Object::Pad(3pm) | User Contributed Perl Documentation | Object::Pad(3pm) |
"Object::Pad" - a simple syntax for lexical slot-based objects
use Object::Pad; class Point { has $x = 0; has $y = 0; BUILD { ($x, $y) = @_; } method move ($dX, $dY) { $x += $dX; $y += $dY; } method describe { print "A point at ($x, $y)\n"; } } Point->new(5,10)->describe;
This module provides a simple syntax for creating object classes, which uses private variables that look like lexicals as object member fields.
WARNING This module is still very experimental. The parts that currently exist do seem to work reliably but much of the design is still evolving, and many features and have yet to be implemented. I don't yet guarantee I won't have to change existing details in order to continue its development. Feel free to try it out in experimental or newly-developed code, but don't complain if a later version is incompatible with your current code and you'll have to change it.
That all said, please do get in contact if you find the module overall useful. The more feedback you provide in terms of what features you are using, what you find works, and what doesn't, will help the ongoing development and hopefully eventual stability of the design. See the "FEEDBACK" section.
Classes are automatically provided with a constructor method, called "new", which helps create the object instances.
As part of the construction process, the "BUILD" block of every component class will be invoked, passing in the list of arguments the constructor was invoked with. Each class should perform its required setup behaviour, but does not need to chain to the "SUPER" class first; this is handled automatically.
If the class provides a "BUILDARGS" class method, that is used to mangle the list of arguments before the "BUILD" blocks are called. Note this must be a class method not an instance method (and so implemented using "sub"). It should perform any "SUPER" chaining as may be required.
@args = $class->BUILDARGS( @_ )
class Name :ATTRS... { ... } class Name :ATTRS...;
Behaves similarly to the "package" keyword, but provides a package that defines a new class. Such a class provides an automatic constructor method called "new".
As with "package", an optional block may be provided. If so, the contents of that block define the new class and the preceding package continues afterwards. If not, it sets the class as the package context of following keywords and definitions.
As with "package", an optional version declaration may be given. If so, this sets the value of the package's $VERSION variable.
class Name VERSION { ... } class Name VERSION;
A single superclass is supported by the keyword "extends"
class Name extends BASECLASS { ... } class Name extends BASECLASS BASEVER { ... }
If a package providing the superclass does not exist, an attempt is made to load it by code equivalent to
require Animal ();
and thus it must either already exist, or be locatable via the usual @INC mechanisms.
The superclass may or may not itself be implemented by "Object::Pad", but if it is not then see "SUBCLASSING CLASSIC PERL CLASSES" for further detail on the semantics of how this operates.
An optional version check can also be supplied; it performs the equivalent of
BaseClass->VERSION( $ver )
One or more roles can be composed into the class by the keyword "implements"
class Name implements ROLE, ROLE,... { ... }
An optional list of attributes may be supplied in similar syntax as for subs or lexical variables. (These are annotations about the class itself; the concept should not be confused with per-object-instance data, which here is called "slots"). The following class attributes are supported:
:repr(TYPE)
Sets the representation type for instances of this class. Must be one of the following values:
:repr(native)
The native representation. This is an opaque representation type whose contents are not specified. It only works for classes whose entire inheritence hierarchy is built only from classes based on "Object::Pad".
:repr(HASH)
The representation will be a blessed hash reference. The instance data will be stored in an array referenced by a key called "Object::Pad/slots", which is fairly unlikely to clash with existing storage on the instance. No other keys will be used; they are available for implementions and subclasses to use. The exact format of the value stored here is not specified and may change between module versions, though it can be relied on to be well-behaved as some kind of perl data structure for purposes of modules like Data::Dumper or serialisation into things like "YAML" or "JSON".
This representation type may be useful when converting existing classes into using "Object::Pad" where there may be existing subclasses of it that presume a blessed hash for their own use.
:repr(magic)
The representation will use MAGIC to apply the instance data in a way that is invisible at the Perl level, and shouldn't get in the way of other things the instance is doing even in XS modules.
This representation type is the only one that will work for subclassing existing classes that do not use blessed hashes.
:repr(autoselect), :repr(default)
Since version 0.23.
This representation will select one of the representations above depending on what is best for the situation. Classes not derived from a non-"Object::Pad" base class will pick "native", and classes derived from non-"Object::Pad" bases will pick either the "HASH" or "magic" forms depending on whether the instance is a blessed hash reference or some other kind.
This achieves the best combination of DWIM while still allowing the common forms of hash reference to be inspected by "Data::Dumper", etc. This is the default representation type, and does not have to be specifically requested.
role Name :ATTRS... { ... } role Name :ATTRS...;
Since version 0.32.
Similar to "class", but provides a package that defines a new role. A role acts simliar to a class in some respects, and differently in others.
Like a class, a role can have a version, and named methods.
role Name VERSION { method a { ... } method b { ... } }
A role does not provide a constructor, and instances cannot directly be constructed. A role cannot extend a class.
A role can declare that it requires methods of given names from any class that implements the role.
role Name { requires METHOD; }
A role can provide instance slots. These are visible to any "BUILD" blocks or methods provided by that role.
