bochsrc(5) | The Bochs Project | bochsrc(5) |
bochsrc - Configuration file for Bochs.
Bochsrc is the configuration file that specifies where Bochs should look for disk images, how the Bochs emulation layer should work, etc. The syntax used for bochsrc can also be used as command line arguments for Bochs. The .bochsrc file should be placed either in the current directory before running Bochs or in your home directory.
Starting with Bochs 1.3, you can use environment variables in the bochsrc file, for example:
floppya: 1_44="$IMAGES/bootdisk.img", status=inserted
Starting with version 2.0, two environment variables have a built-in default value which is set at compile time. $BXSHARE points to the "share" directory which is typically /usr/local/share/bochs on UNIX machines. See the $(sharedir) variable in the Makefile for the exact value. $BXSHARE is used by disk images to locate the directory where the BIOS images and keymaps can be found. If $BXSHARE is not defined, Bochs will supply the default value. Also, $LTDL_LIBRARY_PATH points to a list of directories (separated by colons if more than one) to search in for Bochs plugins. A compile-time default is provided if this variable is not defined by the user.
Example:
#include /etc/bochsrc
These plugins will be loaded by default (if present): 'biosdev', 'extfpuirq', 'gameport', 'iodebug','parallel', 'serial', 'speaker' and 'unmapped'.
These plugins are also supported, but they are usually loaded directly with their bochsrc option: 'e1000', 'es1370', 'ne2k', 'pcidev', 'pcipnic', 'sb16', 'usb_ehci', 'usb_ohci', 'usb_uhci', 'usb_xhci' and 'voodoo'.
Example:
plugin_ctrl: unmapped=0, e1000=1 # unload 'unmapped' and load 'e1000'
NOTE: if you use the "wx" configuration interface, you must also use the "wx" display library.
Example:
config_interface: textconfig
The choices are:
x X windows interface, cross platform
win32 native win32 libraries
carbon Carbon library (for MacOS X)
macintosh MacOS pre-10
amigaos native AmigaOS libraries
sdl SDL 1.2.x library, cross platform
sdl2 SDL 2.x library, cross platform
term text only, uses curses/ncurses library, cross platform
rfb provides an interface to AT&T's VNC viewer, cross platform
vncsrv use LibVNCServer for extended RFB(VNC) support
wx wxWidgets library, cross platform
nogui no display at all
NOTE: if you use the "wx" configuration interface, you must also use the "wx" display library.
Specific options: Some display libraries now support specific options to control their behaviour. These options are supported by more than one display library:
"gui_debug" - use GTK debugger gui (sdl, sdl2, x)
"hideIPS" - disable IPS output in status bar (rfb, sdl, sdl2,
vncsrv, wx, x)
"nokeyrepeat" - turn off host keyboard repeat (sdl, sdl2, x)
"timeout" - time (in seconds) to wait for client (rfb,
vncsrv)
See the examples below for other currently supported options.
Examples:
display_library: x
display_library: sdl, options="fullscreen" # startup in
fullscreen mode
display_library: sdl2, options="fullscreen" # startup in
fullscreen mode
model:
Selects CPU configuration to emulate from pre-defined list of all supported configurations. When this option is used and the value is different from 'bx_generic', the parameters of the CPUID option have no effect anymore. See the bochsrc sample for supported values.
count:
Set the number of processors:cores per processor:threads per core when Bochs is compiled for SMP emulation. Bochs currently supports up to 14 threads (legacy APIC) or 254 threads (xAPIC or higher) running simultaniosly. If Bochs is compiled without SMP support, it won't accept values different from 1.
quantum:
Maximum amount of instructions allowed to execute by processor before returning control to another cpu. This option exists only in Bochs binary compiled with SMP support.
reset_on_triple_fault:
Reset the CPU when triple fault occur (highly recommended) rather than PANIC. Remember that if you trying to continue after triple fault the simulation will be completely bogus !
cpuid_limit_winnt:
Determine whether to limit maximum CPUID function to 2. This mode is required to workaround WinNT installation and boot issues.
