LLVM-EXEGESIS(1) | LLVM | LLVM-EXEGESIS(1) |
llvm-exegesis - LLVM Machine Instruction Benchmark
llvm-exegesis [options]
llvm-exegesis is a benchmarking tool that uses information available in LLVM to measure host machine instruction characteristics like latency, throughput, or port decomposition.
Given an LLVM opcode name and a benchmarking mode, llvm-exegesis generates a code snippet that makes execution as serial (resp. as parallel) as possible so that we can measure the latency (resp. inverse throughput/uop decomposition) of the instruction. The code snippet is jitted and executed on the host subtarget. The time taken (resp. resource usage) is measured using hardware performance counters. The result is printed out as YAML to the standard output.
The main goal of this tool is to automatically (in)validate the LLVM’s TableDef scheduling models. To that end, we also provide analysis of the results.
llvm-exegesis can also benchmark arbitrary user-provided code snippets.
Assume you have an X86-64 machine. To measure the latency of a single instruction, run:
$ llvm-exegesis -mode=latency -opcode-name=ADD64rr
Measuring the uop decomposition or inverse throughput of an instruction works similarly:
$ llvm-exegesis -mode=uops -opcode-name=ADD64rr $ llvm-exegesis -mode=inverse_throughput -opcode-name=ADD64rr
The output is a YAML document (the default is to write to stdout, but you can redirect the output to a file using -benchmarks-file):
--- key:
opcode_name: ADD64rr
mode: latency
config: '' cpu_name: haswell llvm_triple: x86_64-unknown-linux-gnu num_repetitions: 10000 measurements:
- { key: latency, value: 1.0058, debug_string: '' } error: '' info: 'explicit self cycles, selecting one aliasing configuration. Snippet: ADD64rr R8, R8, R10 ' ...
To measure the latency of all instructions for the host architecture, run:
$ llvm-exegesis -mode=latency -opcode-index=-1
To measure the latency/uops of a custom piece of code, you can specify the snippets-file option (- reads from standard input).
$ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-
Real-life code snippets typically depend on registers or memory. llvm-exegesis checks the liveliness of registers (i.e. any register use has a corresponding def or is a “live in”). If your code depends on the value of some registers, you have two options:
For example, the following code snippet depends on the values of XMM1 (which will be set by the tool) and the memory buffer passed in RDI (live in).
# LLVM-EXEGESIS-LIVEIN RDI # LLVM-EXEGESIS-DEFREG XMM1 42 vmulps (%rdi), %xmm1, %xmm2 vhaddps %xmm2, %xmm2, %xmm3 addq $0x10, %rdi
Assuming you have a set of benchmarked instructions (either latency or uops) as YAML in file /tmp/benchmarks.yaml, you can analyze the results using the following command:
$ llvm-exegesis -mode=analysis \ -benchmarks-file=/tmp/benchmarks.yaml \ -analysis-clusters-output-file=/tmp/clusters.csv \ -analysis-inconsistencies-output-file=/tmp/inconsistencies.html
This will group the instructions into clusters with the same performance characteristics. The clusters will be written out to /tmp/clusters.csv in the following format:
cluster_id,opcode_name,config,sched_class ... 2,ADD32ri8_DB,,WriteALU,1.00 2,ADD32ri_DB,,WriteALU,1.01 2,ADD32rr,,WriteALU,1.01 2,ADD32rr_DB,,WriteALU,1.00 2,ADD32rr_REV,,WriteALU,1.00 2,ADD64i32,,WriteALU,1.01 2,ADD64ri32,,WriteALU,1.01 2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00 2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02 2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01 2,ADD64ri8,,WriteALU,1.00 2,SETBr,,WriteSETCC,1.01 ...
llvm-exegesis will also analyze the clusters to point out inconsistencies in the scheduling information. The output is an html file. For example, /tmp/inconsistencies.html will contain messages like the following : [image]
Note that the scheduling class names will be resolved only when llvm-exegesis is compiled in debug mode, else only the class id will be shown. This does not invalidate any of the analysis results though.
latency mode can be make use of either RDTSC or LBR. latency[LBR] is only available on X86 (at least Skylake). To run in latency mode, a positive value must be specified for x86-lbr-sample-period and –repetition-mode=loop.
In analysis mode, you also need to specify at least one of the -analysis-clusters-output-file= and -analysis-inconsistencies-output-file=.
llvm-exegesis returns 0 on success. Otherwise, an error message is printed to standard error, and the tool returns a non 0 value.
Maintained by the LLVM Team (https://llvm.org/).
2003-2022, LLVM Project
2022-06-16 | 13 |