FFMPEG-FORMATS(1) | FFMPEG-FORMATS(1) |
ffmpeg-formats - FFmpeg formats
This document describes the supported formats (muxers and demuxers) provided by the libavformat library.
The libavformat library provides some generic global options, which can be set on all the muxers and demuxers. In addition each muxer or demuxer may support so-called private options, which are specific for that component.
Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.
The list of supported options follows:
Possible values for input files:
Possible values for output files:
Possible values:
Possible values:
To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one packet for each stream before actually writing any packets to the output file. When some streams are "sparse" (i.e. there are large gaps between successive packets), this can result in excessive buffering.
This field specifies the maximum difference between the timestamps of the first and the last packet in the muxing queue, above which libavformat will output a packet regardless of whether it has queued a packet for all the streams.
If set to 0, libavformat will continue buffering packets until it has a packet for each stream, regardless of the maximum timestamp difference between the buffered packets.
When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and subtitles desynching and relative timestamp differences are preserved compared to how they would have been without shifting.
offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual.
The offset is added by the muxer to the output timestamps.
Specifying a positive offset means that the corresponding streams are delayed bt the time duration specified in offset. Default value is 0 (meaning that no offset is applied).
ffprobe -dump_separator " " -i ~/videos/matrixbench_mpeg2.mpg
Possible values:
Format stream specifiers allow selection of one or more streams that match specific properties.
The exact semantics of stream specifiers is defined by the "avformat_match_stream_specifier()" function declared in the libavformat/avformat.h header and documented in the Stream specifiers section in the ffmpeg(1) manual.
Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type of file.
When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list all available ones using the configure option "--list-demuxers".
You can disable all the demuxers using the configure option "--disable-demuxers", and selectively enable a single demuxer with the option "--enable-demuxer=DEMUXER", or disable it with the option "--disable-demuxer=DEMUXER".
The option "-demuxers" of the ff* tools will display the list of enabled demuxers. Use "-formats" to view a combined list of enabled demuxers and muxers.
The description of some of the currently available demuxers follows.
Audible Format 2, 3, and 4 demuxer.
This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.
Animated Portable Network Graphics demuxer.
This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but not including) the first fcTL chunk are transmitted as extradata. Frames are then split as being all the chunks between two fcTL ones, or between the last fcTL and IEND chunks.
Advanced Systems Format demuxer.
This demuxer is used to demux ASF files and MMS network streams.
Virtual concatenation script demuxer.
This demuxer reads a list of files and other directives from a text file and demuxes them one after the other, as if all their packets had been muxed together.
The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts where the previous one finishes. Note that it is done globally and may cause gaps if all streams do not have exactly the same length.
All files must have the same streams (same codecs, same time base, etc.).
The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect (because it was computed using the bit-rate or because the file is truncated, for example), it can cause artifacts. The "duration" directive can be used to override the duration stored in each file.
Syntax
The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces and lines starting with '#' are ignored. The following directive is recognized:
All subsequent file-related directives apply to that file.
To make FFmpeg recognize the format automatically, this directive must appear exactly as is (no extra space or byte-order-mark) on the very first line of the script.
If the duration is set for all files, then it is possible to seek in the whole concatenated video.
This directive works best with intra frame codecs, because for non-intra frame ones you will usually get extra packets before the actual In point and the decoded content will most likely contain frames before In point too.
For each file, packets before the file In point will have timestamps less than the calculated start timestamp of the file (negative in case of the first file), and the duration of the files (if not specified by the "duration" directive) will be reduced based on their specified In point.
Because of potential packets before the specified In point, packet timestamps may overlap between two concatenated files.
Out point is exclusive, which means that the demuxer will not output packets with a decoding timestamp greater or equal to Out point.
This directive works best with intra frame codecs and formats where all streams are tightly interleaved. For non-intra frame codecs you will usually get additional packets with presentation timestamp after Out point therefore the decoded content will most likely contain frames after Out point too. If your streams are not tightly interleaved you may not get all the packets from all streams before Out point and you may only will be able to decode the earliest stream until Out point.
The duration of the files (if not specified by the "duration" directive) will be reduced based on their specified Out point.
Options
This demuxer accepts the following option:
If set to 0, any file name is accepted.
The default is 1.
-1 is equivalent to 1 if the format was automatically probed and 0 otherwise.
Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in MP4 format. This is necessary in particular if there are resolution changes.
Examples
# my first filename file /mnt/share/file-1.wav # my second filename including whitespace file '/mnt/share/file 2.wav' # my third filename including whitespace plus single quote file '/mnt/share/file 3'\''.wav'
ffconcat version 1.0 file file-1.wav duration 20.0 file subdir/file-2.wav
Dynamic Adaptive Streaming over HTTP demuxer.
This demuxer presents all AVStreams found in the manifest. By setting the discard flags on AVStreams the caller can decide which streams to actually receive. Each stream mirrors the "id" and "bandwidth" properties from the "<Representation>" as metadata keys named "id" and "variant_bitrate" respectively.
Adobe Flash Video Format demuxer.
This demuxer is used to demux FLV files and RTMP network streams. In case of live network streams, if you force format, you may use live_flv option instead of flv to survive timestamp discontinuities.
ffmpeg -f flv -i myfile.flv ... ffmpeg -f live_flv -i rtmp://<any.server>/anything/key ....
Animated GIF demuxer.
It accepts the following options:
For example, with the overlay filter, place an infinitely looping GIF over another video:
ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv
Note that in the above example the shortest option for overlay filter is used to end the output video at the length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops infinitely.
