GRDROTATER(1gmt) | GMT | GRDROTATER(1gmt) |
grdrotater - Finite rotation reconstruction of geographic grid
grdrotater ingrdfile
-Erot_file|lon/lat/angle
-Goutgrdfile [ -Drotoutline ] [
-Fpolygonfile ] [ -N ] [ -Rregion ] [
-S ] [ -Tages ] [ -V[level] ] [
-bbinary ] [ -dnodata ] [ -hheaders ] [ -nflags
] [ -:[i|o] ]
Note: No space is allowed between the option flag and the associated arguments.
grdrotater reads a geographical grid and reconstructs it given total reconstruction rotations. Optionally, the user may supply a clipping polygon in multiple-segment format; then, only the part of the grid inside the polygon is used to determine the reconstructed region. The outlines of the reconstructed region is also returned provided the rotated region is not the entire globe.
lon lat tstart [tstop] angle [ khat a b c d e f g df ]
where tstart and tstop are in Myr and lon lat angle are in degrees. tstart and tstop are the ages of the old and young ends of a stage. If tstop is not present in the record then a total reconstruction rotation is expected and tstop is implicitly set to 0 and should not be specified for any of the records in the file. If a covariance matrix C for the rotation is available it must be specified in a format using the nine optional terms listed in brackets. Here, C = (g/khat)*[ a b d; b c e; d e f ] which shows C made up of three row vectors. If the degrees of freedom (df) in fitting the rotation is 0 or not given it is set to 10000. Blank lines and records whose first column contains # will be ignored. You may prepend a leading + to the filename to indicate you wish to invert the rotations. Alternative 1: Give the filename composed of two plate IDs separated by a hyphen (e.g., PAC-MBL) and we will instead extract that rotation from the GPlates rotation database. We return an error if the rotation cannot be found. Alternative 2: Specify lon/lat/angle, i.e., the longitude, latitude, and opening angle (all in degrees and separated by /) for a single total reconstruction rotation.
Resample or sampling of grids will use various algorithms (see -n) that may lead to possible distortions or unexpected results in the resampled values. One expected effect of resampling with splines is the tendency for the new resampled values to slightly exceed the global min/max limits of the original grid. If this is unacceptable, you can impose clipping of the resampled values values so they do not exceed the input min/max values by adding +c to your -n option.
All spherical rotations are applied to geocentric coordinates. This means that incoming data points and grids are considered to represent geodetic coordinates and must first be converted to geocentric coordinates. Rotations are then applied, and the final reconstructed points are converted back to geodetic coordinates. This default behavior can be bypassed if the ellipsoid setting PROJ_ELLIPSOID is changed to Sphere.
To rotate the data defined by grid topo.nc and the polygon outline clip_path.d, using a total reconstruction rotation with pole at (135.5, -33.0) and a rotation angle of 37.3 degrees and bicubic interpolation, try
gmt grdrotater topo.nc -E135.5/-33/37.3 -V -Fclip_path.d -Grot_topo.nc > rot_clip_path.d
To rotate the entire grid faa.nc back to 32 Ma using the rotation file rotations.txt and a bilinear interpolation, try
gmt grdrotater faa.nc -Erotations.txt -T32 -V -Grot_faa.nc -nl > rot_faa_path.d
To just see how the outline of the grid large.nc will plot after the same rotation, try
gmt grdrotater large.nc -Erotations.txt -T32 -V -S \| psxy -Rg -JH180/6i -B30 -W0.5p \| gv -
To rotate the grid topo.nc back to 100 Ma using the rotation file rotations.txt and request a reconstruction every 10 Myr, saving both grids and outlines to filenames that derive from templates, try
gmt grdrotater topo.nc -Erotations.txt -T10/100/10 -V -Grot_topo_%g.nc -Drot_topo_path_%g.d
Let say you have rotated gridA.nc and gridB.nc, restricting each rotation to nodes inside polygons polyA.d and polyB.d, respectively, using rotation A = (123W,22S,16,4) and rotation B = (108W, 16S, -14.5), yielding rotated grids rot_gridA.nc and rot_gridB.nc. To determine the region of overlap between the rotated grids, we use grdmath:
gmt grdmath 1 rot_gridA.nc ISNAN SUB 1 rot_gridB.nc ISNAN SUB 2 EQ = overlap.nc
The grid overlap.nc now has 1s in the regions of overlap and 0 elsewhere. You can use it as a mask or use grdcontour -D to extract a polygon (i.e., a contour).
GMT distributes the EarthByte rotation model Global_EarthByte_230-0Ma_GK07_AREPS.rot. To use an alternate rotation file, create an environmental parameters named GPLATES_ROTATIONS that points to an alternate rotation file.
backtracker, grdcontour, gmtpmodeler, grdmath, grdpmodeler, grdspotter, hotspotter, originator, rotconverter
2019, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe
May 21, 2019 | 5.4.5 |