PCDTTRF(l) | LAPACK routine (version 1.5) | PCDTTRF(l) |
PCDTTRF - compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
INTEGER INFO, JA, LAF, LWORK, N INTEGER DESCA( * ) COMPLEX AF( * ), D( * ), DL( * ), DU( * ), WORK( * )
PCDTTRF computes a LU factorization of an N-by-N complex
tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1).
Reordering is used to increase parallelism in the factorization. This
reordering results in factors that are DIFFERENT from those produced by
equivalent sequential codes. These factors cannot be used directly by users;
however, they can be used in
subsequent calls to PCDTTRS to solve linear systems.
The factorization has the form
P A(1:N, JA:JA+N-1) P^T = L U
where U is a tridiagonal upper triangular matrix and L is tridiagonal lower triangular, and P is a permutation matrix.
12 May 1997 | LAPACK version 1.5 |