mwait_is_nop:
When this option is enabled MWAIT will not put the CPU into a sleep state. This option exists only if Bochs compiled with --enable-monitor-mwait.
msrs:
Define path to user CPU Model Specific Registers (MSRs) specification. See example in msrs.def.
ignore_bad_msrs:
Ignore MSR references that Bochs does not understand; print a warning message instead of generating #GP exception. This option is enabled by default but will not be available if configurable MSRs are enabled.
ips:
Emulated Instructions Per Second. This is the number of IPS that Bochs is capable of running on your machine. You can recompile Bochs with --enable-show-ips option enabled, to find your workstation's capability. Measured IPS value will then be logged into your log file or status bar (if supported by the gui).
IPS is used to calibrate many time-dependent events within the bochs simulation. For example, changing IPS affects the frequency of VGA updates, the duration of time before a key starts to autorepeat, and the measurement of BogoMips and other benchmarks.
Example Specifications[1]
Bochs | Machine/Compiler | Mips |
2.4.6 | 3.4Ghz Core i7 2600 w/ Win7x64/g++ 4.5.2 | 85-95 Mips |
2.3.7 | 3.2Ghz Core 2 Q9770 w/ WinXP/g++ 3.4 | 50-55 Mips |
2.3.7 | 2.6Ghz Core 2 Duo w/ WinXP/g++ 3.4 | 38-43 Mips |
2.2.6 | 2.6Ghz Core 2 Duo w/ WinXP/g++ 3.4 | 21-25 Mips |
2.2.6 | 2.1Ghz Athlon XP w/ Linux 2.6/g++ 3.4 | 12-15 Mips |
[1] IPS measurements depend on OS and compiler configuration in addition
to processor clock speed.
Example:
cpu: count=2, ips=10000000, msrs="msrs.def"
level:
Set emulated CPU level information returned by CPUID. Default value is determined by configure option --enable-cpu-level. Currently supported values are 5 (for Pentium and similar processors) and 6 (for P6 and later processors).
family:
Set family information returned by CPUID. Default family value determined by configure option --enable-cpu-level.
model:
Set model information returned by CPUID. Default model value is 3.
stepping:
Set stepping information returned by CPUID. Default stepping value is 3.
vendor_string:
Set the CPUID vendor string returned by CPUID(0x0). This should be a twelve-character ASCII string.
brand_string:
Set the CPUID vendor string returned by CPUID(0x80000002 .. 0x80000004). This should be at most a forty-eight-character ASCII string.
mmx:
Select MMX instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
apic:
Select APIC configuration (LEGACY/XAPIC/XAPIC_EXT/X2APIC). This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
sep:
Select SYSENTER/SYSEXIT instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
simd:
Select SIMD instructions support. Any of NONE/SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2/AVX/AVX2/AVX512 could be selected.
This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6. The AVX choises exists only if Bochs compiled with --enable-avx option.
sse4a:
Select AMD SSE4A instructions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
misaligned_sse:
Select AMD Misaligned SSE mode support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
aes:
Select AES instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
sha:
Select SHA instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
movbe:
Select MOVBE Intel(R) Atom instruction support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
adx:
Select ADCX/ADOX instructions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
xsave:
Select XSAVE extensions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
xsaveopt:
Select XSAVEOPT instruction support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
avx_f16c:
Select AVX float16 convert instructions support. This option exists only if Bochs compiled with --enable-avx option.
avx_fma:
Select AVX fused multiply add (FMA) instructions support. This option exists only if Bochs compiled with --enable-avx option.
bmi:
Select BMI1/BMI2 instructions support. This option exists only if Bochs compiled with --enable-avx option.
fma4:
Select AMD four operand FMA instructions support. This option exists only if Bochs compiled with --enable-avx option.
xop:
Select AMD XOP instructions support. This option exists only if Bochs compiled with --enable-avx option.
tbm:
Select AMD TBM instructions support. This option exists only if Bochs compiled with --enable-avx option.
x86_64:
Enable x85-64 and long mode support. This option exists only if Bochs compiled with x86-64 support.
