mlpack_hmm_train(1) | User Commands | mlpack_hmm_train(1) |
mlpack_hmm_train - hidden markov model (hmm) training
mlpack_hmm_train -i string [-b bool] [-g int] [-m unknown] [-l string] [-s int] [-n int] [-T double] [-t string] [-V bool] [-M unknown] [-h -v]
This program allows a Hidden Markov Model to be trained on labeled or unlabeled data. It supports four types of HMMs: Discrete HMMs, Gaussian HMMs, GMM HMMs, or Diagonal GMM HMMs
Either one input sequence can be specified (with '--input_file (-i)'), or, a file containing files in which input sequences can be found (when ’--input_file (-i)'and'--batch (-b)' are used together). In addition, labels can be provided in the file specified by '--labels_file (-l)', and if '--batch (-b)' is used, the file given to '--labels_file (-l)' should contain a list of files of labels corresponding to the sequences in the file given to ’--input_file (-i)'.
The HMM is trained with the Baum-Welch algorithm if no labels are provided. The tolerance of the Baum-Welch algorithm can be set with the '--tolerance (-T)'option. By default, the transition matrix is randomly initialized and the emission distributions are initialized to fit the extent of the data.
Optionally, a pre-created HMM model can be used as a guess for the transition matrix and emission probabilities; this is specifiable with ’--output_model_file (-M)'.
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.
12 December 2020 | mlpack-3.4.2 |