HLS demuxer
Apple HTTP Live Streaming demuxer.
This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant index number. By setting the discard flags on AVStreams (by pressing 'a' or 'v' in ffplay), the caller can decide which variant streams to actually receive. The total bitrate of the variant that the stream belongs to is available in a metadata key named "variant_bitrate".
It accepts the following options:
Image file demuxer.
This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the pattern is specified by the option pattern_type.
The pattern may contain a suffix which is used to automatically determine the format of the images contained in the files.
The size, the pixel format, and the format of each image must be the same for all the files in the sequence.
This demuxer accepts the following options:
pattern_type accepts one of the following values.
A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the characters representing a sequential number in each filename matched by the pattern. If the form "%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the total number of 0-padded digits representing the number. The literal character '%' can be specified in the pattern with the string "%%".
If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by the pattern must contain a number inclusively contained between start_number and start_number+start_number_range-1, and all the following numbers must be sequential.
For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg" will match a sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ..., i%m%g-10.jpg, etc.
Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a single image file img.jpeg you can employ the command:
ffmpeg -i img.jpeg img.png
The pattern is interpreted like a "glob()" pattern. This is only selectable if libavformat was compiled with globbing support.
If your version of libavformat was compiled with globbing support, and the provided pattern contains at least one glob meta character among "%*?[]{}" that is preceded by an unescaped "%", the pattern is interpreted like a "glob()" pattern, otherwise it is interpreted like a sequence pattern.
All glob special characters "%*?[]{}" must be prefixed with "%". To escape a literal "%" you shall use "%%".
For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by "foo-" and terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the filenames prefixed with "foo-", followed by a sequence of three characters, and terminating with ".jpeg".
This pattern type is deprecated in favor of glob and sequence.
Default value is glob_sequence.
Examples
ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv
ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv
ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv
The Game Music Emu library is a collection of video game music file emulators.
See <https://bitbucket.org/mpyne/game-music-emu/overview> for more information.
It accepts the following options:
ModPlug based module demuxer
See <https://github.com/Konstanty/libmodplug>
It will export one 2-channel 16-bit 44.1 kHz audio stream. Optionally, a "pal8" 16-color video stream can be exported with or without printed metadata.
It accepts the following options:
libopenmpt based module demuxer
See <https://lib.openmpt.org/libopenmpt/> for more information.
Some files have multiple subsongs (tracks) this can be set with the subsong option.
It accepts the following options:
The default value is to let libopenmpt choose.
Demuxer for Quicktime File Format & ISO/IEC Base Media File Format (ISO/IEC 14496-12 or MPEG-4 Part 12, ISO/IEC 15444-12 or JPEG 2000 Part 12).
Registered extensions: mov, mp4, m4a, 3gp, 3g2, mj2, psp, m4b, ism, ismv, isma, f4v
Options
This demuxer accepts the following options:
Following options are available:
Audible AAX
Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation secret.
ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4
MPEG-2 transport stream demuxer.
This demuxer accepts the following options:
MJPEG encapsulated in multi-part MIME demuxer.
This demuxer allows reading of MJPEG, where each frame is represented as a part of multipart/x-mixed-replace stream.
Raw video demuxer.
This demuxer allows one to read raw video data. Since there is no header specifying the assumed video parameters, the user must specify them in order to be able to decode the data correctly.
This demuxer accepts the following options:
For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of "rgb24", a video size of "320x240", and a frame rate of 10 images per second, use the command:
ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw
SBaGen script demuxer.
This demuxer reads the script language used by SBaGen <http://uazu.net/sbagen/> to generate binaural beats sessions. A SBG script looks like that:
-SE a: 300-2.5/3 440+4.5/0 b: 300-2.5/0 440+4.5/3 off: - NOW == a +0:07:00 == b +0:14:00 == a +0:21:00 == b +0:30:00 off
A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps (including the script start time) or only relative ones, then its layout is fixed, and the conversion is straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference for relative timestamps will be taken from the current time of day at the time the script is read, and the script layout will be frozen according to that reference. That means that if the script is directly played, the actual times will match the absolute timestamps up to the sound controller's clock accuracy, but if the user somehow pauses the playback or seeks, all times will be shifted accordingly.
JSON captions used for <http://www.ted.com/>.
TED does not provide links to the captions, but they can be guessed from the page. The file tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.
This demuxer accepts the following option:
Example: convert the captions to a format most players understand:
ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt
Vapoursynth wrapper.
Due to security concerns, Vapoursynth scripts will not be autodetected so the input format has to be forced. For ff* CLI tools, add "-f vapoursynth" before the input "-i yourscript.vpy".
This demuxer accepts the following option:
Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of file.
When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all available muxers using the configure option "--list-muxers".
You can disable all the muxers with the configure option "--disable-muxers" and selectively enable / disable single muxers with the options "--enable-muxer=MUXER" / "--disable-muxer=MUXER".
The option "-muxers" of the ff* tools will display the list of enabled muxers. Use "-formats" to view a combined list of enabled demuxers and muxers.
A description of some of the currently available muxers follows.
Audio Interchange File Format muxer.
Options
It accepts the following options:
Advanced Systems Format muxer.
Note that Windows Media Audio (wma) and Windows Media Video (wmv) use this muxer too.
Options
It accepts the following options:
Audio Video Interleaved muxer.
Options
It accepts the following options:
The required index space depends on the output file size and should be about 16 bytes per gigabyte. When this option is omitted or set to zero the necessary index space is guessed.