1g_pages:
Enable 1G page size support in long mode. This option exists only if Bochs compiled with x86-64 support.
pcid:
Enable Process-Context Identifiers (PCID) support in long mode. This option exists only if Bochs compiled with x86-64 support.
smep:
Enable Supervisor Mode Execution Protection (SMEP) support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
smap:
Enable Supervisor Mode Access Prevention (SMAP) support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
mwait:
Select MONITOR/MWAIT instructions support. This option exists only if Bochs compiled with --enable-monitor-mwait.
vmx:
Select VMX extensions emulation support. This option exists only if Bochs compiled with --enable-vmx option.
svm:
Select AMD SVM (Secure Virtual Machine) extensions emulation support. This option exists only if Bochs compiled with --enable-svm option.
Example:
cpuid: mmx=1, sep=1, sse=sse4_2, xapic=1, aes=1, movbe=1, xsave=1
guest:
Set amount of guest physical memory to emulate. The default is 32MB, the maximum amount limited only by physical address space limitations.
host:
Set amount of host memory you want to allocate for guest RAM emulation. It is possible to allocate less memory than you want to emulate in guest system. This will fake guest to see the non-existing memory. Once guest system touches new memory block it will be dynamically taken from the memory pool. You will be warned (by FATAL PANIC) in case guest already used all allocated host memory and wants more.
Example:
memory: guest=512, host=256
Example:
megs: 32
Examples:
romimage: file=bios/BIOS-bochs-latest, options=fastboot
romimage: file=$BXSHARE/BIOS-bochs-legacy
romimage: file=mybios.bin, address=0xfff80000
Examples:
vgaromimage: file=bios/VGABIOS-elpin-2.40
vgaromimage: file=bios/VGABIOS-lgpl-latest
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
Example:
optromimage1: file=optionalrom.bin, address=0xd0000
extension:
Here you can specify the display extension to be used. With the value 'none' you can use standard VGA with no extension. Other supported values are 'vbe' for Bochs VBE, 'cirrus' for Cirrus SVGA support and 'voodoo' for Voodoo Graphics support (see 'voodoo' option).
update_freq:
This parameter specifies the number of display updates per second. The VGA update timer by default uses the realtime engine with a value of 5. This parameter can be changed at runtime.
realtime:
If set to 1 (default), the VGA timer is based on realtime, otherwise it is driven by the cpu and depends on the ips setting. If the host is slow (low ips, update_freq) and the guest uses HLT appropriately, setting this to 0 and "clock: sync=none" may improve the responsiveness of the guest GUI when the guest is otherwise idle.
Examples:
vga: extension=none, update_freq=10, realtime=0
vga: extension=cirrus, update_freq=30
vga: extension=vbe
Example:
voodoo: enabled=1, model=voodoo1
type:
Type of keyboard return by a "identify keyboard" command to the keyboard controller. It must be one of "xt", "at" or "mf". Defaults to "mf". It should be ok for almost everybody. A known exception is french macs, that do have a "at"-like keyboard.
serial_delay:
Approximate time in microseconds that it takes one character to be transferred from the keyboard to controller over the serial path.
paste_delay:
Approximate time in microseconds between attempts to paste characters to the keyboard controller. This leaves time for the guest os to deal with the flow of characters. The ideal setting depends on how your operating system processes characters. The default of 100000 usec (.1 seconds) was chosen because it works consistently in Windows.
If your OS is losing characters during a paste, increase the paste delay until it stops losing characters.
keymap:
This enables a remap of a physical localized keyboard to a virtualized us keyboard, as the PC architecture expects.
user_shortcut:
This defines the keyboard shortcut to be sent when you press the "user" button in the header bar. The shortcut string is a combination of maximum 3 key names (listed below) separated with a '-' character.
Valid key names:
"alt", "bksl", "bksp", "ctrl", "del", "down", "end", "enter", "esc", "f1", ... "f12", "home", "ins", "left", "menu", "minus", "pgdwn", "pgup", "plus", "power", "print", "right", "scrlck", "shift", "space", "tab", "up" and "win".
