MMAP(2) | Linux Programmer's Manual | MMAP(2) |
mmap, munmap - map or unmap files or devices into memory
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void *addr, size_t length);
See NOTES for information on feature test macro requirements.
mmap() creates a new mapping in the virtual address space of the calling process. The starting address for the new mapping is specified in addr. The length argument specifies the length of the mapping (which must be greater than 0).
If addr is NULL, then the kernel chooses the (page-aligned) address at which to create the mapping; this is the most portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as a hint about where to place the mapping; on Linux, the kernel will pick a nearby page boundary (but always above or equal to the value specified by /proc/sys/vm/mmap_min_addr) and attempt to create the mapping there. If another mapping already exists there, the kernel picks a new address that may or may not depend on the hint. The address of the new mapping is returned as the result of the call.
The contents of a file mapping (as opposed to an anonymous mapping; see MAP_ANONYMOUS below), are initialized using length bytes starting at offset offset in the file (or other object) referred to by the file descriptor fd. offset must be a multiple of the page size as returned by sysconf(_SC_PAGE_SIZE).
After the mmap() call has returned, the file descriptor, fd, can be closed immediately without invalidating the mapping.
The prot argument describes the desired memory protection of the mapping (and must not conflict with the open mode of the file). It is either PROT_NONE or the bitwise OR of one or more of the following flags:
The flags argument determines whether updates to the mapping are visible to other processes mapping the same region, and whether updates are carried through to the underlying file. This behavior is determined by including exactly one of the following values in flags:
Both MAP_SHARED and MAP_PRIVATE are described in POSIX.1-2001 and POSIX.1-2008. MAP_SHARED_VALIDATE is a Linux extension.
In addition, zero or more of the following values can be ORed in flags:
#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT) #define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)
Of the above flags, only MAP_FIXED is specified in POSIX.1-2001 and POSIX.1-2008. However, most systems also support MAP_ANONYMOUS (or its synonym MAP_ANON).
The munmap() system call deletes the mappings for the specified address range, and causes further references to addresses within the range to generate invalid memory references. The region is also automatically unmapped when the process is terminated. On the other hand, closing the file descriptor does not unmap the region.
The address addr must be a multiple of the page size (but length need not be). All pages containing a part of the indicated range are unmapped, and subsequent references to these pages will generate SIGSEGV. It is not an error if the indicated range does not contain any mapped pages.
On success, mmap() returns a pointer to the mapped area. On error, the value MAP_FAILED (that is, (void *) -1) is returned, and errno is set to indicate the cause of the error.
On success, munmap() returns 0. On failure, it returns -1, and errno is set to indicate the cause of the error (probably to EINVAL).
Use of a mapped region can result in these signals:
For an explanation of the terms used in this section, see attributes(7).
Interface | Attribute | Value |
mmap (), munmap () | Thread safety | MT-Safe |
POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD.
On POSIX systems on which mmap(), msync(2), and munmap() are available, _POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).)
Memory mapped by mmap() is preserved across fork(2), with the same attributes.
A file is mapped in multiples of the page size. For a file that is not a multiple of the page size, the remaining bytes in the partial page at the end of the mapping are zeroed when mapped, and modifications to that region are not written out to the file. The effect of changing the size of the underlying file of a mapping on the pages that correspond to added or removed regions of the file is unspecified.
On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ. It is architecture dependent whether PROT_READ implies PROT_EXEC or not. Portable programs should always set PROT_EXEC if they intend to execute code in the new mapping.
The portable way to create a mapping is to specify addr as 0 (NULL), and omit MAP_FIXED from flags. In this case, the system chooses the address for the mapping; the address is chosen so as not to conflict with any existing mapping, and will not be 0. If the MAP_FIXED flag is specified, and addr is 0 (NULL), then the mapped address will be 0 (NULL).
Certain flags constants are defined only if suitable feature test macros are defined (possibly by default): _DEFAULT_SOURCE with glibc 2.19 or later; or _BSD_SOURCE or _SVID_SOURCE in glibc 2.19 and earlier. (Employing _GNU_SOURCE also suffices, and requiring that macro specifically would have been more logical, since these flags are all Linux-specific.) The relevant flags are: MAP_32BIT, MAP_ANONYMOUS (and the synonym MAP_ANON), MAP_DENYWRITE, MAP_EXECUTABLE, MAP_FILE, MAP_GROWSDOWN, MAP_HUGETLB, MAP_LOCKED, MAP_NONBLOCK, MAP_NORESERVE, MAP_POPULATE, and MAP_STACK.
An application can determine which pages of a mapping are currently resident in the buffer/page cache using mincore(2).