This option is enabled by default. Disabling the channel mask can be useful in specific scenarios, e.g. when merging multiple audio streams into one for compatibility with software that only supports a single audio stream in AVI (see the "amerge" section in the ffmpeg-filters manual).
Chromaprint fingerprinter.
This muxer feeds audio data to the Chromaprint library, which generates a fingerprint for the provided audio data. See <https://acoustid.org/chromaprint>
It takes a single signed native-endian 16-bit raw audio stream of at most 2 channels.
Options
CRC (Cyclic Redundancy Check) testing format.
This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.
The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal number 0-padded to 8 digits containing the CRC for all the decoded input frames.
See also the framecrc muxer.
Examples
For example to compute the CRC of the input, and store it in the file out.crc:
ffmpeg -i INPUT -f crc out.crc
You can print the CRC to stdout with the command:
ffmpeg -i INPUT -f crc -
You can select the output format of each frame with ffmpeg by specifying the audio and video codec and format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the input video converted to MPEG-2 video, use the command:
ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -
Adobe Flash Video Format muxer.
This muxer accepts the following options:
Dynamic Adaptive Streaming over HTTP (DASH) muxer that creates segments and manifest files according to the MPEG-DASH standard ISO/IEC 23009-1:2014.
For more information see:
It creates a MPD manifest file and segment files for each stream.
The segment filename might contain pre-defined identifiers used with SegmentTemplate as defined in section 5.3.9.4.4 of the standard. Available identifiers are "$RepresentationID$", "$Number$", "$Bandwidth$" and "$Time$". In addition to the standard identifiers, an ffmpeg-specific "$ext$" identifier is also supported. When specified ffmpeg will replace $ext$ in the file name with muxing format's extensions such as mp4, webm etc.,
ffmpeg -re -i <input> -map 0 -map 0 -c:a libfdk_aac -c:v libx264 \ -b:v:0 800k -b:v:1 300k -s:v:1 320x170 -profile:v:1 baseline \ -profile:v:0 main -bf 1 -keyint_min 120 -g 120 -sc_threshold 0 \ -b_strategy 0 -ar:a:1 22050 -use_timeline 1 -use_template 1 \ -window_size 5 -adaptation_sets "id=0,streams=v id=1,streams=a" \ -f dash /path/to/out.mpd
To map all video (or audio) streams to an AdaptationSet, "v" (or "a") can be used as stream identifier instead of IDs.
When no assignment is defined, this defaults to an AdaptationSet for each stream.
Optional syntax is "id=x,seg_duration=x,frag_duration=x,frag_type=type,descriptor=descriptor_string,streams=a,b,c id=y,seg_duration=y,frag_type=type,streams=d,e" and so on, descriptor is useful to the scheme defined by ISO/IEC 23009-1:2014/Amd.2:2015. For example, -adaptation_sets "id=0,descriptor=<SupplementalProperty schemeIdUri=\"urn:mpeg:dash:srd:2014\" value=\"0,0,0,1,1,2,2\"/>,streams=v". Please note that descriptor string should be a self-closing xml tag. seg_duration, frag_duration and frag_type override the global option values for each adaptation set. For example, -adaptation_sets "id=0,seg_duration=2,frag_duration=1,frag_type=duration,streams=v id=1,seg_duration=2,frag_type=none,streams=a" type_id marks an adaptation set as containing streams meant to be used for Trick Mode for the referenced adaptation set. For example, -adaptation_sets "id=0,seg_duration=2,frag_type=none,streams=0 id=1,seg_duration=10,frag_type=none,trick_id=0,streams=1"
When enabled, the logic monitors the flow of segment indexes. If a streams's segment index value is not at the expected real time position, then the logic corrects that index value.
Typically this logic is needed in live streaming use cases. The network bandwidth fluctuations are common during long run streaming. Each fluctuation can cause the segment indexes fall behind the expected real time position.
Per-packet CRC (Cyclic Redundancy Check) testing format.
This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.
The output of the muxer consists of a line for each audio and video packet of the form:
<stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, 0x<CRC>
CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.
Examples
For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.crc:
ffmpeg -i INPUT -f framecrc out.crc
To print the information to stdout, use the command:
ffmpeg -i INPUT -f framecrc -
With ffmpeg, you can select the output format to which the audio and video frames are encoded before computing the CRC for each packet by specifying the audio and video codec. For example, to compute the CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input video frame converted to MPEG-2 video, use the command:
ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -
See also the crc muxer.
Per-packet hash testing format.
This muxer computes and prints a cryptographic hash for each audio and video packet. This can be used for packet-by-packet equality checks without having to individually do a binary comparison on each.
By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash, but the output of explicit conversions to other codecs can also be used. It uses the SHA-256 cryptographic hash function by default, but supports several other algorithms.
The output of the muxer consists of a line for each audio and video packet of the form:
<stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, <hash>
hash is a hexadecimal number representing the computed hash for the packet.
Examples
To compute the SHA-256 hash of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.sha256:
ffmpeg -i INPUT -f framehash out.sha256
To print the information to stdout, using the MD5 hash function, use the command:
ffmpeg -i INPUT -f framehash -hash md5 -
See also the hash muxer.
Per-packet MD5 testing format.
This is a variant of the framehash muxer. Unlike that muxer, it defaults to using the MD5 hash function.
Examples
To compute the MD5 hash of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.md5:
ffmpeg -i INPUT -f framemd5 out.md5
To print the information to stdout, use the command:
ffmpeg -i INPUT -f framemd5 -
See also the framehash and md5 muxers.
