DOKK / manpages / debian 11 / librsb-dev / rsb-spblas.h.3.en
rsb-spblas.h(3) librsb rsb-spblas.h(3)

librsb - rsb-spblas.h - A Sparse BLAS interface (see http://www.netlib.org/blas/blast-forum/) to librsb. Level 1 (vector-vector operations) is supported in a basic way. Level 2 (sparse matrix-dense vector operations) is supported fully. Level 3 (sparse matrix-dense matrix operations) is supported as a wrapper around Level 2.


int BLAS_susdot (enum blas_conj_type conj, int nnz, const float *x, const int *indx, const float *y, int incy, float *r, enum blas_base_type index_base)
void blas_susdot_ (enum blas_conj_type *conj, int *nnz, const float *x, const int *indx, const float *y, int *incy, float *r, enum blas_base_type *index_base, int *istat)
int BLAS_dusdot (enum blas_conj_type conj, int nnz, const double *x, const int *indx, const double *y, int incy, double *r, enum blas_base_type index_base)
void blas_dusdot_ (enum blas_conj_type *conj, int *nnz, const double *x, const int *indx, const double *y, int *incy, double *r, enum blas_base_type *index_base, int *istat)
int BLAS_cusdot (enum blas_conj_type conj, int nnz, const void *x, const int *indx, const void *y, int incy, void *r, enum blas_base_type index_base)
void blas_cusdot_ (enum blas_conj_type *conj, int *nnz, const void *x, const int *indx, const void *y, int *incy, void *r, enum blas_base_type *index_base, int *istat)
int BLAS_zusdot (enum blas_conj_type conj, int nnz, const void *x, const int *indx, const void *y, int incy, void *r, enum blas_base_type index_base)
void blas_zusdot_ (enum blas_conj_type *conj, int *nnz, const void *x, const int *indx, const void *y, int *incy, void *r, enum blas_base_type *index_base, int *istat)
int BLAS_susaxpy (int nnz, float alpha, const float *x, const int *indx, float *y, int incy, enum blas_base_type index_base)
void blas_susaxpy_ (int *nnz, float *alpha, const float *x, const int *indx, float *y, int *incy, enum blas_base_type *index_base, int *istat)
int BLAS_dusaxpy (int nnz, double alpha, const double *x, const int *indx, double *y, int incy, enum blas_base_type index_base)
void blas_dusaxpy_ (int *nnz, double *alpha, const double *x, const int *indx, double *y, int *incy, enum blas_base_type *index_base, int *istat)
int BLAS_cusaxpy (int nnz, const void *alpha, const void *x, const int *indx, void *y, int incy, enum blas_base_type index_base)
void blas_cusaxpy_ (int *nnz, const void *alpha, const void *x, const int *indx, void *y, int *incy, enum blas_base_type *index_base, int *istat)
int BLAS_zusaxpy (int nnz, const void *alpha, const void *x, const int *indx, void *y, int incy, enum blas_base_type index_base)
void blas_zusaxpy_ (int *nnz, const void *alpha, const void *x, const int *indx, void *y, int *incy, enum blas_base_type *index_base, int *istat)
int BLAS_susga (int nnz, const float *y, int incy, float *x, const int *indx, enum blas_base_type index_base)
void blas_susga_ (int *nnz, const float *y, int *incy, float *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_dusga (int nnz, const double *y, int incy, double *x, const int *indx, enum blas_base_type index_base)
void blas_dusga_ (int *nnz, const double *y, int *incy, double *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_cusga (int nnz, const void *y, int incy, void *x, const int *indx, enum blas_base_type index_base)
void blas_cusga_ (int *nnz, const void *y, int *incy, void *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_zusga (int nnz, const void *y, int incy, void *x, const int *indx, enum blas_base_type index_base)
void blas_zusga_ (int *nnz, const void *y, int *incy, void *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_susgz (int nnz, float *y, int incy, float *x, const int *indx, enum blas_base_type index_base)
void blas_susgz_ (int *nnz, float *y, int *incy, float *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_dusgz (int nnz, double *y, int incy, double *x, const int *indx, enum blas_base_type index_base)
void blas_dusgz_ (int *nnz, double *y, int *incy, double *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_cusgz (int nnz, void *y, int incy, void *x, const int *indx, enum blas_base_type index_base)
void blas_cusgz_ (int *nnz, void *y, int *incy, void *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_zusgz (int nnz, void *y, int incy, void *x, const int *indx, enum blas_base_type index_base)
void blas_zusgz_ (int *nnz, void *y, int *incy, void *x, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_sussc (int nnz, const float *x, float *y, int incy, const int *indx, enum blas_base_type index_base)
void blas_sussc_ (int *nnz, const float *x, float *y, int *incy, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_dussc (int nnz, const double *x, double *y, int incy, const int *indx, enum blas_base_type index_base)
void blas_dussc_ (int *nnz, const double *x, double *y, int *incy, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_cussc (int nnz, const void *x, void *y, int incy, const int *indx, enum blas_base_type index_base)