The only safe use for MAP_FIXED is where the address range specified by addr and length was previously reserved using another mapping; otherwise, the use of MAP_FIXED is hazardous because it forcibly removes preexisting mappings, making it easy for a multithreaded process to corrupt its own address space.
For example, suppose that thread A looks through /proc/<pid>/maps in order to locate an unused address range that it can map using MAP_FIXED, while thread B simultaneously acquires part or all of that same address range. When thread A subsequently employs mmap(MAP_FIXED), it will effectively clobber the mapping that thread B created. In this scenario, thread B need not create a mapping directly; simply making a library call that, internally, uses dlopen(3) to load some other shared library, will suffice. The dlopen(3) call will map the library into the process's address space. Furthermore, almost any library call may be implemented in a way that adds memory mappings to the address space, either with this technique, or by simply allocating memory. Examples include brk(2), malloc(3), pthread_create(3), and the PAM libraries http://www.linux-pam.org.
Since Linux 4.17, a multithreaded program can use the MAP_FIXED_NOREPLACE flag to avoid the hazard described above when attempting to create a mapping at a fixed address that has not been reserved by a preexisting mapping.
For file-backed mappings, the st_atime field for the mapped file may be updated at any time between the mmap() and the corresponding unmapping; the first reference to a mapped page will update the field if it has not been already.
The st_ctime and st_mtime field for a file mapped with PROT_WRITE and MAP_SHARED will be updated after a write to the mapped region, and before a subsequent msync(2) with the MS_SYNC or MS_ASYNC flag, if one occurs.
For mappings that employ huge pages, the requirements for the arguments of mmap() and munmap() differ somewhat from the requirements for mappings that use the native system page size.
For mmap(), offset must be a multiple of the underlying huge page size. The system automatically aligns length to be a multiple of the underlying huge page size.
For munmap(), addr, and length must both be a multiple of the underlying huge page size.
This page describes the interface provided by the glibc mmap() wrapper function. Originally, this function invoked a system call of the same name. Since kernel 2.4, that system call has been superseded by mmap2(2), and nowadays the glibc mmap() wrapper function invokes mmap2(2) with a suitably adjusted value for offset.
On Linux, there are no guarantees like those suggested above under MAP_NORESERVE. By default, any process can be killed at any moment when the system runs out of memory.
In kernels before 2.6.7, the MAP_POPULATE flag has effect only if prot is specified as PROT_NONE.
SUSv3 specifies that mmap() should fail if length is 0. However, in kernels before 2.6.12, mmap() succeeded in this case: no mapping was created and the call returned addr. Since kernel 2.6.12, mmap() fails with the error EINVAL for this case.
POSIX specifies that the system shall always zero fill any partial page at the end of the object and that system will never write any modification of the object beyond its end. On Linux, when you write data to such partial page after the end of the object, the data stays in the page cache even after the file is closed and unmapped and even though the data is never written to the file itself, subsequent mappings may see the modified content. In some cases, this could be fixed by calling msync(2) before the unmap takes place; however, this doesn't work on tmpfs(5) (for example, when using the POSIX shared memory interface documented in shm_overview(7)).
The following program prints part of the file specified in its first command-line argument to standard output. The range of bytes to be printed is specified via offset and length values in the second and third command-line arguments. The program creates a memory mapping of the required pages of the file and then uses write(2) to output the desired bytes.
#include <sys/mman.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0) int main(int argc, char *argv[]) {
char *addr;
int fd;
struct stat sb;
off_t offset, pa_offset;
size_t length;
ssize_t s;
if (argc < 3 || argc > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);
}
fd = open(argv[1], O_RDONLY);
if (fd == -1)
handle_error("open");
if (fstat(fd, &sb) == -1) /* To obtain file size */
handle_error("fstat");
offset = atoi(argv[2]);
pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);
/* offset for mmap() must be page aligned */
if (offset >= sb.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);
}
if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)
length = sb.st_size - offset;
/* Can't display bytes past end of file */
} else { /* No length arg ==> display to end of file */
length = sb.st_size - offset;
}
addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);
if (addr == MAP_FAILED)
handle_error("mmap");
s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
if (s != length) {
if (s == -1)
handle_error("write");
fprintf(stderr, "partial write");
exit(EXIT_FAILURE);
}
munmap(addr, length + offset - pa_offset);
close(fd);
exit(EXIT_SUCCESS); }
ftruncate(2), getpagesize(2), memfd_create(2), mincore(2), mlock(2), mmap2(2), mprotect(2), mremap(2), msync(2), remap_file_pages(2), setrlimit(2), shmat(2), userfaultfd(2), shm_open(3), shm_overview(7)
The descriptions of the following files in proc(5): /proc/[pid]/maps, /proc/[pid]/map_files, and /proc/[pid]/smaps.
B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128–129 and 389–391.
This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
2020-12-21 | Linux |