Since version 0.33.
role Name { has $slot; BUILD { $slot = "a value" } method slot { return $slot } }
The following role attributes are supported:
:compat(invokable)
Since version 0.35.
Enables a form of backward-compatibility behaviour useful for gradually upgrading existing code from classical Perl inheritance or mixins into using roles.
Normally, methods of a role cannot be directly invoked and the role must be applied to an Object::Pad-based class in order to be used. This however presents a problem when gradually upgrading existing code that already uses techniques like roles, multiple inheritance or mixins when that code may be split across multiple distributions, or for some other reason cannot be upgraded all at once. Methods within a role that has the ":compat(invokable)" attribute applied to it may be directly invoked on any object instance. This allows the creation of a role that can still provide code for existing classes written in classical Perl that has not yet been rewritten to use "Object::Pad".
The tradeoff is that a ":compat(invokable)" role may not create slot data using the "has" keyword. Whatever behaviours the role wishes to perform must be provided only by calling other methods on $self, or perhaps by making assumptions about the representation type of instances.
It should be stressed again: This option is only intended for gradual upgrade of existing classical Perl code into using "Object::Pad". When all existing code is using "Object::Pad" then this attribute can be removed from the role.
has $var; has $var = EXPR; has @var; has %var; has $var :ATTR ATTR...;
Declares that the instances of the class or role have a member field of the given name. This member field (called a "slot") will be accessible as a lexical variable within any "method" declarations in the class.
Array and hash members are permitted and behave as expected; you do not need to store references to anonymous arrays or hashes.
Member fields are private to a class or role. They are not visible to users of the class, nor to subclasses, nor to any class that a role is applied to. In order to provide access to them a class may wish to use "method" to create an accessor, or use the attributes such as ":reader" to get one generated.
A scalar slot may provide a expression that gives an initialisation value, which will be assigned into the slot of every instance during the constructor before the "BUILD" blocks are invoked. Since version 0.29 this expression does not have to be a compiletime constant, though it is evaluated exactly once, at runtime, after the class definition has been parsed. It is not evaluated individually for every object instance of that class.
The following slot attributes are supported:
:reader, :reader(NAME)
Since version 0.27.
Generates a reader method to return the current value of the slot. Currently these are only permitted for scalar slots. If no name is given, the name of the slot is used. A single prefix character "_" will be removed if present.
has $slot :reader; # equivalent to has $slot; method slot { return $slot }
:writer, :writer(NAME)
Since version 0.27.
Generates a writer method to set a new value of the slot from its first argument. Currently these are only permitted for scalar slots. If no name is given, the name of the slot is used prefixed by "set_". A single prefix character "_" will be removed if present.
has $slot :writer; # equivalent to has $slot; method set_slot { $slot = shift; return $self }
Since version 0.28 a generated writer method will return the object invocant itself, allowing a chaining style.
$obj->set_x("x") ->set_y("y") ->set_z("z");
:mutator, :mutator(NAME)
Since version 0.27.
Generates an lvalue mutator method to return or set the value of the slot. These are only permitted for scalar slots. If no name is given, the name of the slot is used. A single prefix character "_" will be removed if present.
has $slot :mutator; # equivalent to has $slot; method slot :lvalue { $slot }
Since version 0.28 all of these generated accessor methods will include argument checking similar to that used by subroutine signatures, to ensure the correct number of arguments are passed - usually zero, but exactly one in the case of a ":writer" method.
method NAME { ... } method NAME (SIGNATURE) { ... } method NAME :ATTRS... { ... }
Declares a new named method. This behaves similarly to the "sub" keyword, except that within the body of the method all of the member fields ("slots") are also accessible. In addition, the method body will have a lexical called $self which contains the invocant object directly; it will already have been shifted from the @_ array.
The "signatures" feature is automatically enabled for method declarations. In this case the signature does not have to account for the invocant instance; that is handled directly.
method m ($one, $two) { say "$self invokes method on one=$one two=$two"; } ... $obj->m(1, 2);
A list of attributes may be supplied as for "sub". The most useful of these is ":lvalue", allowing easy creation of read-write accessors for slots (but see also the ":reader", ":writer" and ":mutator" slot attributes).
class Counter { has $count; method count :lvalue { $count } } my $c = Counter->new; $c->count++;
Every method automatically gets the ":method" attribute applied, which suppresses warnings about ambiguous calls resolved to core functions if the name of a method matches a core function.
The following additional attributes are recognised by "Object::Pad" directly:
:override
Since version 0.29.
Marks that this method expects to override another of the same name from a superclass. It is an error at compiletime if the superclass does not provide such a method.
BUILD { ... } BUILD (SIGNATURE) { ... }
Since version 0.27.
Declares the builder block for this component class. A builder block may use subroutine signature syntax, as for methods, to assist in unpacking its arguments. A build block is not a subroutine and thus is not permitted to use subroutine attributes (for example ":lvalue").
Currently attempts to create a method named "BUILD" (i.e. with syntax "method BUILD {...}") will create a builder block instead. As of version 0.31 such attempts will print a warning at compiletime, and a later version may remove this altogether.
requires NAME;
Declares that this role requires a method of the given name from any class that implements it. It is an error at compiletime if the implementing class does not provide such a method.