void blas_cussc_ (int *nnz, const void *x, void *y, int *incy, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_zussc (int nnz, const void *x, void *y, int incy, const int *indx, enum blas_base_type index_base)
void blas_zussc_ (int *nnz, const void *x, void *y, int *incy, const int *indx, enum blas_base_type *index_base, int *istat)
int BLAS_susmv (enum blas_trans_type transA, float alpha, blas_sparse_matrix A, const float *x, int incx, float *y, int incy)
void blas_susmv_ (enum blas_trans_type *transA, float *alpha, blas_sparse_matrix *A, const float *x, int *incx, float *y, int *incy, int *istat)
int BLAS_dusmv (enum blas_trans_type transA, double alpha, blas_sparse_matrix A, const double *x, int incx, double *y, int incy)
void blas_dusmv_ (enum blas_trans_type *transA, double *alpha, blas_sparse_matrix *A, const double *x, int *incx, double *y, int *incy, int *istat)
int BLAS_cusmv (enum blas_trans_type transA, const void *alpha, blas_sparse_matrix A, const void *x, int incx, void *y, int incy)
void blas_cusmv_ (enum blas_trans_type *transA, const void *alpha, blas_sparse_matrix *A, const void *x, int *incx, void *y, int *incy, int *istat)
int BLAS_zusmv (enum blas_trans_type transA, const void *alpha, blas_sparse_matrix A, const void *x, int incx, void *y, int incy)
void blas_zusmv_ (enum blas_trans_type *transA, const void *alpha, blas_sparse_matrix *A, const void *x, int *incx, void *y, int *incy, int *istat)
int BLAS_sussv (enum blas_trans_type transT, float alpha, blas_sparse_matrix T, float *x, int incx)
void blas_sussv_ (enum blas_trans_type *transT, float *alpha, blas_sparse_matrix *T, float *x, int *incx, int *istat)
int BLAS_dussv (enum blas_trans_type transT, double alpha, blas_sparse_matrix T, double *x, int incx)
void blas_dussv_ (enum blas_trans_type *transT, double *alpha, blas_sparse_matrix *T, double *x, int *incx, int *istat)
int BLAS_cussv (enum blas_trans_type transT, const void *alpha, blas_sparse_matrix T, void *x, int incx)
void blas_cussv_ (enum blas_trans_type *transT, const void *alpha, blas_sparse_matrix *T, void *x, int *incx, int *istat)
int BLAS_zussv (enum blas_trans_type transT, const void *alpha, blas_sparse_matrix T, void *x, int incx)
void blas_zussv_ (enum blas_trans_type *transT, const void *alpha, blas_sparse_matrix *T, void *x, int *incx, int *istat)
int BLAS_susmm (enum blas_order_type order, enum blas_trans_type transA, int nrhs, float alpha, blas_sparse_matrix A, const float *b, int ldb, float *c, int ldc)
void blas_susmm_ (enum blas_order_type *order, enum blas_trans_type *transA, int *nrhs, float *alpha, blas_sparse_matrix *A, const float *b, int *ldb, float *c, int *ldc, int *istat)
int BLAS_dusmm (enum blas_order_type order, enum blas_trans_type transA, int nrhs, double alpha, blas_sparse_matrix A, const double *b, int ldb, double *c, int ldc)
void blas_dusmm_ (enum blas_order_type *order, enum blas_trans_type *transA, int *nrhs, double *alpha, blas_sparse_matrix *A, const double *b, int *ldb, double *c, int *ldc, int *istat)
int BLAS_cusmm (enum blas_order_type order, enum blas_trans_type transA, int nrhs, const void *alpha, blas_sparse_matrix A, const void *b, int ldb, void *c, int ldc)
void blas_cusmm_ (enum blas_order_type *order, enum blas_trans_type *transA, int *nrhs, const void *alpha, blas_sparse_matrix *A, const void *b, int *ldb, void *c, int *ldc, int *istat)
int BLAS_zusmm (enum blas_order_type order, enum blas_trans_type transA, int nrhs, const void *alpha, blas_sparse_matrix A, const void *b, int ldb, void *c, int ldc)
void blas_zusmm_ (enum blas_order_type *order, enum blas_trans_type *transA, int *nrhs, const void *alpha, blas_sparse_matrix *A, const void *b, int *ldb, void *c, int *ldc, int *istat)
int BLAS_sussm (enum blas_order_type order, enum blas_trans_type transT, int nrhs, float alpha, blas_sparse_matrix T, float *b, int ldb)
void blas_sussm_ (enum blas_order_type *order, enum blas_trans_type *transT, int *nrhs, float *alpha, blas_sparse_matrix *T, float *b, int *ldb, int *istat)
int BLAS_dussm (enum blas_order_type order, enum blas_trans_type transT, int nrhs, double alpha, blas_sparse_matrix T, double *b, int ldb)
void blas_dussm_ (enum blas_order_type *order, enum blas_trans_type *transT, int *nrhs, double *alpha, blas_sparse_matrix *T, double *b, int *ldb, int *istat)
int BLAS_cussm (enum blas_order_type order, enum blas_trans_type transT, int nrhs, const void *alpha, blas_sparse_matrix T, void *b, int ldb)
void blas_cussm_ (enum blas_order_type *order, enum blas_trans_type *transT, int *nrhs, const void *alpha, blas_sparse_matrix *T, void *b, int *ldb, int *istat)
int BLAS_zussm (enum blas_order_type order, enum blas_trans_type transT, int nrhs, const void *alpha, blas_sparse_matrix T, void *b, int ldb)
void blas_zussm_ (enum blas_order_type *order, enum blas_trans_type *transT, int *nrhs, const void *alpha, blas_sparse_matrix *T, void *b, int *ldb, int *istat)
blas_sparse_matrix BLAS_suscr_begin (int m, int n)
