IOPRIO_SET(2) | Linux Programmer's Manual | IOPRIO_SET(2) |
ioprio_get, ioprio_set - get/set I/O scheduling class and priority
int ioprio_get(int which, int who); int ioprio_set(int which, int who, int ioprio);
Note: There are no glibc wrappers for these system calls; see NOTES.
The ioprio_get() and ioprio_set() system calls get and set the I/O scheduling class and priority of one or more threads.
The which and who arguments identify the thread(s) on which the system calls operate. The which argument determines how who is interpreted, and has one of the following values:
If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when calling ioprio_get(), and more than one process matches who, then the returned priority will be the highest one found among all of the matching processes. One priority is said to be higher than another one if it belongs to a higher priority class (IOPRIO_CLASS_RT is the highest priority class; IOPRIO_CLASS_IDLE is the lowest) or if it belongs to the same priority class as the other process but has a higher priority level (a lower priority number means a higher priority level).
The ioprio argument given to ioprio_set() is a bit mask that specifies both the scheduling class and the priority to be assigned to the target process(es). The following macros are used for assembling and dissecting ioprio values:
See the NOTES section for more information on scheduling classes and priorities, as well as the meaning of specifying ioprio as 0.
I/O priorities are supported for reads and for synchronous (O_DIRECT, O_SYNC) writes. I/O priorities are not supported for asynchronous writes because they are issued outside the context of the program dirtying the memory, and thus program-specific priorities do not apply.
On success, ioprio_get() returns the ioprio value of the process with highest I/O priority of any of the processes that match the criteria specified in which and who. On error, -1 is returned, and errno is set to indicate the error.
On success, ioprio_set() returns 0. On error, -1 is returned, and errno is set to indicate the error.
These system calls have been available on Linux since kernel 2.6.13.
These system calls are Linux-specific.
Glibc does not provide a wrapper for these system calls; call them using syscall(2).
Two or more processes or threads can share an I/O context. This will be the case when clone(2) was called with the CLONE_IO flag. However, by default, the distinct threads of a process will not share the same I/O context. This means that if you want to change the I/O priority of all threads in a process, you may need to call ioprio_set() on each of the threads. The thread ID that you would need for this operation is the one that is returned by gettid(2) or clone(2).
These system calls have an effect only when used in conjunction with an I/O scheduler that supports I/O priorities. As at kernel 2.6.17 the only such scheduler is the Completely Fair Queuing (CFQ) I/O scheduler.
If no I/O scheduler has been set for a thread, then by default the I/O priority will follow the CPU nice value (setpriority(2)). In Linux kernels before version 2.6.24, once an I/O priority had been set using ioprio_set(), there was no way to reset the I/O scheduling behavior to the default. Since Linux 2.6.24, specifying ioprio as 0 can be used to reset to the default I/O scheduling behavior.
I/O schedulers are selected on a per-device basis via the special file /sys/block/<device>/queue/scheduler.
One can view the current I/O scheduler via the /sys filesystem. For example, the following command displays a list of all schedulers currently loaded in the kernel:
$ cat /sys/block/sda/queue/scheduler noop anticipatory deadline [cfq]
The scheduler surrounded by brackets is the one actually in use for the device (sda in the example). Setting another scheduler is done by writing the name of the new scheduler to this file. For example, the following command will set the scheduler for the sda device to cfq:
$ su Password: # echo cfq > /sys/block/sda/queue/scheduler
Since version 3 (also known as CFQ Time Sliced), CFQ implements I/O nice levels similar to those of CPU scheduling. These nice levels are grouped into three scheduling classes, each one containing one or more priority levels:
Refer to the kernel source file Documentation/block/ioprio.txt for more information on the CFQ I/O Scheduler and an example program.
Permission to change a process's priority is granted or denied based on two criteria:
A call to ioprio_set() must follow both rules, or the call will fail with the error EPERM.
Glibc does not yet provide a suitable header file defining the function prototypes and macros described on this page. Suitable definitions can be found in linux/ioprio.h.
ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)
Documentation/block/ioprio.txt in the Linux kernel source tree
This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
2019-03-06 | Linux |