PZPTTRF(l) | LAPACK routine (version 1.5) | PZPTTRF(l) |
PZPTTRF - compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
INTEGER INFO, JA, LAF, LWORK, N INTEGER DESCA( * ) COMPLEX*16 AF( * ), E( * ), WORK( * ) DOUBLE PRECISION D( * )
PZPTTRF computes a Cholesky factorization of an N-by-N complex
tridiagonal symmetric positive definite distributed matrix A(1:N,
JA:JA+N-1). Reordering is used to increase parallelism in the factorization.
This reordering results in factors that are DIFFERENT from those produced by
equivalent sequential codes. These factors cannot be used directly by users;
however, they can be used in
subsequent calls to PZPTTRS to solve linear systems.
The factorization has the form
P A(1:N, JA:JA+N-1) P^T = U' D U or
P A(1:N, JA:JA+N-1) P^T = L D L',
where U is a tridiagonal upper triangular matrix and L is tridiagonal lower triangular, and P is a permutation matrix.
12 May 1997 | LAPACK version 1.5 |