void blas_suscr_begin_ (int *m, int *n, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_duscr_begin (int m, int n)
void blas_duscr_begin_ (int *m, int *n, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_cuscr_begin (int m, int n)
void blas_cuscr_begin_ (int *m, int *n, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_zuscr_begin (int m, int n)
void blas_zuscr_begin_ (int *m, int *n, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_suscr_block_begin (int Mb, int Nb, int k, int l)
void blas_suscr_block_begin_ (int *Mb, int *Nb, int *k, int *l, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_duscr_block_begin (int Mb, int Nb, int k, int l)
void blas_duscr_block_begin_ (int *Mb, int *Nb, int *k, int *l, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_cuscr_block_begin (int Mb, int Nb, int k, int l)
void blas_cuscr_block_begin_ (int *Mb, int *Nb, int *k, int *l, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_zuscr_block_begin (int Mb, int Nb, int k, int l)
void blas_zuscr_block_begin_ (int *Mb, int *Nb, int *k, int *l, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_suscr_variable_block_begin (int Mb, int Nb, const int *K, const int *L)
void blas_suscr_variable_block_begin_ (int *Mb, int *Nb, const int *K, const int *L, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_duscr_variable_block_begin (int Mb, int Nb, const int *K, const int *L)
void blas_duscr_variable_block_begin_ (int *Mb, int *Nb, const int *K, const int *L, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_cuscr_variable_block_begin (int Mb, int Nb, const int *K, const int *L)
void blas_cuscr_variable_block_begin_ (int *Mb, int *Nb, const int *K, const int *L, blas_sparse_matrix *A, int *istat)
blas_sparse_matrix BLAS_zuscr_variable_block_begin (int Mb, int Nb, const int *K, const int *L)
void blas_zuscr_variable_block_begin_ (int *Mb, int *Nb, const int *K, const int *L, blas_sparse_matrix *A, int *istat)
int BLAS_suscr_end (blas_sparse_matrix A)
void blas_suscr_end_ (blas_sparse_matrix *A, int *istat)
int BLAS_duscr_end (blas_sparse_matrix A)
void blas_duscr_end_ (blas_sparse_matrix *A, int *istat)
int BLAS_cuscr_end (blas_sparse_matrix A)
void blas_cuscr_end_ (blas_sparse_matrix *A, int *istat)
int BLAS_zuscr_end (blas_sparse_matrix A)
void blas_zuscr_end_ (blas_sparse_matrix *A, int *istat)
int BLAS_suscr_insert_entry (blas_sparse_matrix A, float val, int i, int j)
void blas_suscr_insert_entry_ (blas_sparse_matrix *A, float *val, int *i, int *j, int *istat)
int BLAS_duscr_insert_entry (blas_sparse_matrix A, double val, int i, int j)
void blas_duscr_insert_entry_ (blas_sparse_matrix *A, double *val, int *i, int *j, int *istat)
int BLAS_cuscr_insert_entry (blas_sparse_matrix A, const void *val, int i, int j)
void blas_cuscr_insert_entry_ (blas_sparse_matrix *A, const void *val, int *i, int *j, int *istat)
int BLAS_zuscr_insert_entry (blas_sparse_matrix A, const void *val, int i, int j)
void blas_zuscr_insert_entry_ (blas_sparse_matrix *A, const void *val, int *i, int *j, int *istat)
int BLAS_suscr_insert_entries (blas_sparse_matrix A, int nnz, const float *val, const int *indx, const int *jndx)
void blas_suscr_insert_entries_ (blas_sparse_matrix *A, int *nnz, const float *val, const int *indx, const int *jndx, int *istat)
int BLAS_duscr_insert_entries (blas_sparse_matrix A, int nnz, const double *val, const int *indx, const int *jndx)
void blas_duscr_insert_entries_ (blas_sparse_matrix *A, int *nnz, const double *val, const int *indx, const int *jndx, int *istat)
int BLAS_cuscr_insert_entries (blas_sparse_matrix A, int nnz, const void *val, const int *indx, const int *jndx)
void blas_cuscr_insert_entries_ (blas_sparse_matrix *A, int *nnz, const void *val, const int *indx, const int *jndx, int *istat)
int BLAS_zuscr_insert_entries (blas_sparse_matrix A, int nnz, const void *val, const int *indx, const int *jndx)
void blas_zuscr_insert_entries_ (blas_sparse_matrix *A, int *nnz, const void *val, const int *indx, const int *jndx, int *istat)
int BLAS_suscr_insert_col (blas_sparse_matrix A, int j, int nnz, const float *val, const int *indx)
void blas_suscr_insert_col_ (blas_sparse_matrix *A, int *j, int *nnz, const float *val, const int *indx, int *istat)
int BLAS_duscr_insert_col (blas_sparse_matrix A, int j, int nnz, const double *val, const int *indx)
void blas_duscr_insert_col_ (blas_sparse_matrix *A, int *j, int *nnz, const double *val, const int *indx, int *istat)
int BLAS_cuscr_insert_col (blas_sparse_matrix A, int j, int nnz, const void *val, const int *indx)
void blas_cuscr_insert_col_ (blas_sparse_matrix *A, int *j, int *nnz, const void *val, const int *indx, int *istat)
int BLAS_zuscr_insert_col (blas_sparse_matrix A, int j, int nnz, const void *val, const int *indx)
void blas_zuscr_insert_col_ (blas_sparse_matrix *A, int *j, int *nnz, const void *val, const int *indx, int *istat)
int BLAS_suscr_insert_row (blas_sparse_matrix A, int i, int nnz, const float *val, const int *indx)