Animated GIF muxer.
It accepts the following options:
For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:
ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif
Note 1: if you wish to extract the frames into separate GIF files, you need to force the image2 muxer:
ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"
Note 2: the GIF format has a very large time base: the delay between two frames can therefore not be smaller than one centi second.
Hash testing format.
This muxer computes and prints a cryptographic hash of all the input audio and video frames. This can be used for equality checks without having to do a complete binary comparison.
By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other algorithms.
The output of the muxer consists of a single line of the form: algo=hash, where algo is a short string representing the hash function used, and hash is a hexadecimal number representing the computed hash.
Examples
To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file out.sha256:
ffmpeg -i INPUT -f hash out.sha256
To print an MD5 hash to stdout use the command:
ffmpeg -i INPUT -f hash -hash md5 -
See also the framehash muxer.
Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming (HLS) specification.
It creates a playlist file, and one or more segment files. The output filename specifies the playlist filename.
By default, the muxer creates a file for each segment produced. These files have the same name as the playlist, followed by a sequential number and a .ts extension.
Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time constraint.
For example, to convert an input file with ffmpeg:
ffmpeg -i in.mkv -c:v h264 -flags +cgop -g 30 -hls_time 1 out.m3u8
This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts, out2.ts, etc.
See also the segment muxer, which provides a more generic and flexible implementation of a segmenter, and can be used to perform HLS segmentation.
Options
This muxer supports the following options:
This option is useful to avoid to fill the disk with many segment files, and limits the maximum number of segment files written to disk to wrap.
It accepts the following values:
Note that the playlist sequence number must be unique for each segment and it is not to be confused with the segment filename sequence number which can be cyclic, for example if the wrap option is specified.
ffmpeg -i in.nut -hls_segment_filename 'file%03d.ts' out.m3u8
This example will produce the playlist, out.m3u8, and segment files: file000.ts, file001.ts, file002.ts, etc.
filename may contain full path or relative path specification, but only the file name part without any path info will be contained in the m3u8 segment list. Should a relative path be specified, the path of the created segment files will be relative to the current working directory. When strftime_mkdir is set, the whole expanded value of filename will be written into the m3u8 segment list.
When "var_stream_map" is set with two or more variant streams, the filename pattern must contain the string "%v", this string specifies the position of variant stream index in the generated segment file names.
ffmpeg -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ -hls_segment_filename 'file_%v_%03d.ts' out_%v.m3u8
This example will produce the playlists segment file sets: file_0_000.ts, file_0_001.ts, file_0_002.ts, etc. and file_1_000.ts, file_1_001.ts, file_1_002.ts, etc.
The string "%v" may be present in the filename or in the last directory name containing the file, but only in one of them. (Additionally, %v may appear multiple times in the last sub-directory or filename.) If the string %v is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of segments corresponding to different variant streams in subdirectories.
ffmpeg -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ -hls_segment_filename 'vs%v/file_%03d.ts' vs%v/out.m3u8
This example will produce the playlists segment file sets: vs0/file_000.ts, vs0/file_001.ts, vs0/file_002.ts, etc. and vs1/file_000.ts, vs1/file_001.ts, vs1/file_002.ts, etc.
ffmpeg -i in.nut -strftime 1 -hls_segment_filename 'file-%Y%m%d-%s.ts' out.m3u8
This example will produce the playlist, out.m3u8, and
segment files: file-20160215-1455569023.ts,
file-20160215-1455569024.ts, etc. Note: On some
systems/environments, the %s specifier is not
available. See
"strftime()" documentation.
ffmpeg -i in.nut -strftime 1 -hls_flags second_level_segment_index -hls_segment_filename 'file-%Y%m%d-%%04d.ts' out.m3u8
This example will produce the playlist, out.m3u8, and segment files: file-20160215-0001.ts, file-20160215-0002.ts, etc.
ffmpeg -i in.nut -strftime 1 -strftime_mkdir 1 -hls_segment_filename '%Y%m%d/file-%Y%m%d-%s.ts' out.m3u8
This example will create a directory 201560215 (if it does not exist), and then produce the playlist, out.m3u8, and segment files: 20160215/file-20160215-1455569023.ts, 20160215/file-20160215-1455569024.ts, etc.
ffmpeg -i in.nut -strftime 1 -strftime_mkdir 1 -hls_segment_filename '%Y/%m/%d/file-%Y%m%d-%s.ts' out.m3u8
This example will create a directory hierarchy 2016/02/15 (if any of them do not exist), and then produce the playlist, out.m3u8, and segment files: 2016/02/15/file-20160215-1455569023.ts, 2016/02/15/file-20160215-1455569024.ts, etc.
Key info file format:
<key URI> <key file path> <IV> (optional)
Example key URIs:
http://server/file.key /path/to/file.key file.key
Example key file paths:
file.key /path/to/file.key
Example IV:
0123456789ABCDEF0123456789ABCDEF
Key info file example:
http://server/file.key /path/to/file.key 0123456789ABCDEF0123456789ABCDEF
Example shell script:
#!/bin/sh BASE_URL=${1:-'.'} openssl rand 16 > file.key echo $BASE_URL/file.key > file.keyinfo echo file.key >> file.keyinfo echo $(openssl rand -hex 16) >> file.keyinfo ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \ -hls_key_info_file file.keyinfo out.m3u8
When "var_stream_map" is set with two or more variant streams, the filename pattern must contain the string "%v", this string specifies the position of variant stream index in the generated init file names. The string "%v" may be present in the filename or in the last directory name containing the file. If the string is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of init files corresponding to different variant streams in subdirectories.
