PDLARZB(l) | LAPACK auxiliary routine (version 1.5) | PDLARZB(l) |
PDLARZB - applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
CHARACTER DIRECT, SIDE, STOREV, TRANS INTEGER IC, IV, JC, JV, K, L, M, N INTEGER DESCC( * ), DESCV( * ) DOUBLE PRECISION C( * ), T( * ), V( * ), WORK( * )
PDLARZB applies a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) from the left or the right.
Q is a product of k elementary reflectors as returned by PDTZRZF.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Notes
=====
Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.
Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".
NOTATION STORED IN EXPLANATION
--------------- -------------- --------------------------------------
DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process
column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).
Let K be the number of rows or columns of a distributed matrix,
and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if
K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would
receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK
tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these
quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.
Alignment requirements ======================
The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true:
If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW ) If SIDE = 'Right', ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC ) else if STOREV = 'Rowwise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC ) If SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL ) end if
12 May 1997 | LAPACK version 1.5 |