void blas_suscr_insert_row_ (blas_sparse_matrix *A, int *i, int *nnz, const float *val, const int *indx, int *istat)
int BLAS_duscr_insert_row (blas_sparse_matrix A, int i, int nnz, const double *val, const int *indx)
void blas_duscr_insert_row_ (blas_sparse_matrix *A, int *i, int *nnz, const double *val, const int *indx, int *istat)
int BLAS_cuscr_insert_row (blas_sparse_matrix A, int i, int nnz, const void *val, const int *indx)
void blas_cuscr_insert_row_ (blas_sparse_matrix *A, int *i, int *nnz, const void *val, const int *indx, int *istat)
int BLAS_zuscr_insert_row (blas_sparse_matrix A, int i, int nnz, const void *val, const int *indx)
void blas_zuscr_insert_row_ (blas_sparse_matrix *A, int *i, int *nnz, const void *val, const int *indx, int *istat)
int BLAS_suscr_insert_clique (blas_sparse_matrix A, const int k, const int l, const float *val, const int row_stride, const int col_stride, const int *indx, const int *jndx)
void blas_suscr_insert_clique_ (blas_sparse_matrix *A, const int *k, const int *l, const float *val, const int *row_stride, const int *col_stride, const int *indx, const int *jndx, int *istat)
int BLAS_duscr_insert_clique (blas_sparse_matrix A, const int k, const int l, const double *val, const int row_stride, const int col_stride, const int *indx, const int *jndx)
void blas_duscr_insert_clique_ (blas_sparse_matrix *A, const int *k, const int *l, const double *val, const int *row_stride, const int *col_stride, const int *indx, const int *jndx, int *istat)
int BLAS_cuscr_insert_clique (blas_sparse_matrix A, const int k, const int l, const void *val, const int row_stride, const int col_stride, const int *indx, const int *jndx)
void blas_cuscr_insert_clique_ (blas_sparse_matrix *A, const int *k, const int *l, const void *val, const int *row_stride, const int *col_stride, const int *indx, const int *jndx, int *istat)
int BLAS_zuscr_insert_clique (blas_sparse_matrix A, const int k, const int l, const void *val, const int row_stride, const int col_stride, const int *indx, const int *jndx)
void blas_zuscr_insert_clique_ (blas_sparse_matrix *A, const int *k, const int *l, const void *val, const int *row_stride, const int *col_stride, const int *indx, const int *jndx, int *istat)
int BLAS_suscr_insert_block (blas_sparse_matrix A, const float *val, int row_stride, int col_stride, int i, int j)
void blas_suscr_insert_block_ (blas_sparse_matrix *A, const float *val, int *row_stride, int *col_stride, int *i, int *j, int *istat)
int BLAS_duscr_insert_block (blas_sparse_matrix A, const double *val, int row_stride, int col_stride, int i, int j)
void blas_duscr_insert_block_ (blas_sparse_matrix *A, const double *val, int *row_stride, int *col_stride, int *i, int *j, int *istat)
int BLAS_cuscr_insert_block (blas_sparse_matrix A, const void *val, int row_stride, int col_stride, int i, int j)
void blas_cuscr_insert_block_ (blas_sparse_matrix *A, const void *val, int *row_stride, int *col_stride, int *i, int *j, int *istat)
int BLAS_zuscr_insert_block (blas_sparse_matrix A, const void *val, int row_stride, int col_stride, int i, int j)
void blas_zuscr_insert_block_ (blas_sparse_matrix *A, const void *val, int *row_stride, int *col_stride, int *i, int *j, int *istat)
int BLAS_uscr_end (blas_sparse_matrix A)
void blas_uscr_end_ (blas_sparse_matrix *A, int *istat)
int BLAS_usds (blas_sparse_matrix A)
void blas_usds_ (blas_sparse_matrix *A, int *istat)
int BLAS_susrows_scale (blas_sparse_matrix A, const float *d, enum blas_trans_type trans)
void blas_susrows_scale_ (blas_sparse_matrix *A, const float *d, enum blas_trans_type *trans, int *istat)
int BLAS_dusrows_scale (blas_sparse_matrix A, const double *d, enum blas_trans_type trans)
void blas_dusrows_scale_ (blas_sparse_matrix *A, const double *d, enum blas_trans_type *trans, int *istat)
int BLAS_cusrows_scale (blas_sparse_matrix A, const void *d, enum blas_trans_type trans)
void blas_cusrows_scale_ (blas_sparse_matrix *A, const void *d, enum blas_trans_type *trans, int *istat)
int BLAS_zusrows_scale (blas_sparse_matrix A, const void *d, enum blas_trans_type trans)
void blas_zusrows_scale_ (blas_sparse_matrix *A, const void *d, enum blas_trans_type *trans, int *istat)
int BLAS_susget_diag (blas_sparse_matrix A, float *d)
void blas_susget_diag_ (blas_sparse_matrix *A, float *d, int *istat)
int BLAS_dusget_diag (blas_sparse_matrix A, double *d)
void blas_dusget_diag_ (blas_sparse_matrix *A, double *d, int *istat)
int BLAS_cusget_diag (blas_sparse_matrix A, void *d)
void blas_cusget_diag_ (blas_sparse_matrix *A, void *d, int *istat)
int BLAS_zusget_diag (blas_sparse_matrix A, void *d)
void blas_zusget_diag_ (blas_sparse_matrix *A, void *d, int *istat)
int BLAS_susget_rows_nnz (blas_sparse_matrix A, int fr, int lr, int *nnzp)
void blas_susget_rows_nnz_ (blas_sparse_matrix *A, int *fr, int *lr, int *nnzp, int *istat)
int BLAS_dusget_rows_nnz (blas_sparse_matrix A, int fr, int lr, int *nnzp)
void blas_dusget_rows_nnz_ (blas_sparse_matrix *A, int *fr, int *lr, int *nnzp, int *istat)
