GMT-MUSIC-CLINICAL-CORRELATION(1p) | User Contributed Perl Documentation | GMT-MUSIC-CLINICAL-CORRELATION(1p) |
gmt music clinical-correlation - Correlate phenotypic traits against mutated genes, or against individual variants
This document describes gmt music clinical-correlation version 0.04 (2018-07-05 at 09:17:13)
gmt music clinical-correlation --bam-list=? --output-file=? [--maf-file=?] [--glm-clinical-data-file=?] [--use-maf-in-glm] [--skip-non-coding] [--skip-silent] [--clinical-correlation-matrix-file=?] [--input-clinical-correlation-matrix-file=?] [--genetic-data-type=?] [--numeric-clinical-data-file=?] [--numerical-data-test-method=?] [--categorical-clinical-data-file=?] [--glm-model-file=?]
... music clinical-correlation \ --bam-list /path/myBamList.tsv \ --maf-file /path/myMAF.tsv \ --numeric-clinical-data-file /path/myNumericData.tsv \ --genetic-data-type 'gene' \ --output-file /path/output_file ... music clinical-correlation \ --maf-file /path/myMAF.tsv \ --bam-list /path/myBamList.tsv \ --numeric-clinical-data-file /path/myNumericData.tsv \ --categorical-clinical-data-file /path/myClassData.tsv \ --genetic-data-type 'gene' \ --output-file /path/output_file ... music clinical-correlation \ --maf-file /path/myMAF.tsv \ --bam-list /path/myBamList.tsv \ --output-file /path/output_file \ --glm-model-file /path/model.tsv \ --glm-clinical-data-file /path/glm_clinical_data.tsv \ --use-maf-in-glm
Default value 'false' (--nouse-maf-in-glm) if not specified
Default value 'true' if not specified
Default value 'true' if not specified
Default value 'gene' if not specified
Default value 'cor' if not specified
This command relates clinical traits and mutational data. Either one can perform correlation analysis between mutations recorded in a MAF and the particular phenotypic traits recorded in clinical data files for the same samples, or one can run a generalized linear model (GLM) analysis on the same types of data.
The clinical data files for correlation must be separated between numeric and categoric data and must follow these conventions:
Note the importance of the headers: the header for each clinical_data_attribute will appear in the output file to denote relationships with the mutation data from the MAF.
Internally, the input data is fed into an R script which calculates a P-value representing the probability that the correlation seen between the mutations in each gene (or variant) and each phenotype trait are random. Lower P-values indicate lower randomness, or likely true correlations.
The results are saved to the output filename given with a suffix appended; ".numeric.csv" will be appended for results derived from numeric clinical data, and ".categorical.csv" will be appended for results derived from categorical clinical data. Also, ".glm.csv" will be appended to the output filename for GLM results.
The GLM analysis accepts a mixed numeric and categoric clinical data file, input using the parameter --glm-clinical-data-file. GLM clinical data must adhere to the formats described above for the correlation clinical data files. GLM also requires the user to input a --glm-model-file. This file requires specific headers and defines the analysis to be performed rather exactly. Here are the conventions required for this file:
GLM analysis may be performed using solely the data input into --glm-clinical-data-file, as described above, or alternatively, mutational data from the MAF may be included as variants in the GLM analysis, as also described above. Use the --use-maf-in-glm flag to include the mutation matrix derived from the maf as variant data.
Note that all input files for both correlation and GLM analysis must be tab-separated.
Copyright (C) 2010-2011 Washington University in St. Louis.
It is released under the Lesser GNU Public License (LGPL) version 3. See the associated LICENSE file in this distribution.
Nathan D. Dees, Ph.D. Qunyuan Zhang, Ph.D. William Schierding, M.S.
2018-07-05 | perl v5.26.2 |