ffmpeg -i in.nut -hls_flags single_file out.m3u8
Will produce the playlist, out.m3u8, and a single segment file, out.ts.
ffmpeg -i sample.mpeg \ -f hls -hls_time 3 -hls_list_size 5 \ -hls_flags second_level_segment_index+second_level_segment_size+second_level_segment_duration \ -strftime 1 -strftime_mkdir 1 -hls_segment_filename "segment_%Y%m%d%H%M%S_%%04d_%%08s_%%013t.ts" stream.m3u8
This will produce segments like this: segment_20170102194334_0003_00122200_0000003000000.ts, segment_20170102194334_0004_00120072_0000003000000.ts etc.
ffmpeg -re -i in.ts -f hls -method PUT http://example.com/live/out.m3u8
This example will upload all the mpegts segment files to the HTTP server using the HTTP PUT method, and update the m3u8 files every "refresh" times using the same method. Note that the HTTP server must support the given method for uploading files.
When there are two or more variant streams, the output filename pattern must contain the string "%v", this string specifies the position of variant stream index in the output media playlist filenames. The string "%v" may be present in the filename or in the last directory name containing the file. If the string is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of variant streams in subdirectories.
ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ http://example.com/live/out_%v.m3u8
This example creates two hls variant streams. The first variant stream will contain video stream of bitrate 1000k and audio stream of bitrate 64k and the second variant stream will contain video stream of bitrate 256k and audio stream of bitrate 32k. Here, two media playlist with file names out_0.m3u8 and out_1.m3u8 will be created. If you want something meaningful text instead of indexes in result names, you may specify names for each or some of the variants as in the following example.
ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0,name:my_hd v:1,a:1,name:my_sd" \ http://example.com/live/out_%v.m3u8
This example creates two hls variant streams as in the previous one. But here, the two media playlist with file names out_my_hd.m3u8 and out_my_sd.m3u8 will be created.
ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k \ -map 0:v -map 0:a -map 0:v -f hls -var_stream_map "v:0 a:0 v:1" \ http://example.com/live/out_%v.m3u8
This example creates three hls variant streams. The first variant stream will be a video only stream with video bitrate 1000k, the second variant stream will be an audio only stream with bitrate 64k and the third variant stream will be a video only stream with bitrate 256k. Here, three media playlist with file names out_0.m3u8, out_1.m3u8 and out_2.m3u8 will be created.
ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ http://example.com/live/vs_%v/out.m3u8
This example creates the variant streams in subdirectories. Here, the first media playlist is created at http://example.com/live/vs_0/out.m3u8 and the second one at http://example.com/live/vs_1/out.m3u8.
ffmpeg -re -i in.ts -b:a:0 32k -b:a:1 64k -b:v:0 1000k -b:v:1 3000k \ -map 0:a -map 0:a -map 0:v -map 0:v -f hls \ -var_stream_map "a:0,agroup:aud_low a:1,agroup:aud_high v:0,agroup:aud_low v:1,agroup:aud_high" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8
This example creates two audio only and two video only variant streams. In addition to the #EXT-X-STREAM-INF tag for each variant stream in the master playlist, #EXT-X-MEDIA tag is also added for the two audio only variant streams and they are mapped to the two video only variant streams with audio group names 'aud_low' and 'aud_high'.
By default, a single hls variant containing all the encoded streams is created.
ffmpeg -re -i in.ts -b:a:0 32k -b:a:1 64k -b:v:0 1000k \ -map 0:a -map 0:a -map 0:v -f hls \ -var_stream_map "a:0,agroup:aud_low,default:yes a:1,agroup:aud_low v:0,agroup:aud_low" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8
This example creates two audio only and one video only variant streams. In addition to the #EXT-X-STREAM-INF tag for each variant stream in the master playlist, #EXT-X-MEDIA tag is also added for the two audio only variant streams and they are mapped to the one video only variant streams with audio group name 'aud_low', and the audio group have default stat is NO or YES.
By default, a single hls variant containing all the encoded streams is created.
ffmpeg -re -i in.ts -b:a:0 32k -b:a:1 64k -b:v:0 1000k \ -map 0:a -map 0:a -map 0:v -f hls \ -var_stream_map "a:0,agroup:aud_low,default:yes,language:ENG a:1,agroup:aud_low,language:CHN v:0,agroup:aud_low" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8
This example creates two audio only and one video only variant streams. In addition to the #EXT-X-STREAM-INF tag for each variant stream in the master playlist, #EXT-X-MEDIA tag is also added for the two audio only variant streams and they are mapped to the one video only variant streams with audio group name 'aud_low', and the audio group have default stat is NO or YES, and one audio have and language is named ENG, the other audio language is named CHN.
By default, a single hls variant containing all the encoded streams is created.
ffmpeg -y -i input_with_subtitle.mkv \ -b:v:0 5250k -c:v h264 -pix_fmt yuv420p -profile:v main -level 4.1 \ -b:a:0 256k \ -c:s webvtt -c:a mp2 -ar 48000 -ac 2 -map 0:v -map 0:a:0 -map 0:s:0 \ -f hls -var_stream_map "v:0,a:0,s:0,sgroup:subtitle" \ -master_pl_name master.m3u8 -t 300 -hls_time 10 -hls_init_time 4 -hls_list_size \ 10 -master_pl_publish_rate 10 -hls_flags \ delete_segments+discont_start+split_by_time ./tmp/video.m3u8
This example adds "#EXT-X-MEDIA" tag with "TYPE=SUBTITLES" in the master playlist with webvtt subtitle group name 'subtitle'. Please make sure the input file has one text subtitle stream at least.
ffmpeg -re -i in.ts -b:v 1000k -b:a 64k -a53cc 1 -f hls \ -cc_stream_map "ccgroup:cc,instreamid:CC1,language:en" \ -master_pl_name master.m3u8 \ http://example.com/live/out.m3u8
This example adds "#EXT-X-MEDIA" tag with "TYPE=CLOSED-CAPTIONS" in the master playlist with group name 'cc', language 'en' (english) and INSTREAM-ID 'CC1'. Also, it adds "CLOSED-CAPTIONS" attribute with group name 'cc' for the output variant stream.
ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -a53cc:0 1 -a53cc:1 1\ -map 0:v -map 0:a -map 0:v -map 0:a -f hls \ -cc_stream_map "ccgroup:cc,instreamid:CC1,language:en ccgroup:cc,instreamid:CC2,language:sp" \ -var_stream_map "v:0,a:0,ccgroup:cc v:1,a:1,ccgroup:cc" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8
This example adds two "#EXT-X-MEDIA" tags with "TYPE=CLOSED-CAPTIONS" in the master playlist for the INSTREAM-IDs 'CC1' and 'CC2'. Also, it adds "CLOSED-CAPTIONS" attribute with group name 'cc' for the two output variant streams.
ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 http://example.com/live/out.m3u8
This example creates HLS master playlist with name master.m3u8 and it is published at http://example.com/live/
ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 \ -hls_time 2 -master_pl_publish_rate 30 http://example.com/live/out.m3u8
This example creates HLS master playlist with name master.m3u8 and keep publishing it repeatedly every after 30 segments i.e. every after 60s.
ICO file muxer.
Microsoft's icon file format (ICO) has some strict limitations that should be noted:
BMP Bit Depth FFmpeg Pixel Format 1bit pal8 4bit pal8 8bit pal8 16bit rgb555le 24bit bgr24 32bit bgra
Image file muxer.
The image file muxer writes video frames to image files.
The output filenames are specified by a pattern, which can be used to produce sequentially numbered series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position of the characters representing a numbering in the filenames. If the form "%0Nd" is used, the string representing the number in each filename is 0-padded to N digits. The literal character '%' can be specified in the pattern with the string "%%".
If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the number 1, all the following numbers will be sequential.
The pattern may contain a suffix which is used to automatically determine the format of the image files to write.
For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form img-001.bmp, img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" will specify a sequence of filenames of the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.
The image muxer supports the .Y.U.V image file format. This format is special in that that each image frame consists of three files, for each of the YUV420P components. To read or write this image file format, specify the name of the '.Y' file. The muxer will automatically open the '.U' and '.V' files as required.
Options
Examples
The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg, img-002.jpeg, ..., taking one image every second from the input video:
ffmpeg -i in.avi -vsync cfr -r 1 -f image2 'img-%03d.jpeg'
Note that with ffmpeg, if the format is not specified with the "-f" option and the output filename specifies an image file format, the image2 muxer is automatically selected, so the previous command can be written as:
ffmpeg -i in.avi -vsync cfr -r 1 'img-%03d.jpeg'
Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single image file img.jpeg from the start of the input video you can employ the command:
ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg
The strftime option allows you to expand the filename with date and time information. Check the documentation of the "strftime()" function for the syntax.
For example to generate image files from the "strftime()" "%Y-%m-%d_%H-%M-%S" pattern, the following ffmpeg command can be used:
ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"
You can set the file name with current frame's PTS:
ffmpeg -f v4l2 -r 1 -i /dev/video0 -copyts -f image2 -frame_pts true %d.jpg"
A more complex example is to publish contents of your desktop directly to a WebDAV server every second:
ffmpeg -f x11grab -framerate 1 -i :0.0 -q:v 6 -update 1 -protocol_opts method=PUT http://example.com/desktop.jpg
Matroska container muxer.
This muxer implements the matroska and webm container specs.
Metadata
The recognized metadata settings in this muxer are:
The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for French), or a language code mixed with a country code for specialities in languages (like "fre-ca" for Canadian French).
The following values are recognized:
For example a 3D WebM clip can be created using the following command line:
ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
Options
This muxer supports the following options:
If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file header and then try to write the cues there when the muxing finishes. If the reserved space does not suffice, no Cues will be written, the file will be finalized and writing the trailer will return an error. A safe size for most use cases should be about 50kB per hour of video.
Note that cues are only written if the output is seekable and this option will have no effect if it is not.
MD5 testing format.
This is a variant of the hash muxer. Unlike that muxer, it defaults to using the MD5 hash function.
Examples
To compute the MD5 hash of the input converted to raw audio and video, and store it in the file out.md5:
ffmpeg -i INPUT -f md5 out.md5
You can print the MD5 to stdout with the command:
ffmpeg -i INPUT -f md5 -
See also the hash and framemd5 muxers.
MOV/MP4/ISMV (Smooth Streaming) muxer.
The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about all packets stored in one location (written at the end of the file, it can be moved to the start for better playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file consists of a number of fragments, where packets and metadata about these packets are stored together. Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted (while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when writing very long files (since writing normal MOV/MP4 files stores info about every single packet in memory until the file is closed). The downside is that it is less compatible with other applications.
Options
Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:
If more than one condition is specified, fragments are cut when one of the specified conditions is fulfilled. The exception to this is "-min_frag_duration", which has to be fulfilled for any of the other conditions to apply.
