SEND(2) | Linux Programmer's Manual | SEND(2) |
send, sendto, sendmsg - send a message on a socket
#include <sys/types.h> #include <sys/socket.h>
ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
The system calls send(), sendto(), and sendmsg() are used to transmit a message to another socket.
The send() call may be used only when the socket is in a connected state (so that the intended recipient is known). The only difference between send() and write(2) is the presence of flags. With a zero flags argument, send() is equivalent to write(2). Also, the following call
send(sockfd, buf, len, flags);
is equivalent to
sendto(sockfd, buf, len, flags, NULL, 0);
The argument sockfd is the file descriptor of the sending socket.
If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET) socket, the arguments dest_addr and addrlen are ignored (and the error EISCONN may be returned when they are not NULL and 0), and the error ENOTCONN is returned when the socket was not actually connected. Otherwise, the address of the target is given by dest_addr with addrlen specifying its size. For sendmsg(), the address of the target is given by msg.msg_name, with msg.msg_namelen specifying its size.
For send() and sendto(), the message is found in buf and has length len. For sendmsg(), the message is pointed to by the elements of the array msg.msg_iov. The sendmsg() call also allows sending ancillary data (also known as control information).
If the message is too long to pass atomically through the underlying protocol, the error EMSGSIZE is returned, and the message is not transmitted.
No indication of failure to deliver is implicit in a send(). Locally detected errors are indicated by a return value of -1.
When the message does not fit into the send buffer of the socket, send() normally blocks, unless the socket has been placed in nonblocking I/O mode. In nonblocking mode it would fail with the error EAGAIN or EWOULDBLOCK in this case. The select(2) call may be used to determine when it is possible to send more data.
The flags argument is the bitwise OR of zero or more of the following flags.
The definition of the msghdr structure employed by sendmsg() is as follows:
struct msghdr {
void *msg_name; /* Optional address */
socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */
size_t msg_controllen; /* Ancillary data buffer len */
int msg_flags; /* Flags (unused) */ };
The msg_name field is used on an unconnected socket to specify the target address for a datagram. It points to a buffer containing the address; the msg_namelen field should be set to the size of the address. For a connected socket, these fields should be specified as NULL and 0, respectively.
The msg_iov and msg_iovlen fields specify scatter-gather locations, as for writev(2).
You may send control information (ancillary data) using the msg_control and msg_controllen members. The maximum control buffer length the kernel can process is limited per socket by the value in /proc/sys/net/core/optmem_max; see socket(7). For further information on the use of ancillary data in various socket domains, see unix(7) and ip(7).
The msg_flags field is ignored.
On success, these calls return the number of bytes sent. On error, -1 is returned, and errno is set appropriately.
These are some standard errors generated by the socket layer. Additional errors may be generated and returned from the underlying protocol modules; see their respective manual pages.
4.4BSD, SVr4, POSIX.1-2001. These interfaces first appeared in 4.2BSD.
POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags. POSIX.1-2008 adds a specification of MSG_NOSIGNAL. The MSG_CONFIRM flag is a Linux extension.
According to POSIX.1-2001, the msg_controllen field of the msghdr structure should be typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc currently types both as size_t.
See sendmmsg(2) for information about a Linux-specific system call that can be used to transmit multiple datagrams in a single call.
Linux may return EPIPE instead of ENOTCONN.
An example of the use of sendto() is shown in getaddrinfo(3).
fcntl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2), shutdown(2), socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)
This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.
2020-11-01 | Linux |