DOKK / manpages / debian 11 / avr-libc / signbit.3avr.en
math.h(3avr) avr-libc math.h(3avr)

math.h


#define M_E 2.7182818284590452354
#define M_LOG2E 1.4426950408889634074 /* log_2 e */
#define M_LOG10E 0.43429448190325182765 /* log_10 e */
#define M_LN2 0.69314718055994530942 /* log_e 2 */
#define M_LN10 2.30258509299404568402 /* log_e 10 */
#define M_PI 3.14159265358979323846 /* pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#define M_PI_4 0.78539816339744830962 /* pi/4 */
#define M_1_PI 0.31830988618379067154 /* 1/pi */
#define M_2_PI 0.63661977236758134308 /* 2/pi */
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#define NAN __builtin_nan('')
#define INFINITY __builtin_inf()
#define cosf cos
#define sinf sin
#define tanf tan
#define fabsf fabs
#define fmodf fmod
#define cbrtf cbrt
#define hypotf hypot
#define squaref square
#define floorf floor
#define ceilf ceil
#define frexpf frexp
#define ldexpf ldexp
#define expf exp
#define coshf cosh
#define sinhf sinh
#define tanhf tanh
#define acosf acos
#define asinf asin
#define atanf atan
#define atan2f atan2
#define logf log
#define log10f log10
#define powf pow
#define isnanf isnan
#define isinff isinf
#define isfinitef isfinite
#define copysignf copysign
#define signbitf signbit
#define fdimf fdim
#define fmaf fma
#define fmaxf fmax
#define fminf fmin
#define truncf trunc
#define roundf round
#define lroundf lround
#define lrintf lrint


double cos (double __x)
double sin (double __x)
double tan (double __x)
double fabs (double __x)
double fmod (double __x, double __y)
double modf (double __x, double *__iptr)
float modff (float __x, float *__iptr)
double sqrt (double __x)
float sqrtf (float)
double cbrt (double __x)
double hypot (double __x, double __y)
double square (double __x)
double floor (double __x)
double ceil (double __x)
double frexp (double __x, int *__pexp)
double ldexp (double __x, int __exp)
double exp (double __x)
double cosh (double __x)
double sinh (double __x)
double tanh (double __x)
double acos (double __x)
double asin (double __x)
double atan (double __x)
double atan2 (double __y, double __x)
double log (double __x)
double log10 (double __x)
double pow (double __x, double __y)
int isnan (double __x)
int isinf (double __x)
static int isfinite (double __x)
static double copysign (double __x, double __y)
int signbit (double __x)
double fdim (double __x, double __y)
double fma (double __x, double __y, double __z)
double fmax (double __x, double __y)
double fmin (double __x, double __y)
double trunc (double __x)
double round (double __x)
long lround (double __x)
long lrint (double __x)

The alias for acos().

The alias for asin().

The alias for atan2().

The alias for atan().

The alias for cbrt().

The alias for ceil().

The alias for copysign().

The alias for cos().

The alias for cosh().

The alias for exp().

The alias for fabs().

The alias for fdim().

The alias for floor().

The alias for fma().

The alias for fmax().

The alias for fmin().

The alias for fmod().

The alias for frexp().

The alias for hypot().

INFINITY constant.

The alias for isfinite().

The alias for isinf().

The alias for isnan().

The alias for ldexp().

The alias for log10().

The alias for log().

The alias for lrint().

The alias for lround().

The constant 1/pi.

The constant 2/pi.

The constant 2/sqrt(pi).

The natural logarithm of the 10.

The natural logarithm of the 2.

The logarithm of the e to base 10.

The logarithm of the e to base 2.

The constant pi.

The constant pi/2.

The constant pi/4.

sqrt(2) */

The constant 1/sqrt(2).

sqrt(2) */

The square root of 2.

NAN constant.

The alias for pow().

The alias for round().

The alias for signbit().

The alias for sin().

The alias for sinh().

The alias for square().

The alias for tan().

The alias for tanh().

The alias for trunc().

The acos() function computes the principal value of the arc cosine of __x. The returned value is in the range [0, pi] radians. A domain error occurs for arguments not in the range [-1, +1].

The asin() function computes the principal value of the arc sine of __x. The returned value is in the range [-pi/2, pi/2] radians. A domain error occurs for arguments not in the range [-1, +1].

The atan() function computes the principal value of the arc tangent of __x. The returned value is in the range [-pi/2, pi/2] radians.

The atan2() function computes the principal value of the arc tangent of __y / __x, using the signs of both arguments to determine the quadrant of the return value. The returned value is in the range [-pi, +pi] radians.

The cbrt() function returns the cube root of __x.