Additionally, the way the output file is written can be adjusted through a few other options:
This option is implicitly set when writing ismv (Smooth Streaming) files.
This option is implicitly set when writing ismv (Smooth Streaming) files.
This option is implicitly set when writing ismv (Smooth Streaming) files.
Setting value to pts is applicable only for a live encoding use case, where PTS values are set as as wallclock time at the source. For example, an encoding use case with decklink capture source where video_pts and audio_pts are set to abs_wallclock.
Example
Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer. Example:
ffmpeg -re <<normal input/transcoding options>> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)
The MP3 muxer writes a raw MP3 stream with the following optional features:
The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The pictures are supplied to the muxer in form of a video stream with a single packet. There can be any number of those streams, each will correspond to a single APIC frame. The stream metadata tags title and comment map to APIC description and picture type respectively. See <http://id3.org/id3v2.4.0-frames> for allowed picture types.
Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio frames until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible to avoid excessive buffering.
Examples:
Write an mp3 with an ID3v2.3 header and an ID3v1 footer:
ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3
To attach a picture to an mp3 file select both the audio and the picture stream with "map":
ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1 -metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3
Write a "clean" MP3 without any extra features:
ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3
MPEG transport stream muxer.
This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
The recognized metadata settings in mpegts muxer are "service_provider" and "service_name". If they are not set the default for "service_provider" is FFmpeg and the default for "service_name" is Service01.
Options
The muxer options are:
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111 ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111 ... ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111 ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111 ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111 ...
Example
ffmpeg -i file.mpg -c copy \ -mpegts_original_network_id 0x1122 \ -mpegts_transport_stream_id 0x3344 \ -mpegts_service_id 0x5566 \ -mpegts_pmt_start_pid 0x1500 \ -mpegts_start_pid 0x150 \ -metadata service_provider="Some provider" \ -metadata service_name="Some Channel" \ out.ts
MXF muxer.
Options
The muxer options are:
Null muxer.
This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.
For example to benchmark decoding with ffmpeg you can use the command:
ffmpeg -benchmark -i INPUT -f null out.null
Note that the above command does not read or write the out.null file, but specifying the output file is required by the ffmpeg syntax.
Alternatively you can write the command as:
ffmpeg -benchmark -i INPUT -f null -
Use of this option is not recommended, as the resulting files are very damage sensitive and seeking is not possible. Also in general the overhead from syncpoints is negligible. Note, -C<write_index> 0 can be used to disable all growing data tables, allowing to mux endless streams with limited memory and without these disadvantages.
The none and timestamped flags are experimental.
ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor
Ogg container muxer.
Basic stream segmenter.
This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename pattern can be set in a fashion similar to image2, or by using a "strftime" template if the strftime option is enabled.
"stream_segment" is a variant of the muxer used to write to streaming output formats, i.e. which do not require global headers, and is recommended for outputting e.g. to MPEG transport stream segments. "ssegment" is a shorter alias for "stream_segment".
Every segment starts with a keyframe of the selected reference stream, which is set through the reference_stream option.
Note that if you want accurate splitting for a video file, you need to make the input key frames correspond to the exact splitting times expected by the segmenter, or the segment muxer will start the new segment with the key frame found next after the specified start time.
The segment muxer works best with a single constant frame rate video.
Optionally it can generate a list of the created segments, by setting the option segment_list. The list type is specified by the segment_list_type option. The entry filenames in the segment list are set by default to the basename of the corresponding segment files.
See also the hls muxer, which provides a more specific implementation for HLS segmentation.
Options
The segment muxer supports the following options:
It currently supports the following flags:
The following values are recognized:
<segment_filename>,<segment_start_time>,<segment_end_time>
segment_filename is the name of the output file generated by the muxer according to the provided pattern. CSV escaping (according to RFC4180) is applied if required.
segment_start_time and segment_end_time specify the segment start and end time expressed in seconds.
A list file with the suffix ".csv" or ".ext" will auto-select this format.
ext is deprecated in favor or csv.
A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.
A list file with the suffix ".m3u8" will auto-select this format.
If not specified the type is guessed from the list file name suffix.
Note that splitting may not be accurate, unless you force the reference stream key-frames at the given time. See the introductory notice and the examples below.
For example with segment_time set to "900" this makes it possible to create files at 12:00 o'clock, 12:15, 12:30, etc.
Default value is "0".
For example with segment_time set to "900" and segment_clocktime_offset set to "300" this makes it possible to create files at 12:05, 12:20, 12:35, etc.
Default value is "0".
Default is the maximum possible duration which means starting a new segment regardless of the elapsed time since the last clock time.
When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:
PTS >= start_time - time_delta
This option is useful when splitting video content, which is always split at GOP boundaries, in case a key frame is found just before the specified split time.
In particular may be used in combination with the ffmpeg option force_key_frames. The key frame times specified by force_key_frames may not be set accurately because of rounding issues, with the consequence that a key frame time may result set just before the specified time. For constant frame rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the specified time and the time set by force_key_frames.
This option specifies to start a new segment whenever a reference stream key frame is found and the sequential number (starting from 0) of the frame is greater or equal to the next value in the list.
Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time constraint.
Examples
ffmpeg -i in.mkv -codec hevc -flags +cgop -g 60 -map 0 -f segment -segment_list out.list out%03d.nut
ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4
ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut
ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \ -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut
In order to force key frames on the input file, transcoding is required.
ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut
ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a aac -f ssegment -segment_list out.list out%03d.ts
ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \ -segment_list_flags +live -segment_time 10 out%03d.mkv
Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional web server.
