DOKK / manpages / debian 10 / mlpack-bin / mlpack_dbscan.1.en
mlpack_dbscan(1) User Commands mlpack_dbscan(1)

mlpack_dbscan - dbscan clustering


mlpack_dbscan -i string [-e double] [-m int] [-N bool] [-S bool] [-t string] [-V bool] [-a string] [-C string] [-h -v]

This program implements the DBSCAN algorithm for clustering using accelerated tree-based range search. The type of tree that is used may be parameterized, or brute-force range search may also be used.

The input dataset to be clustered may be specified with the '--input_file (-i)' parameter; the radius of each range search may be specified with the ’--epsilon (-e)' parameters, and the minimum number of points in a cluster may be specified with the '--min_size (-m)' parameter.

The '--assignments_file (-a)' and '--centroids_file (-C)' output parameters may be used to save the output of the clustering. '--assignments_file (-a)' contains the cluster assignments of each point, and '--centroids_file (-C)' contains the centroids of each cluster.

The range search may be controlled with the '--tree_type (-t)', '--single_mode (-S)', and '--naive (-N)' parameters. '--tree_type (-t)' can control the type of tree used for range search; this can take a variety of values: 'kd', 'r', ’r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'. The ’--single_mode (-S)' parameter will force single-tree search (as opposed to the default dual-tree search), and ''--naive (-N)' will force brute-force range search.

An example usage to run DBSCAN on the dataset in 'input.csv' with a radius of 0.5 and a minimum cluster size of 5 is given below:

$ dbscan --input_file input.csv --epsilon 0.5 --min_size 5

Input dataset to cluster.

Radius of each range search. Default value 1.
Default help info.
Get help on a specific module or option. Default value ''.
Minimum number of points for a cluster. Default value 5.
If set, brute-force range search (not tree-based) will be used.
If set, single-tree range search (not dual-tree) will be used.
If using single-tree or dual-tree search, the type of tree to use ('kd', 'r', 'r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'). Default value 'kd'.
Display informational messages and the full list of parameters and timers at the end of execution.
Display the version of mlpack.

Output matrix for assignments of each point. Default value ''.
Matrix to save output centroids to. Default value ''.

For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.

18 November 2018 mlpack-3.0.4