Examples:
keyboard: type=mf, serial_delay=200, paste_delay=100000
keyboard: keymap=gui/keymaps/x11-pc-de.map
keyboard: user_shortcut=ctrl-alt-del
type
With the mouse type option you can select the type of mouse to emulate. The default value is 'ps2'. The other choices are 'imps2' (wheel mouse on PS/2), 'serial', 'serial_wheel', 'serial_msys' (one com port requires setting 'mode=mouse') 'inport' and 'bus' (if present). To connect a mouse to a USB port, see the 'usb_uhci', 'usb_ohci', 'usb_ehci' or 'usb_xhci' option (requires PCI and USB support).
enabled
The Bochs gui creates mouse "events" unless the 'enabled' option is set to 0. The hardware emulation itself is not disabled by this. Unless you have a particular reason for enabling the mouse by default, it is recommended that you leave it off. You can also toggle the mouse usage at runtime (RFB, SDL, Win32, wxWidgets and X11 - see below).
toggle
The default method to toggle the mouse capture at runtime is to press the CTRL key and the middle mouse button ('ctrl+mbutton'). This option allows to change the method to 'ctrl+f10' (like DOSBox), 'ctrl+alt' (like QEMU) or 'f12'.
Examples:
mouse: enabled=1
mouse: type=imps2, enabled=1
mouse: type=serial, enabled=1
mouse: enabled=0, toggle=ctrl+f10
Example:
pci: enabled=1, chipset=i440fx, slot1=pcivga, slot2=ne2k
sync
This defines the method how to synchronize the Bochs internal time with realtime. With the value 'none' the Bochs time relies on the IPS value and no host time synchronization is used. The 'slowdown' method sacrifices performance to preserve reproducibility while allowing host time correlation. The 'realtime' method sacrifices reproducibility to preserve performance and host-time correlation. It is possible to enable both synchronization methods.
rtc_sync
If this option is enabled together with the realtime synchronization, the RTC runs at realtime speed. This feature is disabled by default.
time0
Specifies the start (boot) time of the virtual machine. Use a time value as returned by the time(2) system call or a string as returned by the ctime(3) system call. If no time0 value is set or if time0 equal to 1 (special case) or if time0 equal 'local', the simulation will be started at the current local host time. If time0 equal to 2 (special case) or if time0 equal 'utc', the simulation will be started at the current utc time.
Syntax:
clock: sync=[none|slowdown|realtime|both],
time0=[timeValue|local|utc]
Default value are sync=none, rtc_sync=0, time0=local
Example:
clock: sync=realtime, time0=938581955 # Wed Sep 29 07:12:35 1999
clock: sync=realtime, time0="Sat Jan 1 00:00:00 2000" #
946681200
Example:
cmosimage: file=cmos.img, rtc_init=time0
Example:
private_colormap: enabled=1
Point this to the pathname of a floppy image file or device. Floppya is the first drive, and floppyb is the second drive. If you're booting from a floppy, floppya should point to a bootable disk.
You can set the initial status of the media to 'ejected' or 'inserted'. Usually you will want to use 'inserted'.
The parameter 'type' can be used to enable the floppy drive without media and status specified. Usually the drive type is set up based on the media type.
The optional parameter 'write_protected' can be used to control the media write protect switch. By default it is turned off.
Example:
2.88M 3.5" media:
floppya: 2_88=path, status=ejected
1.44M 3.5" media (write protected):
floppya: 1_44=path, status=inserted, write_protected=1
1.2M 5.25" media:
floppyb: 1_2=path, status=ejected
720K 3.5" media:
floppya: 720k=path, status=inserted
360K 5.25" media:
floppya: 360k=path, status=inserted
Autodetect floppy media type:
floppya: image=path, status=inserted
Use directory as 1.44M VFAT media:
floppya: 1_44=vvfat:path, status=inserted
1.44M 3.5" floppy drive, no media:
floppya: type=1_44
These options enables up to 4 ata channels. For each channel the two base io addresses and the irq must be specified. ata0 and ata1 are enabled by default, with the values shown below.