In order to encourage users to write clean, modern code, the body of the "class" block acts as if the following pragmata are in effect:
use strict; use warnings; no indirect ':fatal'; # or no feature 'indirect' on perl 5.32 onwards use feature 'signatures';
This list may be extended in subsequent versions to add further restrictions and should not be considered exhaustive.
Further additions will only be ones that remove "discouraged" or deprecated language features with the overall goal of enforcing a more clean modern style within the body. As long as you write code that is in a clean, modern style (and I fully accept that this wording is vague and subjective) you should not find any new restrictions to be majorly problematic. Either the code will continue to run unaffected, or you may have to make some small alterations to bring it into a conforming style.
There are a number of details specific to the case of deriving an "Object::Pad" class from an existing classic Perl class that is not implemented using "Object::Pad".
Instances will pick either the ":repr(HASH)" or ":repr(magic)" storage type.
It is common in classic Perl OO style to invoke methods on $self during the constructor. This is supported here since "Object::Pad" version 0.19. Note however that any methods invoked by the superclass constructor may not see the object in a fully consistent state. (This fact is not specific to using "Object::Pad" and would happen in classic Perl OO as well). The slot initialisers will have been invoked but the "BUILD" blocks will not.
For example; in the following
package ClassicPerlBaseClass { sub new { my $self = bless {}, shift; say "Value seen by superconstructor is ", $self->get_value; return $self; } sub get_value { return "A" } } class DerivedClass extends ClassicPerlBaseClass { has $_value = "B"; BUILD { $_value = "C"; } method get_value { return $_value } } my $obj = DerivedClass->new; say "Value seen by user is ", $obj->get_value;
Until the "ClassicPerlBaseClass::new" superconstructor has returned the "BUILD" block will not have been invoked. The $_value slot will still exist, but its value will be "B" during the superconstructor. After the superconstructor, the "BUILD" blocks are invoked before the completed object is returned to the user. The result will therefore be:
Value seen by superconstructor is B Value seen by user is C
While in no way required, the following suggestions of code style should be noted in order to establish a set of best practices, and encourage consistency of code which uses this module.
While it would be nice for CPAN and other toolchain modules to parse the embedded version declarations in "class" statements, the current state at time of writing (June 2020) is that none of them actually do. As such, it will still be necessary to make a once-per-file $VERSION declaration in syntax those modules can parse.
Further note that these modules will also not parse the "class" declaration, so you will have to duplicate this with a "package" declaration as well as a "class" keyword. This does involve repeating the package name, so is slightly undesirable.
It is hoped that eventually upstream toolchain modules will be adapted to accept the "class" syntax as being sufficient to declare a package and set its version.
See also
Begin the file with a "use Object::Pad" line; ideally including a minimum-required version. This should be followed by the toplevel "package" and "class" declarations for the file. As it is at toplevel there is no need to use the block notation; it can be a unit class.
There is no need to "use strict" or apply other usual pragmata; these will be implied by the "class" keyword.
use Object::Pad 0.16; package My::Classname 1.23; class My::Classname; # other use statements # has, methods, etc.. can go here
Slot names should follow similar rules to regular lexical variables in code - lowercase, name components separated by underscores. For tiny examples such as "dumb record" structures this may be sufficient.
class Tag { has $name :mutator; has $value :mutator; }
In larger examples with lots of non-trivial method bodies, it can get confusing to remember where the slot variables come from (because we no longer have the "$self->{ ... }" visual clue). In these cases it is suggested to prefix the slot names with a leading underscore, to make them more visually distinct.
class Spudger { has $_grapefruit; ... method mangle { $_grapefruit->peel; # The leading underscore reminds us this is a slot } }
A cross-module integration test asserts that "dynamically" works correctly on object instance slots:
use Object::Pad; use Syntax::Keyword::Dynamically; class Container { has $value = 1; method example { dynamically $value = 2; ,.. # value is restored to 1 on return from this method } }
As of Future::AsyncAwait version 0.38 and Object::Pad version 0.15, both modules now use XS::Parse::Sublike to parse blocks of code. Because of this the two modules can operate together and allow class methods to be written as async subs which await expressions:
use Future::AsyncAwait; use Object::Pad; class Example { async method perform ($block) { say "$self is performing code"; await $block->(); say "code finished"; } }
These three modules combine; there is additionally a cross-module test to ensure that object instance slots can be "dynamically" set during a suspended "async method".
The following points are details about the design of pad slot-based object systems in general:
Concrete example: The "$self->{split_at}" access that Tickit::Widget::HSplit makes of its parent class Tickit::Widget::LinearSplit.
These points are more about this particular module's implementation:
sub new { ... }
use Syntax::Keyword::Dynamically; has $loglevel; method quietly { dynamically $loglevel = LOG_ERROR; ... }
The following resources are useful forms of providing feedback, especially in the form of reports of what you find good or bad about the module, requests for new features, questions on best practice, etc...
Paul Evans <leonerd@leonerd.org.uk>
2021-02-20 | perl v5.32.1 |