DOKK / manpages / debian 10 / mpich-doc / MPI_Type_create_hindexed.3.en
MPI_Type_create_hindexed(3) MPI MPI_Type_create_hindexed(3)

MPI_Type_create_hindexed - Create a datatype for an indexed datatype with displacements in bytes

int MPI_Type_create_hindexed(int count,

const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype * newtype)

- number of blocks --- also number of entries in array_of_displacements and array_of_blocklengths (integer)
- number of elements in each block (array of nonnegative integers)
- byte displacement of each block (array of address integers)
- old datatype (handle)

- new datatype (handle)

This routine is thread-safe. This means that this routine may be safely used by multiple threads without the need for any user-provided thread locks. However, the routine is not interrupt safe. Typically, this is due to the use of memory allocation routines such as malloc or other non-MPICH runtime routines that are themselves not interrupt-safe.

All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.

All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in Fortran.

All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarentee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.

- No error; MPI routine completed successfully.
- Invalid datatype argument. Additionally, this error can occur if an uncommitted MPI_Datatype (see MPI_Type_commit ) is used in a communication call.
- Invalid argument. Some argument is invalid and is not identified by a specific error class (e.g., MPI_ERR_RANK ).
11/21/2018