Examples:
ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14
ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
ata2: enabled=1, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11
ata3: enabled=1, ioaddr1=0x168, ioaddr2=0x360, irq=9
This defines the type and characteristics of all attached ata
devices:
type= type of attached device [disk|cdrom]
path= path of the image
mode= image mode
[flat|concat|external|dll|sparse|vmware3|vmware4|undoable|growing|volatile|vpc|vbox|vvfat],
only valid for disks
cylinders= only valid for disks
heads= only valid for disks
spt= only valid for disks
status= only valid for cdroms [inserted|ejected]
biosdetect= type of biosdetection [auto|cmos|none]
translation=type of translation of the bios, only for disks
[none|lba|large|rechs|auto]
model= string returned by identify device command
journal= optional filename of the redolog for undoable, volatile and
vvfat disks
Point this at a hard disk image file, cdrom iso file, or a physical cdrom device. To create a hard disk image, try running bximage. It will help you choose the size and then suggest a line that works with it.
In UNIX it is possible to use a raw device as a Bochs hard disk, but WE DON'T RECOMMEND IT.
The path is mandatory for hard disks. Disk geometry autodetection works with images created by bximage if CHS is set to 0/0/0 (cylinders are calculated using heads=16 and spt=63). For other hard disk images and modes the cylinders, heads, and spt are mandatory. In all cases the disk size reported from the image must be exactly C*H*S*512.
The mode option defines how the disk image is handled. Disks
can be defined as:
- flat : one file flat layout
- concat : multiple files layout
- external : developer's specific, through a C++ class
- dll : developer's specific, through a DLL
- sparse : stackable, commitable, rollbackable
- vmware3 : vmware3 disk support
- vmware4 : vmware4 disk support (aka VMDK)
- undoable : flat file with commitable redolog
- growing : growing file
- volatile : flat file with volatile redolog
- vpc : fixed / dynamic size VirtualPC image
- vbox : fixed / dynamic size Oracle(tm) VM VirtualBox image (VDI version
1.1)
- vvfat: local directory appears as read-only VFAT disk (with volatile
redolog)
The disk translation scheme (implemented in legacy int13 bios
functions, and used by older operating systems like MS-DOS), can be
defined as:
- none : no translation, for disks up to 528MB (1032192 sectors)
- large : a standard bitshift algorithm, for disks up to 4.2GB (8257536
sectors)
- rechs : a revised bitshift algorithm, using a 15 heads fake physical
geometry, for disks up to 7.9GB (15482880 sectors). (don't use this
unless you understand what you're doing)
- lba : a standard lba-assisted algorithm, for disks up to 8.4GB
(16450560 sectors)
- auto : autoselection of best translation scheme. (it should be changed
if system does not boot)
Default values are:
mode=flat, biosdetect=auto, translation=auto, model="Generic
1234"
The biosdetect option has currently no effect on the bios
Examples:
ata0-master: type=disk, path=10M.sample, cylinders=306, heads=4, spt=17
ata0-slave: type=disk, path=20M.sample, cylinders=615, heads=4, spt=17
ata1-master: type=disk, path=30M.sample, cylinders=615, heads=6, spt=17
ata1-slave: type=disk, path=46M.sample, cylinders=940, heads=6, spt=17
ata2-master: type=disk, path=62M.sample, cylinders=940, heads=8, spt=17
ata2-slave: type=disk, path=112M.sample, cylinders=900, heads=15, spt=17
ata3-master: type=disk, path=483M.sample, cylinders=1024, heads=15,
spt=63
ata3-slave: type=cdrom, path=iso.sample, status=inserted
Example:
boot: cdrom, floppy, disk
Example:
floppy_bootsig_check: disabled=1
Example:
log: bochs.out
log: /dev/tty (unix only)
log: /dev/null (unix only)
Default : %t%e%d
Examples:
logprefix: %t-%e-@%i-%d
logprefix: %i%e%d
The safest setting is action=fatal or action=ask. If you are getting panics, you can try action=report instead. If you allow Bochs to continue after a panic, don't be surprised if you get strange behavior or crashes if a panic occurs. Please report panic messages unless it is just a configuration problem like "could not find hard drive image."
