otbcli_TrainImagesClassifier - OTB TrainImagesClassifier
application
This is the TrainImagesClassifier application, version 5.2.0 Train
a classifier from multiple pairs of images and training vector data.
Complete documentation:
http://www.orfeo-toolbox.org/Applications/TrainImagesClassifier.html
- -progress
- <boolean> Report progress
-io.il <string list> Input Image List (mandatory)
-io.vd <string list> Input Vector Data List (mandatory)
- -io.imstat
- <string> Input XML image statistics file (optional, off by
default)
- -io.confmatout
- <string> Output confusion matrix (optional, off by default)
-io.out <string> Output model (mandatory)
- -elev.dem
- <string> DEM directory (optional, off by default)
- -elev.geoid
- <string> Geoid File (optional, off by default)
- -elev.default
- <float> Default elevation (mandatory, default value is 0)
- -sample.mt
- <int32> Maximum training sample size per class (mandatory, default
value is 1000)
- -sample.mv
- <int32> Maximum validation sample size per class (mandatory, default
value is 1000)
- -sample.bm
- <int32> Bound sample number by minimum (mandatory, default value is
1)
- -sample.edg
- <boolean> On edge pixel inclusion (optional, off by default)
- -sample.vtr
- <float> Training and validation sample ratio (mandatory, default
value is 0.5)
- -sample.vfn
- <string> Name of the discrimination field (mandatory, default value
is Class)
- -classifier
- <string> Classifier to use for the training
[boost/dt/gbt/ann/bayes/rf/knn] (mandatory, default value is boost)
- -classifier.boost.t
- <string> Boost Type [discrete/real/logit/gentle] (mandatory, default
value is real)
- -classifier.boost.w
- <int32> Weak count (mandatory, default value is 100)
- -classifier.boost.r
- <float> Weight Trim Rate (mandatory, default value is 0.95)
- -classifier.boost.m
- <int32> Maximum depth of the tree (mandatory, default value is
1)
- -classifier.dt.max
- <int32> Maximum depth of the tree (mandatory, default value is
65535)
- -classifier.dt.min
- <int32> Minimum number of samples in each node (mandatory, default
value is 10)
- -classifier.dt.ra
- <float> Termination criteria for regression tree (mandatory, default
value is 0.01)
- -classifier.dt.cat
- <int32> Cluster possible values of a categorical variable into K
<= cat clusters to find a suboptimal split (mandatory, default value is
10)
- -classifier.dt.f
- <int32> K-fold cross-validations (mandatory, default value is
10)
- -classifier.dt.r
- <boolean> Set Use1seRule flag to false (optional, off by
default)
- -classifier.dt.t
- <boolean> Set TruncatePrunedTree flag to false (optional, off by
default)
- -classifier.gbt.w
- <int32> Number of boosting algorithm iterations (mandatory, default
value is 200)
- -classifier.gbt.s
- <float> Regularization parameter (mandatory, default value is
0.01)
- -classifier.gbt.p
- <float> Portion of the whole training set used for each algorithm
iteration (mandatory, default value is 0.8)
- -classifier.gbt.max
- <int32> Maximum depth of the tree (mandatory, default value is
3)
- -classifier.ann.t
- <string> Train Method Type [reg/back] (mandatory, default value is
reg)
- -classifier.ann.sizes
- <string list> Number of neurons in each intermediate layer
(mandatory)
- -classifier.ann.f
- <string> Neuron activation function type [ident/sig/gau] (mandatory,
default value is sig)
- -classifier.ann.a
- <float> Alpha parameter of the activation function (mandatory,
default value is 1)
- -classifier.ann.b
- <float> Beta parameter of the activation function (mandatory,
default value is 1)
- -classifier.ann.bpdw
- <float> Strength of the weight gradient term in the BACKPROP method
(mandatory, default value is 0.1)
- -classifier.ann.bpms
- <float> Strength of the momentum term (the difference between
weights on the 2 previous iterations) (mandatory, default value is
0.1)
- -classifier.ann.rdw
- <float> Initial value Delta_0 of update-values Delta_{ij} in RPROP
method (mandatory, default value is 0.1)
- -classifier.ann.rdwm
- <float> Update-values lower limit Delta_{min} in RPROP method
(mandatory, default value is 1e-07)
- -classifier.ann.term
- <string> Termination criteria [iter/eps/all] (mandatory, default
value is all)
- -classifier.ann.eps
- <float> Epsilon value used in the Termination criteria (mandatory,
default value is 0.01)
- -classifier.ann.iter
- <int32> Maximum number of iterations used in the Termination
criteria (mandatory, default value is 1000)
- -classifier.rf.max
- <int32> Maximum depth of the tree (mandatory, default value is
5)
- -classifier.rf.min
- <int32> Minimum number of samples in each node (mandatory, default
value is 10)
- -classifier.rf.ra
- <float> Termination Criteria for regression tree (mandatory, default
value is 0)
- -classifier.rf.cat
- <int32> Cluster possible values of a categorical variable into K
<= cat clusters to find a suboptimal split (mandatory, default value is
10)
- -classifier.rf.var
- <int32> Size of the randomly selected subset of features at each
tree node (mandatory, default value is 0)
- -classifier.rf.nbtrees
<int32>
- Maximum number of trees in the forest (mandatory, default value is
100)
- -classifier.rf.acc
- <float> Sufficient accuracy (OOB error) (mandatory, default value is
0.01)
- -classifier.knn.k
- <int32> Number of Neighbors (mandatory, default value is 32)
- -rand
- <int32> set user defined seed (optional, off by default)
- -inxml
- <string> Load otb application from xml file (optional, off by
default)
otbcli_TrainImagesClassifier -io.il QB_1_ortho.tif -io.vd
VectorData_QB1.shp -io.imstat EstimateImageStatisticsQB1.xml -sample.mv 100
-sample.mt 100 -sample.vtr 0.5 -sample.edg false -sample.vfn Class
-classifier libsvm -classifier.libsvm.k linear -classifier.libsvm.c 1
-classifier.libsvm.opt false -io.out svmModelQB1.txt -io.confmatout
svmConfusionMatrixQB1.csv
The full documentation for otbcli_TrainImagesClassifier is
maintained as a Texinfo manual. If the info and
otbcli_TrainImagesClassifier programs are properly installed at your
site, the command
- info otbcli_TrainImagesClassifier
should give you access to the complete manual.