int BLAS_cusget_rows_nnz (blas_sparse_matrix A, int fr, int lr, int *nnzp)
void blas_cusget_rows_nnz_ (blas_sparse_matrix *A, int *fr, int *lr, int *nnzp, int *istat)
int BLAS_zusget_rows_nnz (blas_sparse_matrix A, int fr, int lr, int *nnzp)
void blas_zusget_rows_nnz_ (blas_sparse_matrix *A, int *fr, int *lr, int *nnzp, int *istat)
int BLAS_susget_rows_sparse (blas_sparse_matrix A, float *VA, int *IA, int *JA, int *nnz, int fr, int lr)
void blas_susget_rows_sparse_ (blas_sparse_matrix *A, float *VA, int *IA, int *JA, int *nnz, int *fr, int *lr, int *istat)
int BLAS_dusget_rows_sparse (blas_sparse_matrix A, double *VA, int *IA, int *JA, int *nnz, int fr, int lr)
void blas_dusget_rows_sparse_ (blas_sparse_matrix *A, double *VA, int *IA, int *JA, int *nnz, int *fr, int *lr, int *istat)
int BLAS_cusget_rows_sparse (blas_sparse_matrix A, void *VA, int *IA, int *JA, int *nnz, int fr, int lr)
void blas_cusget_rows_sparse_ (blas_sparse_matrix *A, void *VA, int *IA, int *JA, int *nnz, int *fr, int *lr, int *istat)
int BLAS_zusget_rows_sparse (blas_sparse_matrix A, void *VA, int *IA, int *JA, int *nnz, int fr, int lr)
void blas_zusget_rows_sparse_ (blas_sparse_matrix *A, void *VA, int *IA, int *JA, int *nnz, int *fr, int *lr, int *istat)
int BLAS_susget_matrix_nnz (blas_sparse_matrix A, int *nnz)
void blas_susget_matrix_nnz_ (blas_sparse_matrix *A, int *nnz, int *istat)
int BLAS_dusget_matrix_nnz (blas_sparse_matrix A, int *nnz)
void blas_dusget_matrix_nnz_ (blas_sparse_matrix *A, int *nnz, int *istat)
int BLAS_cusget_matrix_nnz (blas_sparse_matrix A, int *nnz)
void blas_cusget_matrix_nnz_ (blas_sparse_matrix *A, int *nnz, int *istat)
int BLAS_zusget_matrix_nnz (blas_sparse_matrix A, int *nnz)
void blas_zusget_matrix_nnz_ (blas_sparse_matrix *A, int *nnz, int *istat)
int BLAS_susget_infinity_norm (blas_sparse_matrix A, float *in, enum blas_trans_type trans)
void blas_susget_infinity_norm_ (blas_sparse_matrix *A, float *in, enum blas_trans_type *trans, int *istat)
int BLAS_dusget_infinity_norm (blas_sparse_matrix A, double *in, enum blas_trans_type trans)
void blas_dusget_infinity_norm_ (blas_sparse_matrix *A, double *in, enum blas_trans_type *trans, int *istat)
int BLAS_cusget_infinity_norm (blas_sparse_matrix A, void *in, enum blas_trans_type trans)
void blas_cusget_infinity_norm_ (blas_sparse_matrix *A, void *in, enum blas_trans_type *trans, int *istat)
int BLAS_zusget_infinity_norm (blas_sparse_matrix A, void *in, enum blas_trans_type trans)
void blas_zusget_infinity_norm_ (blas_sparse_matrix *A, void *in, enum blas_trans_type *trans, int *istat)
int BLAS_susset_elements (blas_sparse_matrix A, const int *ia, const int *ja, const float *va, int nnz)
void blas_susset_elements_ (blas_sparse_matrix *A, const int *ia, const int *ja, const float *va, int *nnz, int *istat)
int BLAS_dusset_elements (blas_sparse_matrix A, const int *ia, const int *ja, const double *va, int nnz)
void blas_dusset_elements_ (blas_sparse_matrix *A, const int *ia, const int *ja, const double *va, int *nnz, int *istat)
int BLAS_cusset_elements (blas_sparse_matrix A, const int *ia, const int *ja, const void *va, int nnz)
void blas_cusset_elements_ (blas_sparse_matrix *A, const int *ia, const int *ja, const void *va, int *nnz, int *istat)
int BLAS_zusset_elements (blas_sparse_matrix A, const int *ia, const int *ja, const void *va, int nnz)
void blas_zusset_elements_ (blas_sparse_matrix *A, const int *ia, const int *ja, const void *va, int *nnz, int *istat)
int BLAS_susset_element (blas_sparse_matrix A, int i, int j, float *v)
void blas_susset_element_ (blas_sparse_matrix *A, int *i, int *j, float *v, int *istat)
int BLAS_dusset_element (blas_sparse_matrix A, int i, int j, double *v)
void blas_dusset_element_ (blas_sparse_matrix *A, int *i, int *j, double *v, int *istat)
int BLAS_cusset_element (blas_sparse_matrix A, int i, int j, void *v)
void blas_cusset_element_ (blas_sparse_matrix *A, int *i, int *j, void *v, int *istat)
int BLAS_zusset_element (blas_sparse_matrix A, int i, int j, void *v)
void blas_zusset_element_ (blas_sparse_matrix *A, int *i, int *j, void *v, int *istat)
int BLAS_susget_element (blas_sparse_matrix A, int i, int j, float *v)
void blas_susget_element_ (blas_sparse_matrix *A, int *i, int *j, float *v, int *istat)
int BLAS_dusget_element (blas_sparse_matrix A, int i, int j, double *v)
void blas_dusget_element_ (blas_sparse_matrix *A, int *i, int *j, double *v, int *istat)
int BLAS_cusget_element (blas_sparse_matrix A, int i, int j, void *v)
void blas_cusget_element_ (blas_sparse_matrix *A, int *i, int *j, void *v, int *istat)
int BLAS_zusget_element (blas_sparse_matrix A, int i, int j, void *v)
void blas_zusget_element_ (blas_sparse_matrix *A, int *i, int *j, void *v, int *istat)
int BLAS_usgp (blas_sparse_matrix A, int pname)
void blas_usgp_ (blas_sparse_matrix *A, int *pname, int *istat)
void blas_ussp_ (blas_sparse_matrix *A, int *pname, int *istat)
int BLAS_ussp (blas_sparse_matrix A, int pname)
struct rsb_mtx_t * rsb_blas_get_mtx (blas_sparse_matrix A)