Examples:
panic: action=fatal
panic: action=ask
The "error" setting tells Bochs how to respond to an error condition. You can set this to fatal (terminate the session), ask (ask user how to proceed), warn (show dialog with message and continue), report (print information to the log file), or ignore (do nothing).
Example:
error: action=report
error: action=warn
Example:
info: action=report
NOTE: When action=report, Bochs may spit out thousands of debug messages per second, which can impact performance and fill up your disk.
Example:
debug: action=ignore
Example:
log: debugger.out
log: /dev/null (unix only)
log: -
In socket* and pipe* (win32 only) modes Bochs becomes either
socket/named pipe client or server. In client mode it connects to an
already running server (if connection fails Bochs treats com port as not
connected). In server mode it opens socket/named pipe and waits until a
client application connects to it before starting simulation. This mode
is useful for remote debugging (e.g. with gdb's "target remote
host:port" command or windbg's command line option -k
com:pipe,port=\.ipeipename).
Socket modes use simple TCP communication, pipe modes use duplex byte mode
pipes.
Other serial modes are 'null' (no input/output), 'file' (output to a file specified as the 'dev' parameter and changeable at runtime), 'raw' (use the real serial port - partly implemented on win32) and 'mouse' (standard serial mouse - requires mouse option setting 'type=serial', 'type=serial_wheel' or 'type=serial_msys')
Examples:
com1: enabled=1, mode=term, dev=/dev/ttyp7
com2: enabled=1, mode=file, dev=serial.out
com1: enabled=1, mode=mouse
Examples:
parport1: enabled=1, file=parport.out
parport2: enabled=1, file="/dev/lp0"
parport1: enabled=0
waveoutdrv:
This defines the driver to be used for the waveout feature.
Possible values are 'file' (all wave data sent to file), 'dummy' (no
output) and the platform-dependant drivers 'alsa', 'oss', 'osx', 'sdl'
and 'win'.
waveout:
This defines the device to be used for wave output (if necessary) or
the output file for the 'file' driver.
waveindrv:
This defines the driver to be used for the wavein feature.
Possible values are 'dummy' (recording silence) and platform-dependent
drivers 'alsa', 'oss', 'sdl' and 'win'.
wavein:
This defines the device to be used for wave input (if necessary).
midioutdrv:
This defines the driver to be used for the MIDI output feature.
Possible values are 'file' (all MIDI data sent to file), 'dummy' (no
output) and platform-dependent drivers 'alsa', 'oss', 'osx' and
'win'.
midiout:
This defines the device to be used for MIDI output (if necessary).
driver:
This defines the driver to be used for all sound features with one
property. Possible values are 'default' (platform default) and all
other choices described above. Overriding one or more settings with
the specific driver parameter is possible.
Example for one driver (uses platform-default):
sound: driver=default, waveout=/dev/dsp Example for different drivers:
sound: waveoutdrv=sdl, waveindrv=alsa, midioutdrv=dummy
Example:
speaker: enabled=1, mode=sound
PROPERTIES FOR sb16:
enabled:
This optional property controls the presence of the SB16 emulation.
The emulation is turned on unless this property is used and set to 0.
midimode:
This parameter specifies what to do with the MIDI output.
0 = no output
1 = output to device specified with the sound option (system dependent)
2 = MIDI or raw data output to file (depends on file name extension)
3 = dual output (mode 1 and 2 at the same time)
midifile:
This is the file where the midi output is stored (midimode 2 or 3).
wavemode:
This parameter specifies what to do with the PCM output.
0 = no output
1 = output to device specified with the sound option (system dependent)
2 = VOC, WAV or raw data output to file (depends on file name extension)
3 = dual output (mode 1 and 2 at the same time)
wavefile:
This is the file where the wave output is stored (wavemode 2 or 3).
log:
The file to write the sb16 emulator messages to.
loglevel:
0 = No log.
1 = Resource changes, midi program and bank changes.
2 = Severe errors.
3 = All errors.
4 = All errors plus all port accesses.
5 = All errors and port accesses plus a lot
of extra information.
