GRDPMODELER(1gmt) | GMT | GRDPMODELER(1gmt) |
grdpmodeler - Evaluate a plate motion model on a geographic grid
grdpmodeler agegrdfile -Erot_file -Sflags [ -Fpolygonfile ] [ -Goutgrdfile ] [ -Tage ] [ -V[level] ] [ -bbinary ] [ -dnodata ] [ -hheaders ] [ -:[i|o] ]
Note: No space is allowed between the option flag and the associated arguments.
grdpmodeler reads a geographical age grid and a plate motion model and evaluates one of several model predictions. Optionally, the user may supply a clipping polygon in multiple-segment format; then, only the part of the grid inside the polygon is used to determine the model prediction; the remainder of the grid is set to NaN.
lon lat tstart [tstop] angle [ khat a b c d e f g df ]
where tstart and tstop are in Myr and lon lat angle are in degrees. tstart and tstop are the ages of the old and young ends of a stage. If tstop is not present in the record then a total reconstruction rotation is expected and tstop is implicitly set to 0 and should not be specified for any of the records in the file. If a covariance matrix C for the rotation is available it must be specified in a format using the nine optional terms listed in brackets. Here, C = (g/khat)*[ a b d; b c e; d e f ] which shows C made up of three row vectors. If the degrees of freedom (df) in fitting the rotation is 0 or not given it is set to 10000. Blank lines and records whose first column contains # will be ignored. You may prepend a leading + to the filename to indicate you wish to invert the rotations. Alternatively, give the filename composed of two plate IDs separated by a hyphen (e.g., PAC-MBL) and we will instead extract that rotation from the GPlates rotation database. We return an error if the rotation cannot be found.
All spherical rotations are applied to geocentric coordinates. This means that incoming data points and grids are considered to represent geodetic coordinates and must first be converted to geocentric coordinates. Rotations are then applied, and the final reconstructed points are converted back to geodetic coordinates. This default behavior can be bypassed if the ellipsoid setting PROJ_ELLIPSOID is changed to Sphere.
We will use a grid with Pacific crust ages (pac_age.nc), a plate motion model (Pac_APM.d), and a polygon that contains the outline of the present Pacific plate (pac_clip_path.d). To evaluate the plate motion azimuths at the present time for the Pacific, try
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d \
-Gpac_dir_0.nc -Sa -T0
To determine the changes in latitude since crust formation for the entire Pacific, try
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d \
-Gpac_dlat.nc -Sy
To determine the plate motion velocities in effect when the Pacific crust was formed, try
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d \
-Gpac_vel.nc -Sv
To determine how far the crust has moved since formation, try
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d \
-Gpac_dist.nc -Sd
To save the coordinates of the crust's formation to separate grids, try
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d \
-Gpac_origin_%s.nc -SXY
To repeat the same exercise but save output lon,lat,age,xorigin,yorigin to a table, use
gmt grdpmodeler pac_age.nc -EPac_APM.d -V -Fpac_clip_path.d -SXY > origin.txt
GMT distributes the EarthByte rotation model Global_EarthByte_230-0Ma_GK07_AREPS.rot. To use an alternate rotation file, create an environmental parameters named GPLATES_ROTATIONS that points to an alternate rotation file.
backtracker, gmtpmodeler, grdrotater, grdspotter, hotspotter, originator, rotconverter
2019, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe
May 21, 2019 | 5.4.5 |