A Sparse BLAS interface (see http://www.netlib.org/blas/blast-forum/) to librsb. Level 1 (vector-vector operations) is supported in a basic way. Level 2 (sparse matrix-dense vector operations) is supported fully. Level 3 (sparse matrix-dense matrix operations) is supported as a wrapper around Level 2.

We also implement a number of useful extra functions as custom extensions, giving access to other librsb functionality.

The usage pattern of this interface matches that of the Sparse BLAS standard, exception made for the necessity of initialization/finalization of librsb. The Sparse BLAS interface is also available for Fortran: see rsb_blas_sparse.F90.

The user should be aware of the following:

  • Because this Sparse BLAS implementation is built around librsb, initialization with rsb_lib_init() and finalization with rsb_lib_exit() is necessary. Inclusion of the rsb.h header is necessary.
  • librsb gives users freedom of in/out arbitrarily BLAS types support at configure/build time. Hence, while all the interface functions are always included the Sparse BLAS header file, they may return an error code. Be sure of having configured correctly the library at configure time (and see the blas_sparse.h header file for types configured in the current build).
  • According to the standard, the complex type functions for C accept scalar values by reference rather than by copy; equivalent functions for other types do not do so, so this may cause confusion. Be careful.
  • Error checking is weak; so for instance, passing a function the handle of a matrix of mismatching type will not be detected as an error, although it's incorrect.
  • According to the standard, VBR and BCSR styled constructors are supported, although these are interfaces for librsb's own matrix representation.
  • Here we list functions for both Fortran and C functions. However, the Fortran functions are declared and documented with the C notation. We may provide a better documentation in a subsequent release.
  • Each identifier documented here suffixed by _ (e.g.: blas_susdot_()) can be used from Fortran with the name stripped by that suffix (so in this case, blas_susdot). We will provide a proper fix to this inconvenience in a subsequent release.
  • Each Fortran program using librsb's Sparse BLAS Implementation shall use modules blas_sparse and rsb.
  • Also Fortran programs have to call rsb_lib_init() and rsb_lib_exit() e.g.:


USE blas_sparse ! module implementing the Sparse BLAS on the top of librsb
USE rsb ! rsb module
...
INTEGER :: istat ! integer variable
...
istat = rsb_lib_init(RSB_NULL_INIT_OPTIONS) ! please note that this is not part of Sparse BLAS but it is needed by librsb
if(istat.NE.0)STOP ! a value different than zero signals an error
...
! code calling Sparse BLAS routines
...
istat = rsb_lib_exit(RSB_NULL_EXIT_OPTIONS) ! please note that this is not part of Sparse BLAS but it is needed by librsb
if(istat.NE.0)STOP ! a value different than zero signals an error
...
For Fortran, more procedures exist, although they are not documented here. According to the Sparse BLAS (http://www.netlib.org/blas/blast-forum/), for almost each subroutine whose identifier prefixed with blas_X (with X being one of S,D,C,Z), a corresponding generic modern Fortran version exists. Please note how not all of the certain procedures identifier prefixes include the type character.

E.g.:

! the following code ('d' stays for 'double precision'):
CALL blas_duscr_begin(nr,nc,A,istat)
CALL blas_ussp(A,blas_lower_symmetric,istat)
CALL blas_duscr_insert_entries(A,nnz,VA,IA,JA,istat)
CALL blas_duscr_end(A,istat)
CALL blas_dusmv(transT,alpha,A,X,incX,B,incB,istat) 
CALL blas_dusds(A,istat)
! is equivalent to:
CALL duscr_begin(nr,nc,A,istat) ! here, 'd' must be retained for avoiding ambiguity
CALL ussp(A,blas_lower_symmetric,istat)
CALL uscr_insert_entries(A,nnz,VA,IA,JA,istat)
CALL uscr_end(A,istat)
CALL usmv(transT,alpha,A,X,incX,B,incB,istat) 
CALL usds(A,istat)

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

blas_sparse_matrix BLAS_cuscr_begin (int m, int n)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

blas_sparse_matrix BLAS_cuscr_block_begin (int Mb, int Nb, int k, int l)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.

Returns

On success, 0 is returned; on error, -1.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

blas_sparse_matrix BLAS_cuscr_variable_block_begin (int Mb, int Nb, const int * K, const int * L)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Returns

On success, 0 is returned; on error, -1.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

blas_sparse_matrix BLAS_duscr_begin (int m, int n)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

blas_sparse_matrix BLAS_duscr_block_begin (int Mb, int Nb, int k, int l)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.

Returns

On success, 0 is returned; on error, -1.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

blas_sparse_matrix BLAS_duscr_variable_block_begin (int Mb, int Nb, const int * K, const int * L)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Returns

On success, 0 is returned; on error, -1.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

blas_sparse_matrix BLAS_suscr_begin (int m, int n)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

blas_sparse_matrix BLAS_suscr_block_begin (int Mb, int Nb, int k, int l)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.

Returns

On success, 0 is returned; on error, -1.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

blas_sparse_matrix BLAS_suscr_variable_block_begin (int Mb, int Nb, const int * K, const int * L)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Returns

On success, 0 is returned; on error, -1.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Destroys a matrix.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Destroys a matrix.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get a matrix property.

Parameters

A A is the matrix to apply the property.
pname The desired matrix property. For valid matrix properties, see blas_rsb_ext_type, blas_uplo_type, blas_diag_type, blas_conj_type, blas_base_type, blas_symmetry_type, blas_field_type, blas_size_type, blas_sparsity_optimization_type.

