util_crc(3avr) | avr-libc | util_crc(3avr) |
util_crc - <util/crc16.h>: CRC Computations
static __inline__ uint16_t _crc16_update
(uint16_t __crc, uint8_t __data)
static __inline__ uint16_t _crc_xmodem_update (uint16_t
__crc, uint8_t __data)
static __inline__ uint16_t _crc_ccitt_update (uint16_t
__crc, uint8_t __data)
static __inline__ uint8_t _crc_ibutton_update (uint8_t
__crc, uint8_t __data)
static __inline__ uint8_t _crc8_ccitt_update (uint8_t
__crc, uint8_t __data)
#include <util/crc16.h>
This header file provides a optimized inline functions for calculating cyclic redundancy checks (CRC) using common polynomials.
References:
See the Dallas Semiconductor app note 27 for 8051 assembler example and general CRC optimization suggestions. The table on the last page of the app note is the key to understanding these implementations.
Jack Crenshaw's 'Implementing CRCs' article in the January 1992 isue of Embedded Systems Programming. This may be difficult to find, but it explains CRC's in very clear and concise terms. Well worth the effort to obtain a copy.
A typical application would look like:
// Dallas iButton test vector. uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 }; int checkcrc(void) { uint8_t crc = 0, i; for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
crc = _crc_ibutton_update(crc, serno[i]); return crc; // must be 0 }
Optimized CRC-16 calculation.
Polynomial: x^16 + x^15 + x^2 + 1 (0xa001)
Initial value: 0xffff
This CRC is normally used in disk-drive controllers.
The following is the equivalent functionality written in C.
uint16_t crc16_update(uint16_t crc, uint8_t a) { int i; crc ^= a; for (i = 0; i < 8; ++i) {
if (crc & 1)
crc = (crc >> 1) ^ 0xA001;
else
crc = (crc >> 1); } return crc; }
Optimized CRC-8-CCITT calculation.
Polynomial: x^8 + x^2 + x + 1 (0xE0)
For use with simple CRC-8
Initial value: 0x0
For use with CRC-8-ROHC
Initial value: 0xff
Reference: http://tools.ietf.org/html/rfc3095#section-5.9.1
For use with CRC-8-ATM/ITU
Initial value: 0xff
Final XOR value: 0x55
Reference: http://www.itu.int/rec/T-REC-I.432.1-199902-I/en
The C equivalent has been originally written by Dave Hylands. Assembly code is based on _crc_ibutton_update optimization.
The following is the equivalent functionality written in C.
uint8_t _crc8_ccitt_update (uint8_t inCrc, uint8_t inData) {
uint8_t i;
uint8_t data;
data = inCrc ^ inData;
for ( i = 0; i < 8; i++ )
{
if (( data & 0x80 ) != 0 )
{
data <<= 1;
data ^= 0x07;
}
else
{
data <<= 1;
}
}
return data; }
Optimized CRC-CCITT calculation.
Polynomial: x^16 + x^12 + x^5 + 1 (0x8408)
Initial value: 0xffff
This is the CRC used by PPP and IrDA.
See RFC1171 (PPP protocol) and IrDA IrLAP 1.1
Note
The following is the equivalent functionality written in C.
uint16_t crc_ccitt_update (uint16_t crc, uint8_t data) {
data ^= lo8 (crc);
data ^= data << 4;
return ((((uint16_t)data << 8) | hi8 (crc)) ^ (uint8_t)(data >> 4)
^ ((uint16_t)data << 3)); }
Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
Polynomial: x^8 + x^5 + x^4 + 1 (0x8C)
Initial value: 0x0
See http://www.maxim-ic.com/appnotes.cfm/appnote_number/27
The following is the equivalent functionality written in C.
uint8_t _crc_ibutton_update(uint8_t crc, uint8_t data) { uint8_t i; crc = crc ^ data; for (i = 0; i < 8; i++) {
if (crc & 0x01)
crc = (crc >> 1) ^ 0x8C;
else
crc >>= 1; } return crc; }
Optimized CRC-XMODEM calculation.
Polynomial: x^16 + x^12 + x^5 + 1 (0x1021)
Initial value: 0x0
This is the CRC used by the Xmodem-CRC protocol.
The following is the equivalent functionality written in C.
uint16_t crc_xmodem_update (uint16_t crc, uint8_t data) {
int i;
crc = crc ^ ((uint16_t)data << 8);
for (i=0; i<8; i++)
{
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
crc <<= 1;
}
return crc; }
Generated automatically by Doxygen for avr-libc from the source code.
Fri Jan 1 2021 | Version 2.0.0 |