RUN(4) | Device Drivers Manual | RUN(4) |
run
— Ralink
Technology USB IEEE 802.11a/g/n wireless network device
To compile this driver into the kernel, place the following lines in your kernel configuration file:
device ehci
device uhci
device ohci
device usb
device run
device wlan
device wlan_amrr
Firmware is also needed, and provided by:
device runfw
Alternatively, to load the driver as a module at boot time, place the following lines in loader.conf(5):
if_run_load="YES" runfw_load="YES"
The run
driver supports USB 2.0 wireless
adapters based on the Ralink RT2700U, RT2800U, RT3000U and RT3900E
chipsets.
The RT2700U chipset consists of two integrated chips, an RT2770 MAC/BBP and an RT2720 (1T2R) or RT2750 (dual-band 1T2R) radio transceiver.
The RT2800U chipset consists of two integrated chips, an RT2870 MAC/BBP and an RT2820 (2T3R) or RT2850 (dual-band 2T3R) radio transceiver.
The RT3000U is a single-chip solution based on an RT3070 MAC/BBP and an RT3020 (1T1R), RT3021 (1T2R) or RT3022 (2T2R) single-band radio transceiver.
The RT3900E is a single-chip USB 2.0 802.11n solution. The MAC/Baseband Processor can be an RT3593, RT5390, RT5392 or an RT5592. The radio can be an RT3053, RT5370, RT5372 or an RT5572. The RT3053 chip operates in the 2GHz and 5GHz spectra and supports up to 3 transmit paths and 3 receiver paths (3T3R). The RT5370 chip operates in the 2GHz spectrum and supports 1 transmit path and 1 receiver path (1T1R). The RT5372 chip operates in the 2GHz spectrum and supports up to 2 transmit paths and 2 receiver paths (2T2R). The RT5572 chip operates in the 2GHz and 5GHz spectra and supports up to 2 transmit paths and 2 receiver paths (2T2R).
These are the modes the run
driver can
operate in:
The run
driver can be configured to use
Wired Equivalent Privacy (WEP) or Wi-Fi Protected Access (WPA-PSK and
WPA2-PSK). WPA is the de facto encryption standard for wireless networks. It
is strongly recommended that WEP not be used as the sole mechanism to secure
wireless communication, due to serious weaknesses in it. The
run
driver offloads both encryption and decryption
of data frames to the hardware for the WEP40, WEP104, TKIP(+MIC) and CCMP
ciphers.
The run
driver can be configured at
runtime with ifconfig(8).
The run
driver supports the following
wireless adapters:
Join an existing BSS network (i.e., connect to an access point):
ifconfig wlan create wlandev run0 inet 192.168.0.20 \ netmask 0xffffff00
Join a specific BSS network with network name
“my_net
”:
ifconfig wlan create wlandev run0
ssid my_net up
Join a specific BSS network with 64-bit WEP encryption:
ifconfig wlan create wlandev run0 ssid my_net \ wepmode on wepkey 0x1234567890 weptxkey 1 up
Join a specific BSS network with 128-bit WEP encryption:
ifconfig wlan create wlandev run0 wlanmode adhoc ssid my_net \ wepmode on wepkey 0x01020304050607080910111213 weptxkey 1
intro(4), netintro(4), runfw(4), usb(4), wlan(4), wlan_amrr(4), wlan_ccmp(4), wlan_tkip(4), wlan_wep(4), wlan_xauth(4), hostapd(8), ifconfig(8), wpa_supplicant(8)
Ralink Technology: http://www.ralinktech.com/
The run
driver first appeared in
OpenBSD 4.5.
The run
driver was written by
Damien Bergamini
<damien@openbsd.org>.
The run
driver does not support any of the
802.11n capabilities offered by the RT2800, RT3000 and RT3900 chipsets.
November 8, 2018 | Debian |