TALWANI2D(1gmt) | GMT | TALWANI2D(1gmt) |
talwani2d - Compute free-air, geoid or vertical gravity gradients anomalies over 2-D bodies
talwani2d [ modeltable ] [ -A ] [ -Drho ] ] [ -Ff|n[lat]|v ] [ -M[h][v] ] [ -Ntrackfile ] [ -Tminmax/inc ] [ -Zlevel[ymin/ymax] ] [ -V[level] ] [ -bibinary ] [ -dnodata ] [ -eregexp ] [ -iflags ] [ -oflags ] [ -x[[-]n] ]
Note: No space is allowed between the option flag and the associated arguments.
talwani2d will read the multi-segment modeltable from file or standard input. This file contains cross-sections of one or more 2-D bodies, with one polygon per segment. The segment header must contain the parameter rho, which states the the density of this body (individual body densities may be overridden by a fixed constant density contrast given via -D). We can compute anomalies on an equidistant lattice (by specifying a lattice with -T) or provide arbitrary output points specified in a file via -N. Choose between free-air anomalies, vertical gravity gradient anomalies, or geoid anomalies. Options are available to control axes units and direction.
For map distance unit, append unit d for arc degree, m for arc minute, and s for arc second, or e for meter [Default], f for foot, k for km, M for statute mile, n for nautical mile, and u for US survey foot. By default we compute such distances using a spherical approximation with great circles. Prepend - to a distance (or the unit is no distance is given) to perform "Flat Earth" calculations (quicker but less accurate) or prepend + to perform exact geodesic calculations (slower but more accurate).
To compute the free-air anomalies on a grid over a 2-D body that has been contoured and saved to body.txt, using 1.7 g/cm^3 as the density contrast, try
gmt talwani2d -T-200/200/2 body.txt -D1700 -Fg > 2dgrav.txt
To obtain the vertical gravity gradient anomaly along the track in crossing.txt for the same model, try
gmt talwani2d -Ncrossing.txt body.txt -D1700 -Fv > vgg_crossing.txt
The geoid anomaly for the same setup is given by
gmt talwani2d -Ncrossing.txt body.txt -D1700 -Fn > n_crossing.txt
Chapman, M. E., 1979, Techniques for interpretation of geoid anomalies, J. Geophys. Res., 84(B8), 3793-3801.
Kim, S.-S., and P. Wessel, 2016, New analytic solutions for modeling vertical gravity gradient anomalies, Geochem. Geophys. Geosyst., 17, http://dx.doi.org/10.1002/2016GC006263.
Talwani, M., J. L. Worzel, and M. Landisman, 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone, J. Geophys. Res., 64, 49-59.
gmt.conf, gmt, grdmath, gmtmath, gravfft, gmtgravmag3d, grdgravmag3d, talwani3d
2019, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe
May 21, 2019 | 5.4.5 |