mlpack_hmm_train(1) | User Commands | mlpack_hmm_train(1) |
mlpack_hmm_train - hidden markov model (hmm) training
mlpack_hmm_train -i string [-b bool] [-g int] [-m unknown] [-l string] [-s int] [-n int] [-T double] [-t string] [-V bool] [-M unknown] [-h -v]
This program allows a Hidden Markov Model to be trained on labeled or unlabeled data. It support three types of HMMs: discrete HMMs, Gaussian HMMs, or GMM HMMs.
Either one input sequence can be specified (with --input_file), or, a file containing files in which input sequences can be found (when --input_file and --batch are used together). In addition, labels can be provided in the file specified by --labels_file, and if --batch is used, the file given to --labels_file should contain a list of files of labels corresponding to the sequences in the file given to --input_file.
The HMM is trained with the Baum-Welch algorithm if no labels are provided. The tolerance of the Baum-Welch algorithm can be set with the --tolerance option. By default, the transition matrix is randomly initialized and the emission distributions are initialized to fit the extent of the data.
Optionally, a pre-created HMM model can be used as a guess for the transition matrix and emission probabilities; this is specifiable with --model_file.
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.
18 November 2018 | mlpack-3.0.4 |