the
entropy device
device random
options RANDOM_LOADABLE
options RANDOM_ENABLE_UMA
The random
device returns an endless
supply of random bytes when read. It also accepts and reads data as any
ordinary file.
The generator will start in an
unseeded state,
and will block reads until it is seeded for the first time. This may cause
trouble at system boot when keys and the like are generated from
random
so steps should be taken to ensure a seeding
as soon as possible.
It is also possible to read random bytes by using the KERN_ARND sysctl. On the command line this could be done by
sysctl -x -B 16
kern.arandom
This sysctl will not return random bytes unless the
random
device is seeded.
This initial seeding of random number generators is a
bootstrapping problem that needs very careful attention. In some cases, it
may be difficult to find enough randomness to seed a random number generator
until a system is fully operational, but the system requires random numbers
to become fully operational. It is (or more accurately should be) critically
important that the random
device is seeded before
the first time it is used. In the case where a dummy or
"blocking-only" device is used, it is the responsibility of the
system architect to ensure that no blocking reads hold up critical
processes.
To see the current settings of the software
random
device, use the command line:
sysctl kern.random
which results in something like:
kern.random.fortuna.minpoolsize: 64 kern.random.harvest.mask_symbolic: [HIGH_PERFORMANCE], ... ,CACHED kern.random.harvest.mask_bin: 00111111111 kern.random.harvest.mask: 511 kern.random.random_sources: 'Intel Secure Key RNG'
Other than
kern.random.fortuna.minpoolsize
kern.random.harvest.mask
The kern.random.fortuna.minpoolsize sysctl is used to set the seed threshold. A smaller number gives a faster seed, but a less secure one. In practice, values between 64 and 256 are acceptable.
The kern.random.harvest.mask bitmask is used to select the possible entropy sources. A 0 (zero) value means the corresponding source is not considered as an entropy source. Set the bit to 1 (one) if you wish to use that source. The kern.random.harvest.mask_bin and kern.random.harvest.mask_symbolic sysctls can be used to confirm that the choices are correct. Note that disabled items in the latter item are listed in square brackets. See random_harvest(9) for more on the harvesting of entropy.
When options
RANDOM_LOADABLE
is used, the /dev/random
device is not created until an "algorithm module" is loaded. The
only module built by default is
random_fortuna.
The
random_yarrow
module was removed in FreeBSD 12. Note that this
loadable module is slightly less efficient than its compiled-in equivalent.
This is because some functions must be locked against load and unload
events, and also must be indirect calls to allow for removal.
When options RANDOM_ENABLE_UMA
is used,
the /dev/random device will obtain entropy from the
zone allocator. This is potentially very high rate, and if so will be of
questionable use. If this is the case, use of this option is not
recommended. Determining this is not trivial, so experimenting and
measurement using tools such as dtrace(1) will be
required.
The use of randomness in the field of computing is a rather subtle issue because randomness means different things to different people. Consider generating a password randomly, simulating a coin tossing experiment or choosing a random back-off period when a server does not respond. Each of these tasks requires random numbers, but the random numbers in each case have different requirements.
Generation of passwords, session keys and the like requires
cryptographic randomness. A cryptographic random number generator should be
designed so that its output is difficult to guess, even if a lot of
auxiliary information is known (such as when it was seeded, subsequent or
previous output, and so on). On FreeBSD, seeding for
cryptographic random number generators is provided by the
random
device, which provides real randomness. The
arc4random(3) library call provides a pseudo-random
sequence which is generally reckoned to be suitable for simple cryptographic
use. The OpenSSL library also provides functions for managing randomness via
functions such as RAND_bytes(3) and
RAND_add(3). Note that OpenSSL uses the
random
device for seeding automatically.
Randomness for simulation is required in engineering or scientific software and games. The first requirement of these applications is that the random numbers produced conform to some well-known, usually uniform, distribution. The sequence of numbers should also appear numerically uncorrelated, as simulation often assumes independence of its random inputs. Often it is desirable to reproduce the results of a simulation exactly, so that if the generator is seeded in the same way, it should produce the same results. A peripheral concern for simulation is the speed of a random number generator.
Another issue in simulation is the size of the state associated
with the random number generator, and how frequently it repeats itself. For
example, a program which shuffles a pack of cards should have 52! possible
outputs, which requires the random number generator to have 52! starting
states. This means the seed should have at least log_2(52!) ~ 226 bits of
state if the program is to stand a chance of outputting all possible
sequences, and the program needs some unbiased way of generating these bits.
Again, the random
device could be used for seeding
here, but in practice, smaller seeds are usually considered acceptable.
FreeBSD provides two families of functions
which are considered suitable for simulation. The
random(3) family of functions provides a random integer
between 0 to (2**31)−1. The functions srandom(3),
initstate(3) and setstate(3) are
provided for deterministically setting the state of the generator and the
function srandomdev(3) is provided for setting the state
via the random
device. The
drand48(3) family of functions are also provided, which
provide random floating point numbers in various ranges.
Randomness that is used for collision avoidance (for example, in certain network protocols) has slightly different semantics again. It is usually expected that the numbers will be uniform, as this produces the lowest chances of collision. Here again, the seeding of the generator is very important, as it is required that different instances of the generator produce independent sequences. However, the guessability or reproducibility of the sequence is unimportant, unlike the previous cases.
FreeBSD does also provide the traditional rand(3) library call, for compatibility purposes. However, it is known to be poor for simulation and absolutely unsuitable for cryptographic purposes, so its use is discouraged.
arc4random(3), drand48(3), rand(3), RAND_add(3), RAND_bytes(3), random(3), sysctl(8), random(9)
Ferguson, Schneier, and Kohno, Cryptography Engineering, Wiley, ISBN 978-0-470-47424-2.
A random
device appeared in
FreeBSD 2.2. The current software implementation,
introduced in FreeBSD 10.0, is by
Mark R V Murray, and is an implementation of the
Fortuna
algorithm by Ferguson
et al. It
replaces the previous
Yarrow
implementation, introduced in FreeBSD 5.0. The
Yarrow algorithm is no longer supported by its authors, and is therefore no
longer available.
August 26, 2018 | Debian |