DOKK / manpages / debian 11 / mlpack-bin / mlpack_random_forest.1.en
mlpack_random_forest(1) User Commands mlpack_random_forest(1)

mlpack_random_forest - random forests


mlpack_random_forest [-m unknown] [-l string] [-D int] [-g double] [-n int] [-N int] [-a bool] [-s int] [-d int] [-T string] [-L string] [-t string] [-V bool] [-M unknown] [-p string] [-P string] [-h -v]

This program is an implementation of the standard random forest classification algorithm by Leo Breiman. A random forest can be trained and saved for later use, or a random forest may be loaded and predictions or class probabilities for points may be generated.

The training set and associated labels are specified with the '--training_file (-t)' and '--labels_file (-l)' parameters, respectively. The labels should be in the range [0, num_classes - 1]. Optionally, if '--labels_file (-l)' is not specified, the labels are assumed to be the last dimension of the training dataset.

When a model is trained, the '--output_model_file (-M)' output parameter may be used to save the trained model. A model may be loaded for predictions with the '--input_model_file (-m)'parameter. The '--input_model_file (-m)' parameter may not be specified when the '--training_file (-t)' parameter is specified. The '--minimum_leaf_size (-n)' parameter specifies the minimum number of training points that must fall into each leaf for it to be split. The '--num_trees (-N)' controls the number of trees in the random forest. The ’--minimum_gain_split (-g)' parameter controls the minimum required gain for a decision tree node to split. Larger values will force higher-confidence splits. The '--maximum_depth (-D)' parameter specifies the maximum depth of the tree. The '--subspace_dim (-d)' parameter is used to control the number of random dimensions chosen for an individual node's split. If ’--print_training_accuracy (-a)' is specified, the calculated accuracy on the training set will be printed.

Test data may be specified with the '--test_file (-T)' parameter, and if performance measures are desired for that test set, labels for the test points may be specified with the '--test_labels_file (-L)' parameter. Predictions for each test point may be saved via the '--predictions_file (-p)'output parameter. Class probabilities for each prediction may be saved with the ’--probabilities_file (-P)' output parameter.

For example, to train a random forest with a minimum leaf size of 20 using 10 trees on the dataset contained in 'data.csv'with labels 'labels.csv', saving the output random forest to 'rf_model.bin' and printing the training error, one could call

$ mlpack_random_forest --training_file data.csv --labels_file labels.csv --minimum_leaf_size 20 --num_trees 10 --output_model_file rf_model.bin --print_training_accuracy

Then, to use that model to classify points in 'test_set.csv' and print the test error given the labels 'test_labels.csv' using that model, while saving the predictions for each point to 'predictions.csv', one could call

$ mlpack_random_forest --input_model_file rf_model.bin --test_file test_set.csv --test_labels_file test_labels.csv --predictions_file predictions.csv

Default help info.
Print help on a specific option. Default value ''.
Pre-trained random forest to use for classification.
Labels for training dataset.
Maximum depth of the tree (0 means no limit). Default value 0.
Minimum gain needed to make a split when building a tree. Default value 0.
Minimum number of points in each leaf node. Default value 1.
Number of trees in the random forest. Default value 10.
If set, then the accuracy of the model on the training set will be predicted (verbose must also be specified).
Random seed. If 0, 'std::time(NULL)' is used. Default value 0.
Dimensionality of random subspace to use for each split. '0' will autoselect the square root of data dimensionality. Default value 0.
Test dataset to produce predictions for.
Test dataset labels, if accuracy calculation is desired.
Training dataset.
Display informational messages and the full list of parameters and timers at the end of execution.
Display the version of mlpack.

Model to save trained random forest to.
Predicted classes for each point in the test set.
Predicted class probabilities for each point in the test set.

For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.

12 December 2020 mlpack-3.4.2