Per stream hash testing format.
This muxer computes and prints a cryptographic hash of all the input frames, on a per-stream basis. This can be used for equality checks without having to do a complete binary comparison.
By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other algorithms.
The output of the muxer consists of one line per stream of the form: streamindex,streamtype,algo=hash, where streamindex is the index of the mapped stream, streamtype is a single character indicating the type of stream, algo is a short string representing the hash function used, and hash is a hexadecimal number representing the computed hash.
Examples
To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file out.sha256:
ffmpeg -i INPUT -f streamhash out.sha256
To print an MD5 hash to stdout use the command:
ffmpeg -i INPUT -f streamhash -hash md5 -
See also the hash and framehash muxers.
The fifo pseudo-muxer allows the separation of encoding and muxing by using first-in-first-out queue and running the actual muxer in a separate thread. This is especially useful in combination with the tee muxer and can be used to send data to several destinations with different reliability/writing speed/latency.
API users should be aware that callback functions (interrupt_callback, io_open and io_close) used within its AVFormatContext must be thread-safe.
The behavior of the fifo muxer if the queue fills up or if the output fails is selectable,
Examples
ffmpeg -re -i ... -c:v libx264 -c:a aac -f fifo -fifo_format flv -map 0:v -map 0:a -drop_pkts_on_overflow 1 -attempt_recovery 1 -recovery_wait_time 1 rtmp://example.com/live/stream_name
The tee muxer can be used to write the same data to several outputs, such as files or streams. It can be used, for example, to stream a video over a network and save it to disk at the same time.
It is different from specifying several outputs to the ffmpeg command-line tool. With the tee muxer, the audio and video data will be encoded only once. With conventional multiple outputs, multiple encoding operations in parallel are initiated, which can be a very expensive process. The tee muxer is not useful when using the libavformat API directly because it is then possible to feed the same packets to several muxers directly.
Since the tee muxer does not represent any particular output format, ffmpeg cannot auto-select output streams. So all streams intended for output must be specified using "-map". See the examples below.
Some encoders may need different options depending on the output format; the auto-detection of this can not work with the tee muxer, so they need to be explicitly specified. The main example is the global_header flag.
The slave outputs are specified in the file name given to the muxer, separated by '|'. If any of the slave name contains the '|' separator, leading or trailing spaces or any special character, those must be escaped (see the "Quoting and escaping" section in the ffmpeg-utils(1) manual).
Options
Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated by ':', between square brackets. If the options values contain a special character or the ':' separator, they must be escaped; note that this is a second level escaping.
The following special options are also recognized:
It is possible to specify to which streams a given bitstream filter applies, by appending a stream specifier to the option separated by "/". spec must be a stream specifier (see Format stream specifiers).
If the stream specifier is not specified, the bitstream filters will be applied to all streams in the output. This will cause that output operation to fail if the output contains streams to which the bitstream filter cannot be applied e.g. "h264_mp4toannexb" being applied to an output containing an audio stream.
Options for a bitstream filter must be specified in the form of "opt=value".
Several bitstream filters can be specified, separated by ",".
You may use multiple stream specifiers separated by commas (",") e.g.: "a:0,v"
Examples
ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a "archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"
ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a "[onfail=ignore]archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"
ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -f tee "[bsfs/v=dump_extra=freq=keyframe]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"
ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -f tee "[bsfs/v=dump_extra=freq=keyframe]out.ts|[movflags=+faststart]out.mp4|[select=\'a:1\']out.aac"
WebM DASH Manifest muxer.
This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It also supports manifest generation for DASH live streams.
For more information see:
Options
This muxer supports the following options:
Example
ffmpeg -f webm_dash_manifest -i video1.webm \ -f webm_dash_manifest -i video2.webm \ -f webm_dash_manifest -i audio1.webm \ -f webm_dash_manifest -i audio2.webm \ -map 0 -map 1 -map 2 -map 3 \ -c copy \ -f webm_dash_manifest \ -adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \ manifest.xml
WebM Live Chunk Muxer.
This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that support WebM Live streams via DASH.
Options
This muxer supports the following options:
Example
ffmpeg -f v4l2 -i /dev/video0 \ -f alsa -i hw:0 \ -map 0:0 \ -c:v libvpx-vp9 \ -s 640x360 -keyint_min 30 -g 30 \ -f webm_chunk \ -header webm_live_video_360.hdr \ -chunk_start_index 1 \ webm_live_video_360_%d.chk \ -map 1:0 \ -c:a libvorbis \ -b:a 128k \ -f webm_chunk \ -header webm_live_audio_128.hdr \ -chunk_start_index 1 \ -audio_chunk_duration 1000 \ webm_live_audio_128_%d.chk
FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and then load it back using the metadata muxer/demuxer.
The file format is as follows:
Next a chapter section must contain chapter start and end times in form START=num, END=num, where num is a positive integer.
A ffmetadata file might look like this:
;FFMETADATA1 title=bike\\shed ;this is a comment artist=FFmpeg troll team [CHAPTER] TIMEBASE=1/1000 START=0 #chapter ends at 0:01:00 END=60000 title=chapter \#1 [STREAM] title=multi\ line
By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.
Extracting an ffmetadata file with ffmpeg goes as follows:
ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE
Reinserting edited metadata information from the FFMETADATAFILE file can be done as:
ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT
The FFmpeg developers.
For details about the authorship, see the Git history of the project (https://git.ffmpeg.org/ffmpeg), e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at <https://git.ffmpeg.org/ffmpeg>.
Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.