The ceil() function returns the smallest integral value greater than or equal to __x, expressed as a floating-point number.

The copysign() function returns __x but with the sign of __y. They work even if __x or __y are NaN or zero.

The cos() function returns the cosine of __x, measured in radians.

The cosh() function returns the hyperbolic cosine of __x.

The exp() function returns the exponential value of __x.

The fabs() function computes the absolute value of a floating-point number __x.

The fdim() function returns max(__x - __y, 0). If __x or __y or both are NaN, NaN is returned.

The floor() function returns the largest integral value less than or equal to __x, expressed as a floating-point number.

The fma() function performs floating-point multiply-add. This is the operation (__x * __y) + __z, but the intermediate result is not rounded to the destination type. This can sometimes improve the precision of a calculation.

The fmax() function returns the greater of the two values __x and __y. If an argument is NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

The fmin() function returns the lesser of the two values __x and __y. If an argument is NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

The function fmod() returns the floating-point remainder of __x / __y.

The frexp() function breaks a floating-point number into a normalized fraction and an integral power of 2. It stores the integer in the int object pointed to by __pexp.

If __x is a normal float point number, the frexp() function returns the value v, such that v has a magnitude in the interval [1/2, 1) or zero, and __x equals v times 2 raised to the power __pexp. If __x is zero, both parts of the result are zero. If __x is not a finite number, the frexp() returns __x as is and stores 0 by __pexp.

Note

This implementation permits a zero pointer as a directive to skip a storing the exponent.

The hypot() function returns sqrt(__x*__x + __y*__y). This is the length of the hypotenuse of a right triangle with sides of length __x and __y, or the distance of the point (__x, __y) from the origin. Using this function instead of the direct formula is wise, since the error is much smaller. No underflow with small __x and __y. No overflow if result is in range.

The isfinite() function returns a nonzero value if __x is finite: not plus or minus infinity, and not NaN.

The function isinf() returns 1 if the argument __x is positive infinity, -1 if __x is negative infinity, and 0 otherwise.

Note

The GCC 4.3 can replace this function with inline code that returns the 1 value for both infinities (gcc bug #35509).

The function isnan() returns 1 if the argument __x represents a 'not-a-number' (NaN) object, otherwise 0.

The ldexp() function multiplies a floating-point number by an integral power of 2. It returns the value of __x times 2 raised to the power __exp.

The log() function returns the natural logarithm of argument __x.

The log10() function returns the logarithm of argument __x to base 10.

The lrint() function rounds __x to the nearest integer, rounding the halfway cases to the even integer direction. (That is both 1.5 and 2.5 values are rounded to 2). This function is similar to rint() function, but it differs in type of return value and in that an overflow is possible.

Returns

The rounded long integer value. If __x is not a finite number or an overflow was, this realization returns the LONG_MIN value (0x80000000).

The lround() function rounds __x to the nearest integer, but rounds halfway cases away from zero (instead of to the nearest even integer). This function is similar to round() function, but it differs in type of return value and in that an overflow is possible.

Returns

The rounded long integer value. If __x is not a finite number or an overflow was, this realization returns the LONG_MIN value (0x80000000).

The modf() function breaks the argument __x into integral and fractional parts, each of which has the same sign as the argument. It stores the integral part as a double in the object pointed to by __iptr.

The modf() function returns the signed fractional part of __x.

Note

This implementation skips writing by zero pointer. However, the GCC 4.3 can replace this function with inline code that does not permit to use NULL address for the avoiding of storing.

An alias for modf().

The function pow() returns the value of __x to the exponent __y.

The round() function rounds __x to the nearest integer, but rounds halfway cases away from zero (instead of to the nearest even integer). Overflow is impossible.

Returns

The rounded value. If __x is an integral or infinite, __x itself is returned. If __x is NaN, then NaN is returned.

The signbit() function returns a nonzero value if the value of __x has its sign bit set. This is not the same as `__x < 0.0', because IEEE 754 floating point allows zero to be signed. The comparison `-0.0 < 0.0' is false, but `signbit (-0.0)' will return a nonzero value.

The sin() function returns the sine of __x, measured in radians.

The sinh() function returns the hyperbolic sine of __x.

The sqrt() function returns the non-negative square root of __x.

An alias for sqrt().

The function square() returns __x * __x.

Note

This function does not belong to the C standard definition.

The tan() function returns the tangent of __x, measured in radians.

The tanh() function returns the hyperbolic tangent of __x.

The trunc() function rounds __x to the nearest integer not larger in absolute value.

Generated automatically by Doxygen for avr-libc from the source code.

Fri Jan 1 2021 Version 2.0.0