Returns

On success, 0 is returned; on error, -1.

Get a matrix property.

Parameters

A A is the matrix to apply the property.
pname The desired matrix property. For valid matrix properties, see blas_rsb_ext_type, blas_uplo_type, blas_diag_type, blas_conj_type, blas_base_type, blas_symmetry_type, blas_field_type, blas_size_type, blas_sparsity_optimization_type.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Set a matrix property. Should be called just after creation, before nonzeroes insertion.

Parameters

A A is the matrix to apply the property.
pname The desired matrix property. For valid matrix properties, see blas_rsb_ext_type, blas_uplo_type, blas_diag_type, blas_conj_type, blas_base_type, blas_symmetry_type, blas_field_type, blas_size_type, blas_sparsity_optimization_type.

Returns

On success, 0 is returned; on error, -1.

Set a matrix property. Should be called just after creation, before nonzeroes insertion.

Parameters

A A is the matrix to apply the property.
pname The desired matrix property. For valid matrix properties, see blas_rsb_ext_type, blas_uplo_type, blas_diag_type, blas_conj_type, blas_base_type, blas_symmetry_type, blas_field_type, blas_size_type, blas_sparsity_optimization_type.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse vector update: $Y \leftarrow \alpha X + Y$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
alpha Will scale values of $X$ before accumulating to $Y$.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

blas_sparse_matrix BLAS_zuscr_begin (int m, int n)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

m Is the count of rows.
n Is the count of columns.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

blas_sparse_matrix BLAS_zuscr_block_begin (int Mb, int Nb, int k, int l)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

k,l Are row and column dimensions when specifying a matrix as BCSR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.

Returns

On success, 0 is returned; on error, -1.

Makes an assembled matrix out of a matrix in build state. After this, it is not possible anymore to insert nonzeroes, but computational routines.

Parameters

A A valid matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole block in a matrix, assuming it is in build state. The block size is assumed to be the one specified when calling the (type) corresponding matrix blocked begin function. If not called a blocked begin function, will assume 1x1 (that is, no) blocking. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
row_stride,col_stride Row and column strides in accessing val.
i,j Block row/column indices.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

See also

BLAS_cuscr_block_begin, BLAS_cuscr_block_begin, BLAS_duscr_block_begin, BLAS_zuscr_block_begin, BLAS_cuscr_begin, BLAS_suscr_begin, BLAS_duscr_begin, BLAS_zuscr_begin.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole clique in a matrix, assuming this is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
k,l Clique rows and columns count.
val Array of values.
row_stride,col_stride Row/columns stride in accessing the clique.
indx,jndx Row/column indices arrays.

Warning

Signature of this routine for Fortran does not agree to the standard. This shall be corrected in a future release.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole column in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
j Column index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.

Returns

On success, 0 is returned; on error, -1.

Inserts entries in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row indices array.
jndx Column indices array.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.

Returns

On success, 0 is returned; on error, -1.

Inserts an entry in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
val Array of values.
val Array of values.
i,j Row and column indices.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.

Returns

On success, 0 is returned; on error, -1.

Inserts a whole row in a matrix, assuming it is in build state. By default, duplicate entries will be summed together.

Parameters

A A valid matrix handle.
i Row index.
nnz Number of nonzeroes to insert.
val Array of values.
indx Row index.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

blas_sparse_matrix BLAS_zuscr_variable_block_begin (int Mb, int Nb, const int * K, const int * L)

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.

Returns

A matrix handle in case of success, or -1 on error.

Allocates an empty matrix (A) and leaves it in build state.

Parameters

K,L Are arrays specifying row/column block sizes when specifying a matrix as VBR.
Mb Block rows count.
Nb Block columns count.
A A valid pointer to an empty matrix handle.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.
Will assign a valid matrix handle to $A$ in case of success, or set it to -1 on error.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse dot product. $r \leftarrow X^T Y,$ $r \leftarrow X^H Y$

Parameters

r Sparse dot result array.
y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements.
conj If blas_conj, values of X will be considered conjugated.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather. $X \leftarrow Y |_x$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get matrix diagonal. $d\leftarrow diag(A)$.

Parameters

A A valid matrix handle.
d Array for the diagonal entries.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get a single matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get infinity norm of matrix.

Parameters

A A valid matrix handle.
in Infinity norm pointer.
trans Transposition parameter.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix.

Parameters

A A valid matrix handle.
nnz Output value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get nnz count of matrix row interval.

Parameters

A A valid matrix handle.
fr First row.
lr Last row.
nnzp Pointer to the nonzeroes variable.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Get sparse rows of matrix.

Parameters

A A valid matrix handle.
VA pointer to values.
IA Row indices array.
JA Column indices array.
nnz Obtained nonzeroes.
fr first row.
lr Last row.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse gather and zero. $X \leftarrow Y |_x;Y|_x\leftarrow 0$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense matrix (aka multi-vector). Either of $C \leftarrow \alpha AB+C,$ $C \leftarrow \alpha A^T B+C,$ $C \leftarrow \alpha A^H B+C$, depending on the value of transA.

Parameters

order layour of the dense array.
transA Transposition operator for matrix A.
nrhs Number of right hand side columns.
A A valid matrix handle.
alpha Value for $ \alpha $.
b Dense vector b.
ldb Leading dimension of b.
c Dense vector c.
ldc Leading dimension of c.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.\nIf --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Returns

On success, 0 is returned; on error, -1.

Multiply by a dense vector. Either of $Y \leftarrow \alpha A X + Y ,$
$Y \leftarrow \alpha A^T X + Y,$
$Y \leftarrow \alpha A^H X + Y$, depending on the value of transA.