It is possible to change the loglevel at runtime.
dmatimer:
Microseconds per second for a DMA cycle. Make it smaller to fix non-continuous sound. 750000 is usually a good value. This needs a reasonably correct setting for the IPS parameter of the CPU option. It is possible to adjust the dmatimer at runtime.
Examples for output modes:
sb16: midimode=2, midifile="output.mid", wavemode=1 # MIDI to
file
sb16: midimode=1, wavemode=3, wavefile="output.wav" # wave to
file and device
Example for using 'sound' parameters:
es1370: enabled=1, wavemode=1 Example for sending output to file:
es1370: enabled=1, wavemode=2, wavefile=output.voc
PROPERTIES FOR ne2k:
IOADDR, IRQ: You probably won't need to change ioaddr and irq, unless there are IRQ conflicts. These parameters are ignored if the NE2000 is assigned to a PCI slot.
MAC: The MAC address MUST NOT match the address of any machine on the net. Also, the first byte must be an even number (bit 0 set means a multicast address), and you cannot use ff:ff:ff:ff:ff:ff because that's the broadcast address. For the ethertap module, you must use fe:fd:00:00:00:01. There may be other restrictions too. To be safe, just use the b0:c4... address.
ETHMOD: The ethmod value defines which low level OS specific
module to be used to access physical ethernet interface. Current
implemented values include
- fbsd : ethernet on freebsd and openbsd
- linux : ethernet on linux
- win32 : ethernet on win32
- tap : ethernet through a linux tap interface
- tuntap : ethernet through a linux tuntap interface
- slirp : built-in Slirp support with DHCP / TFTP servers
If you don't want to make connections to any physical
networks, you can use the following 'ethmod's to simulate a virtual
network.
- null : All packets are discarded, but logged to a few files
- vde : Virtual Distributed Ethernet
- vnet : ARP, ICMP-echo(ping), DHCP and TFTP are simulated
The virtual host uses 192.168.10.1
DHCP assigns 192.168.10.2 to the guest
The TFTP server use 'ethdev' for the root directory and doesn't
overwrite files
- socket : Connect up to 6 Bochs instances with external program 'bxhub'
(simulating an ethernet hub). It provides the same services as the
'vnet' module and assigns IP addresses like 'slirp' (10.0.2.x).
ETHDEV: The ethdev value is the name of the network interface on your host platform. On UNIX machines, you can get the name by running ifconfig. On Windows machines, you must run niclist to get the name of the ethdev. Niclist source code is in misc/niclist.c and it is included in Windows binary releases. The 'socket' module uses this parameter to specify the UDP port for receiving packets and (optional) the host to connect.
SCRIPT: The script value is optional, and is the name of a script that is executed after bochs initialize the network interface. You can use this script to configure this network interface, or enable masquerading. This is mainly useful for the tun/tap devices that only exist during Bochs execution. The network interface name is supplied to the script as first parameter. The 'slirp' module uses this parameter to specify a config file for setting up an alternative IP configuration or additional features. The 'vnet' module uses this parameter to specify an alternative log file name.
BOOTROM: The bootrom value is optional, and is the name of the ROM image to load. Note that this feature is only implemented for the PCI version of the NE2000.
Examples:
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xlo
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=linux,
ethdev=eth0
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=win32,
ethdev=MYCARD
ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tap, ethdev=tap0
ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tuntap,
ethdev=/dev/net/tun0, script=./tunconfig
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vde,
ethdev="/tmp/vde.ctl"
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vnet,
ethdev="c:/temp"
ne2k: mac=b0:c4:20:00:00:01, ethmod=socket, ethdev=40000 # use localhost
ne2k: mac=b0:c4:20:00:00:01, ethmod=socket, ethdev=mymachine:40000
ne2k: mac=b0:c4:20:00:00:01, ethmod=slirp, script=slirp.conf,
bootrom=ne2k_pci.rom
Example:
pnic: enabled=1, mac=b0:c4:20:00:00:00, ethmod=vnet
Example:
e1000: enabled=1, mac=52:54:00:12:34:56, ethmod=slirp,
script=slirp.conf
If you connect the mouse or tablet to one of the ports, Bochs forwards the mouse movement data to the USB device instead of the selected mouse type. When connecting the keypad to one of the ports, Bochs forwards the input of the numeric keypad to the USB device instead of the PS/2 keyboard.
