DOKK / manpages / debian 11 / scalapack-doc / pzpocon.3.en
PZPOCON(l) LAPACK routine (version 1.5) PZPOCON(l)

PZPOCON - estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PZPOTRF

UPLO, N, A, IA, JA, DESCA, ANORM, RCOND, WORK, LWORK, RWORK, LRWORK, INFO )

CHARACTER UPLO INTEGER IA, INFO, JA, LRWORK, LWORK, N DOUBLE PRECISION ANORM, RCOND INTEGER DESCA( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), WORK( * )

PZPOCON estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PZPOTRF.

An estimate is obtained for norm(inv(A(IA:IA+N-1,JA:JA+N-1))), and the reciprocal of the condition number is computed as
RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *
norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).

Notes
=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION
--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.
Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.
The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

Specifies whether the factor stored in A(IA:IA+N-1,JA:JA+N-1) is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

The order of the distributed matrix A(IA:IA+N-1,JA:JA+N-1). N >= 0.
an array of dimension ( LLD_A, LOCc(JA+N-1) ). On entry, this array contains the local pieces of the factors L or U from the Cholesky factorization A(IA:IA+N-1,JA:JA+N-1) = U'*U or L*L', as computed by PZPOTRF.
The row index in the global array A indicating the first row of sub( A ).
The column index in the global array A indicating the first column of sub( A ).
The array descriptor for the distributed matrix A.
The 1-norm (or infinity-norm) of the hermitian distributed matrix A(IA:IA+N-1,JA:JA+N-1).
The reciprocal of the condition number of the distributed matrix A(IA:IA+N-1,JA:JA+N-1), computed as
RCOND = 1 / ( norm( A(IA:IA+N-1,JA:JA+N-1) ) *
norm( inv(A(IA:IA+N-1,JA:JA+N-1)) ) ).
dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.
The dimension of the array WORK. LWORK is local input and must be at least LWORK >= 2*LOCr(N+MOD(IA-1,MB_A)) + MAX( 2, MAX(NB_A*MAX(1,CEIL(P-1,Q)),LOCc(N+MOD(JA-1,NB_A)) + NB_A*MAX(1,CEIL(Q-1,P))) ).

If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.

dimension (LRWORK) On exit, RWORK(1) returns the minimal and optimal LRWORK.
The dimension of the array RWORK. LRWORK is local input and must be at least LRWORK >= 2*LOCc(N+MOD(JA-1,NB_A)).

If LRWORK = -1, then LRWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.

= 0: successful exit
< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.
12 May 1997 LAPACK version 1.5