Parameters

transA Transposition operator for matrix A.
alpha Value for $ \alpha $.
A A valid matrix handle.
x Dense vector x.
incx Stride of x.
y Dense vector y.
incy Stride of y.

Note

By setting the blas_rsb_autotune_next_operation property via BLAS_ussp (at any time) the next multiplication routine call (either of BLAS_dusmv, BLAS_susmv, BLAS_zusmv, BLAS_cusmv, BLAS_dusmm, BLAS_susmm, BLAS_zusmm, BLAS_cusmm) will invoke autotuning before carrying out the effective operation. The tuning will take in account parameters like transposition, number of right hand sides, and scaling constants. By setting the blas_rsb_spmv_autotuning_on property via BLAS_ussp, the default number of executing threads for this matrix will be determined once, at matrix assembly time, and employed irrespective of the default threads count (different values for transposed and untransposed multiply). This can be overridden only by setting the RSB_NUM_THREADS environment variable.

See also

On the topic of autotuning, see also rsb_tune_spmm.
If --enable-rsb-num-threads has been specified at configure time, the RSB_NUM_THREADS environment variable will override the number of executing threads specified by OMP_NUM_THREADS. (See also RSB_IO_WANT_EXECUTING_THREADS).

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Scale rows interval of matrix by specified factor.

Parameters

A A valid matrix handle.
d Rows scaling vector.
trans Transposition parameter (if transposed will scale columns).

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..

Returns

On success, 0 is returned; on error, -1.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Sparse scatter: $Y |_x\leftarrow X$.

Parameters

y Array for $Y$ vector.
x Array for $X$ vector.
nnz Size of $X$and $Y$ vectors.
indx Is the array of indices at which sparse vector $X$ will be accessed.
index_base Specifies the contents of indx, either blas_one_base or blas_one_base.
incy The distance between consecutive y array elements..
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Warning

Sparse BLAS Level 1 has been implemented and is working, although not with performance in mind.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Returns

On success, 0 is returned; on error, -1.

Set a single (existing) matrix nonzero coefficient $A_{i,j}$.

Parameters

A A valid matrix handle.
i Row index.
j Column index.
v Value pointer.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Returns

On success, 0 is returned; on error, -1.

Set individual matrix nonzero coefficients values. The operation is pattern preserving, that is, nonzeroes must already exist.

Parameters

A A valid matrix handle.
ia Row indices array.
ja Column indices array.
va Values array.
nnz Length of the ia,ja,va arrays.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality..

Parameters

istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense matrix (aka multi-vector). Either of $B \leftarrow \alpha T^{-1} B,$ $B \leftarrow \alpha T^{-T} B,$ $B \leftarrow \alpha T^{-H} B$, depending on the value of transT.

Parameters

order layour of the dense array.
transT Transposition operator for matrix T.
nrhs Number of right hand side columns.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
b Dense vector b.
ldb Leading dimension of b.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.

Returns

On success, 0 is returned; on error, -1.

Triangular solve, by a dense vector. Either of $X \leftarrow \alpha T^{-1}X,$ $X \leftarrow \alpha T^{-T}X,$ $X \leftarrow \alpha T^{-H}X$, depending on the value of transT.

Parameters

transT Transposition operator for matrix T.
alpha Value for $ \alpha $.
T A valid triangular matrix handle.
x Dense vector x.
incx Stride of x.
istat If non NULL, *istat will be set to the return code, either 0 (success) or -1 (failure).

Returns

This is a subroutine for Fortran, so it does not return any value.

Given a valid Sparse BLAS handle, returns a pointer to the inner rsb_mtx_t structure. Then, this can be used for many of the rsb.h functions. This is an experimental function, so we recommend to use it with functions not modifying the matrix (ones that take const struct rsb_mtx_t*mtxAp). You can use this function from either Fortran or C.

Parameters

A A valid matrix handle.

Returns

On success, a valid pointer to the inner matrix structure (struct rsb_mtx_t*); on error, NULL.


An example using Fortran:

0...  0USE blas_sparse 0USE rsb 0IMPLICIT NONE 0TYPE(C_PTR),TARGET :: mtxAp = C_NULL_PTR ! matrix pointer 0INTEGER :: A ! blas_sparse_matrix handle 0INTEGER, TARGET :: istat = 0 0... ! begin, populate and finalize A, e.g. using BLAS_duscr_begin, BLAS_duscr_insert_entries, BLAS_uscr_end0! get pointer to rsb structure: 0mtxAp = rsb_blas_get_mtx(A) 0! Now one can use it with any rsb.h/rsb.F90 function, e.g.: 0istat = rsb_file_mtx_save(mtxAp, C_NULL_PTR) ! write to stdout 0

See also

rsb_mtx_get_coo, rsb_mtx_get_csr, rsb_mtx_get_rows_sparse, rsb_mtx_get_coo_block, rsb_mtx_get_prec, rsb_mtx_get_nrm, rsb_mtx_get_vec, rsb_file_mtx_get_dims, rsb_mtx_get_vals,

rsb_mtx_upd_vals, rsb_mtx_set_vals,

rsb_spmsp_to_dense, rsb_sppsp, rsb_spmsp, rsb_mtx_add_to_dense,

rsb_mtx_rndr, rsb_file_mtx_rndr,

rsb_mtx_get_info, rsb_mtx_get_info_str, rsb_file_mtx_save, rsb_file_vec_load, rsb_file_mtx_load.

Note

This function is an extension implemented by librsb and thus it is not part of the standard. Do not rely on it, as it may change! Please contact the library maintainers if you need its functionality.

librsb was written by Michele Martone; this documentation has been generated by Doxygen.

rsb-examples rsb-spblas.h rsb.h

Thu Aug 13 2020 Version 1.2.0.9