To connect a 'flat' mode image as a USB hardisk you can use the 'disk' device with the path to the image separated with a colon. To use other disk image modes similar to ATA disks the syntax 'disk:mode:filename' must be used (see below).
To emulate a USB cdrom you can use the 'cdrom' device name and the path to an ISO image or raw device name also separated with a colon. An option to insert/eject media is available in the runtime configuration.
To emulate a USB floppy you can use the 'floppy' device with the path to the image separated with a colon. To use the VVFAT image mode similar to the legacy floppy the syntax 'floppy:vvfat:directory' must be used (see below). An option to insert/eject media is available in the runtime configuration.
The device name 'hub' connects an external hub with max. 8 ports (default: 4) to the root hub. To specify the number of ports you have to add the value separated with a colon. Connecting devices to the external hub ports is only available in the runtime configuration.
The device 'printer' emulates the HP Deskjet 920C printer. The PCL data is sent to a file specified in bochsrc.txt. The current code appends the PCL code to the file if the file already existed. The output file can be changed at runtime.
The optionsX parameter can be used to assign specific options to the device connected to the corresponding USB port. Currently this feature is used to set the speed reported by device ('low', 'full', 'high' or 'super'). The available speed choices depend on both HC and device. The option 'debug' turns on debug output for the device at connection time. For the USB 'disk' device the optionsX parameter can be used to specify an alternative redolog file (journal) of some image modes. For 'vvfat' mode USB disks the optionsX parameter can be used to specify the disk size (range 128M ... 128G). If the size is not specified, it defaults to 504M. For the USB 'floppy' device the optionsX parameter can be used to specify an alternative device ID to be reported. Currently only the model "teac" is supported (can fix hw detection in some guest OS). The USB floppy also accepts the parameter "write_protected" with valid values 0 and 1 to select the access mode (default is 0).
Examples:
usb_uhci: enabled=1, port1=mouse, port2=disk:usbstick.img
usb_uhci: enabled=1, port1=hub:7, port2=disk:growing:usbdisk.img
usb_uhci: enabled=1, port2=disk:undoable:usbdisk.img,
options2=journal:redo.log
usb_uhci: enabled=1, port2=disk:usbdisk2.img, options2=sect_size:1024
usb_uhci: enabled=1, port2=disk:vvfat:vvfat,
options2="debug,speed:full"
usb_uhci: enabled=1, port1=printer:printdata.bin, port2=cdrom:image.iso
usb_uhci: enabled=1, port2=floppy:vvfat:diskette,
options2="model:teac"
Example:
usb_ohci: enabled=1
Example:
usb_ehci: enabled=1, port1=tablet, options1="speed:high"
Example:
usb_xhci: enabled=1
Example:
pcidev: vendor=0x1234, device=0x5678
The vendor and device arguments should contain the vendor ID respectively the device ID of the PCI device you want to map within Bochs. The PCI mapping is still very experimental and not maintained yet.
Example:
user_plugin: name=testdev
This program is distributed under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. See the LICENSE and COPYING files located in /usr/share/doc/bochs/ for details on the license and the lack of warranty.
The latest version of this program can be found at:
http://bochs.sourceforge.net/getcurrent.html
bochs(1), bochs-dlx(1), bximage(1)
The Bochs IA-32 Emulator site on the World Wide Web:
http://bochs.sourceforge.net Online Bochs Documentation http://bochs.sourceforge.net/doc/docbook
The Bochs emulator was created by Kevin Lawton
(kevin@mandrakesoft.com), and is currently maintained by the members of the
Bochs x86 Emulator Project. You can see a current roster of members at:
http://bochs.sourceforge.net/getinvolved.html
Please report all bugs to the bug tracker on our web site. Just go to http://bochs.sourceforge.net, and click "Bug Reports" on the sidebar under "Feedback".
Provide a detailed description of the bug, the version of the program you are running, the operating system you are running the program on and the operating system you are running in the emulator.
01 Jan 2020 | bochsrc |